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Evidence of a second-order phase transition in the six-dimensional Ising spin glass in a field
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The very existence of a phase transition for spin glasses in an external magnetic field is controversial, even in
high dimensions. We carry out massive simulations of the Ising spin-glass in a field, in six dimensions (which,
according to classical—but not generally accepted—field-theoretical studies, is the upper critical dimension).
We obtain results compatible with a second-order phase transition and estimate its critical exponents for the
simulated lattice sizes. The detailed analysis performed by other authors of the replica symmetric Hamiltonian,
under the hypothesis of critical behavior, predicts that the ratio of the renormalized coupling constants remain
bounded as the correlation length grows. Our numerical results are in agreement with this expectation.
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I. INTRODUCTION

The existence of a spin-glass (SG) transition in the pres-
ence of an external magnetic field, at the so-called de
Almeida-Thouless (dAT) line [1], is one of the most challeng-
ing problems in the realm of disordered systems [2–5]. The
existence of the dAT line is firmly established only in the limit
of infinite space dimensions, D → ∞ [2].

In order to clarify this problem, the community has tried to
implement the Wilson renormalization group (RG) program
[6,7]. The starting point is the computation of the so-called
upper critical dimension Du (the smallest D at which criti-
cal exponents take their Gaussian values). Unfortunately, this
approach, extremely successful in an enormous variety of
problems including SG at zero field [8,9], has not yet succeed.
Replicated field theory finds Du = 6, but fails to find, in the
one-loop approximation, a fixed point stable at D = 6 [10,11].
In fact, we identify no fewer than eight conflicting scenarios:

(i) The droplets model predicts the absence of a dAT line
for any D < ∞ (i.e., the so-called lower critical dimension is
Dl =∞) [12–15].

(ii) A modified version of the droplets model finds Du =
Dl = 6. In other words, a SG phase transition would be possi-
ble in a field only if D > 6 [16]. See also Refs. [17] and [18].

(iii) An analysis based in the study of high-temperature
series finds a second phase transition only for D � 6 [19].

(iv) A very recent field-theoretical analysis claims Du =8
[20].

(v) Interestingly enough, a two-loop computation does find
a nontrivial stable fixed point at D = 6 [21,22], the Gaussian
one being unstable. This nontrivial fixed-point would lie in the
nonperturbative region (which makes it unclear whether or not
the fixed point would survive a three-loops computation).

(vi) The scenario described in Ref. [23] predicts a quasi-
first-order transition in a field.

(vii) Large-scale numerical simulations suggest the pres-
ence of a dAT line for D=4 [24], but the results are not
conclusive for D=3 [25,26].

(viii) The study of D=1 models with long-range inter-
actions that mimic short-range models at D>1 provides
somewhat contradicting results. Some studies argue that there
must not be a dAT line below D=6 [27–29], while others
claim in favor of a dAT line for much lower D [30,31].

Here we add clarity to the debate by showing numerical
evidence that a dAT line is present in D=6 through massive
numerical simulations: our largest lattices contain 86 spins,
more than twice the 483 spins in the largest system ever equi-
librated in D=3 [32]. We find that the scaling behavior of the
different susceptibilities is qualitatively different from their
zero field counterpart. We have also been able to estimate the
critical exponents. However, the lack of analytical predictions
for the logarithmic corrections of the different observables
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and the size of our statistical errors prevent us from making
any strong claim regarding the value of Du. Finally, we obtain
numerical evidence that the two-parameter replica symmetric
(RS) effective Hamiltonian [11] is able to describe the scaling
of the ratio of the renormalized coupling constants in the
critical region, which enables us to discuss the problem of a
second-order phase transition versus a quasi-first-order one.

The structure of the paper is as follows. First, we de-
scribe our model (Sec. II), the field-theoretical framework
(Sec. II A), and the finite-size scaling techniques (Sec. II B)
used to study it. Then we present our numerical results in
Sec. III. In particular, in this section we briefly introduce the
details of our simulations (Sec. III A), and we study the repli-
con and anomalous susceptibilities (Sec. III B), the probability
density function of the overlap (Sec. III C), the critical expo-
nents (Sec. III D), and the parameter λ (Sec. III E). Finally, we
discuss our results and draw some conclusions in Sec. IV.

The paper is supplemented by eight Appendixes, organized
as follows. In Appendix A we present the effective Hamil-
tonian and the structure of the propagators. In Appendix B
we revisit theoretical results pertaining to the Helmholtz and
Gibbs free energies. Appendix C is dedicated to defining
the parameter λr and the study of its estimators. Details of
our simulations and algorithms are presented in Appendix D
and Appendix E. Appendix F address the computation of
the critical exponents. In Appendix G we present numerical
results for the h = 0 phase transition of the six-dimensional
Ising spin glass. We conclude by studying the � cumulants in
Appendix H.

II. THE MODEL

We consider the Edwards-Anderson Hamiltonian for Ising
spins (i.e., sx = ±1) on a six-dimensional cubic lattice of
size V = L6, with periodic boundary conditions and nearest-
neighbor interactions:

H = −
∑
〈x,y〉

Jxysxsy − h
∑

x

sx, (1)

where the couplings are independent, identically distributed
random variables (Jxy = ±1 with equal probability). Here-
after, the overline (· · · ) means average over the couplings, and
〈(· · · )〉 is the thermal average carried out for fixed couplings
{Jxy}. A choice of couplings is named a sample.

A. Field-theoretical framework

The analysis of the RS Hamiltonian in the field theory
(see Appendix A) finds three masses (replicon, anomalous,
and longitudinal) and their associated propagators (correlation
functions) [11,33]. In the spin-glass phase, the most singular
mode is the replicon. The anomalous and longitudinal modes
become identical when one takes the limit for the number of
replicas n going to zero. Hence the two fundamental propa-
gators of the theory, GR(x − y) and GA(x − y), are defined as
(see Appendix A for more details)

GR(x − y) = 〈sxsy〉2 − 2〈sxsy〉〈sx〉〈sy〉 + 〈sx〉2〈sy〉2 (2)

and

GA(x − y) = 〈sxsy〉2 − 4〈sxsy〉〈sx〉〈sy〉 + 3〈sx〉2〈sy〉2. (3)

Associated with each two-point correlation functions one
can define a susceptibility χ as

χα = Ĝα (0) α ∈ {R, A}, (4)

where Ĝ(k) is the discrete Fourier transform of G(x) [see
Eq. (A6)]. In the h = 0 case, it is straightforward to show that
χR = χA = χL. When h �= 0 instead, we shall find below that
χR becomes dominant in the spin-glass phase.

In order to study the RS effective Hamiltonian, one in-
troduces ω1 and ω2, which are the following three-point
connected correlation functions at zero external momentum:

ω1 = 1

V

∑
xyz

〈sxsy〉c〈sysz〉c〈szsx〉c, (5)

ω2 = 1

2V

∑
xyz

〈sxsysz〉2
c, (6)

where the c subindices stand for connected correlation func-
tions. We refer the reader to Appendixes B and C for the
technical details about the computation of ω1 and ω2.

An interesting observable is the ratio of the two renormal-
ization vertices of the theory, denoted w1,r and w2,r :

λr = w2,r

w1,r
. (7)

Interestingly enough, this ratio can be easily obtained as well
(see Appendix C for additional details) in terms of ω1 and ω2

as

λr = ω2

ω1
. (8)

This equation allows us to compute the ratio of the two renor-
malized couplings (λr) in a numerical simulation on the lattice
by computing the quotient of two connected correlations func-
tions at zero external momentum.

Finally, let us remark that there are two different ways of
taking the limits for λr (L, T ) at Tc:

λ∗
r = lim

L→∞
lim

T →Tc

λr (L, T ), λr (T +
c ) = lim

T →T +
c

lim
L→∞

λr (L, T ).

(9)
In principle, λ∗

r �= λr (T +
c ). We are interested in λr (T +

c ) [34].
Notice that six real replicas (six independent copies of

the system evolving under the same couplings) are needed
to compute ω1 and ω2. However, one can compute ω1 and
ω2 in terms of three and four real-replica estimators (see
Appendix C). Within the framework of the RS theory [33],
the values of the three- and four-replica estimators differ in
general from the true values of ω1 and ω2 but coincide with
them at the critical temperature. This gives us the opportunity
to check the validity of the RS theory by computing the six-,
four-, and three-replica estimators [35].

Another check is the value of λr itself, since the replica
symmetric field theory predicts a value of 0 � λr � 1 for a
second-order phase transition while a value of λr > 1 would
imply the presence of a quasi-first-order phase transition [23].
It is worth noting that λr controls as well the mean-field
(MF) values of equilibrium and off-equilibrium dynamical
exponents [33].
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B. Finite-size scaling

We want to investigate whether or not the systems un-
dergoes a second-order phase transition in the presence of a
magnetic field and, if the answer is positive, to characterize
the resulting universality class. Indeed, a standard way of
identifying a phase transition is computing some correlation
length ξ that is used to identify scale invariance. An appro-
priate definition of the second-moment correlation length in a
finite lattice is [7]

ξ2 = 1

2 sin(π/L)

(
ĜR(0)

ĜR(k1)
− 1

)1/2

, (10)

where k1 = (2π/L, 0, 0, 0, 0, 0) (or permutations). The scale
invariance of ξ2/L at the critical point results in

ξ2

L
= fξ (L

1
ν t ) + L−ωgξ (L

1
ν t ) + · · · , (11)

where ω is the correction-to-scaling exponent and t = (T −
Tc)/Tc is the reduced temperature. From this behavior one
expects that a plot of ξ2(T )/L for several system sizes will
show a common intersection point at T = Tc, provided that
the sizes are large enough to make corrections to scaling neg-
ligible. However, previous works in lower dimensions [24,30]
did not find this intersection. This anomalous behavior was
attributed to an abnormal behavior of the propagator at wave
vector k = 0 [30], which induces strong corrections to the
leading scaling behavior in Eq. (11). This phenomenon is
illustrated through the spin-glass order parameter distribution
in Sec. III C.

Given the aforementioned anomaly, we consider a second
scale-invariant quantity, previously introduced in Ref. [24]
under the name R12, which is computed as a dimensionless
ratio of propagators with higher momenta

R12 = ĜR(k1)

ĜR(k2)
. (12)

Here k1 and k2 are the smallest nonzero momenta com-
patible with periodic boundary conditions, namely, k1 =
(2π/L, 0, 0, 0, 0, 0, 0) and k2 = (2π/L,±2π/L, 0, 0, 0, 0)
(and permutations). Notice that R12 scales in the same way
as ξ2/L; see Eq. (11).

III. NUMERICAL RESULTS

In this section we present the numerical results obtained
from our simulations. We begin by briefly describing our
simulations. Subsequently, we delve into the study of the sus-
ceptibilities, the probability density function of the overlap,
the critical exponents, and the parameter λr .

A. Description of simulations

We have studied the model in Eq. (1) through Monte Carlo
simulations on lattices L = 5, 6, 7, and 8, with a magnetic
field set to h = 0.075. Thermalization is ensured by using the
parallel tempering algorithm [36,37], complemented with a
demanding equilibration test based on Ref. [38]. In order to
obtain high statistics, we have simulated 25 600 samples for
L = 5, 6, 7 and 5120 for the largest lattice size L = 8 by using

FIG. 1. Susceptibilities for the replicon χR (on the top), Eqs. (2)
and (4), for the anomalous mode χA (on the middle), Eqs. (3) and (4),
and for the ratio of the anomalous mode and the replicon one, χA/χR,
(on the bottom), vs temperature T , as computed for our different
system sizes in a magnetic field h = 0.075. For h = 0 one trivially
shows that χR = χA. Instead, for h = 0.075, we find that χR rapidly
grows with L at low temperatures, while χA/χR goes to zero. The
different size dependence ensures that we are working far enough
from the h = 0 point in the dAT line. The two vertical lines are our
estimates for the critical temperatures for h = 0.075 (left vertical
line) and for h = 0 (right line). In particular, note from the middle
panel that the values of χA, as computed in L = 7 and 8 lattices, are
compatible: i.e., differences smaller than two standard deviations at,
and below, our estimated critical temperature for h = 0.075.

multispin coding. Six statistically independent system copies
of each sample, named real replicas, are simulated in order to
compute without statistical bias both ω1 and ω2; recall Eqs. (5)
and (6). Further details about our simulations are provided in
Appendixes D and E.

B. Replicon and anomalous susceptibilities

One may question if our magnetic field h = 0.075 is large
enough to ensure that we are working far enough from the
h = 0 endpoint of the dAT line. We answer that question by
computing the replicon and anomalous susceptibilities: notice
that for h = 0, χA = χR. In Fig. 1 we represent χR (top panel),
χA (middle panel), and the ratio χA/χR (bottom panel). In-
deed, at the critical point even our smallest system L = 5 has
χR(L = 5, Tc) ≈ 3 χA(L = 5, Tc), and this ratio gets larger
as L grows (see bottom panel in Fig. 1) [39], meaning that
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FIG. 2. Probability density function of the overlap P(q) for two
different sizes: L = 6 (left) and L = 8 (right). We have computed
P(q) for the lowest available temperature for L = 8 (β ≈ 0.389) and
the closest available temperature for L = 6 (β ≈ 0.390).

correlations extend to a much longer distance for the replicon
mode than for the anomalous one, in agreement with both
the MF picture and previous computations in D = 3 [25] and
D = 4 [40].

C. Probability density function of the overlap

We have computed the probability density function of the
overlap, q, for L = 6 and L = 8. We observe (see Fig. 2)
for both lattice sizes that the probability density function is
nonzero for negative overlaps. Note that the tail at q < 0
is suppressed in the thermodynamic limit. Indeed, the trend
towards a suppression of the tail as L grows is very clear from
our data in Fig. 2.

As mentioned in the previous section, the non-negligible
tail of negative overlaps is probably responsible of the un-
desirable behavior of the propagator at wave vector k = 0,
which makes it difficult to find intersections of the curves
corresponding to different (small) lattice sizes of ξ2/L as a
function of temperature.

D. Critical exponents

We start by determining the value of the critical tempera-
ture at which the phase transition takes place. Equation (11)
tells us that the curves of dimensionless magnitudes such as
ξ2/L and R12, when computed for different system sizes, will
intersect at Tc(h). These intersections are shown in Fig. 3 and
in Table I. Corrections to scaling cause the intersection points
to vary, depending on the considered pair of lattice (L1, L2)
and the quantity under inspection, ξ2/L or R12. However, for
our largest systems (L1 =7, L2 =8) we find compatible cross-
ings for ξ2/L and R12. Also the (L1 =6, L2 =7) crossing for

TABLE I. Temperatures for the crossing points of ξ/L and R12

for consecutive sizes.

L1 L2 T ξ
c T R

c

5 6 2.892(6) 2.680(14)
6 7 2.809(16) 2.739(15)
7 8 2.69(4) 2.74(2)

FIG. 3. Second-moment correlation length ξ2, Eq. (10), mea-
sured in units of the lattice size L (on the top), and dimensionless
ratio R12, Eq. (12) (on the bottom), as a function of temperature T .
Both quantities are shown as computed for the replicon propagator,
Eq. (2), for all our lattice sizes at h = 0.075. At the critical point,
the curves for different sizes of the system intersect at the same T ,
meaning that both ξ/L and R12 are scale invariant at Tc. The presence
of a crossing point for ξ2/L indicates that the anomalous behavior of
the wave vector k = 0 is less severe in space dimension D = 6 than
previously found at D = 4 [24]. The difference between the crossing
points found for both quantities should vanish as L → ∞, since it is
due to scaling corrections.

R12 turns out to be compatible with the results from (L1 =7,
L2 =8). Although a more accurate estimation of Tc is obtained
below, the reader can already appreciate that Tc(h = 0.075) is
significantly smaller than its h = 0 counterpart Tc(h = 0) =
3.033(1) [41,42]. See also Appendix G.

Our next step is the characterization of the universality
class by computing critical exponents ν (associated with the
correlation length) and η (associated with the replicon sus-
ceptibility). We extract effective, size-dependent exponents by
using the quotient method [43–45] (see Table II). To avoid
the somewhat problematic k = 0 wave vector we compute ν

from the scaling of ∂R12/∂T (see Appendix F) and η from the
susceptibility F :

F = ĜR(k1). (13)

The effective exponents in Table II need to be extrapo-
lated to L1 → ∞. We have checked that these extrapolations
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TABLE II. Effective exponents η and ν as obtained from the
quotient method for lattices (L1, L2). Values are shown at the tem-
peratures obtained from the crossings in R12.

L1 L2 η(T R
c ) ν(T R

c )

5 6 0.40(1) 0.88(7)
6 7 0.28(1) 0.76(5)
7 8 0.21(1) 0.54(6)

are compatible with MF values, ν = 1/2 and η = 0. We
have started with independent fits to the laws ν(L1) = 1/2 +
O(L−ων

1 ) and η(L1) = O(L−ωη

1 ) obtaining good fits, where ωi

(i = ν, η) is the leading correction-to-scaling exponent [46].
For ν we get χ2/dof = 2.9/1 (dof is the number of degrees
of freedom) with a p value = 9% and ων = 3.7(1.3). For
η we obtain χ2/dof = 0.03/1 with a p value = 87% and
ωη = 1.93(15). We can improve by trying a joint fit for ν

and η that assumes a common value of ωνη (in agreement
with the RG expectation). The joint fit obtains ωνη = 1.96(15)
with χ2/dof = 5.67/3 with a p value = 13%. Our extrap-
olations to large L1 not constrained to yield MF exponents
resulted in exceedingly large errors for both ν and η. Thus,
although our estimated exponents are compatible with an
upper critical dimension in a field Dh

u = 6, we cannot ex-
clude nearby values for Dh

u. In particular, the largeness of
the ω exponent seems in contradiction with the logarith-
mic corrections (i.e., ω = 0) expected at the upper critical
dimension.

At this point, we are ready for a joint extrapolation to
infinite system sizes of the critical temperature. With the data
appearing in Table I, we perform a join fit with the two data
sets to

βL
c = β∞

c + A
s−ω − 1

1 − s1/ν
L−ω−1/ν, (14)

where β = 1/T , s = (L + 1)/L, ω = 5(2), and ν is fixed to
ν = 1/2. The results of the fit are Tc = 1/β∞

c = 2.755(13)
with χ2/dof = 5.02/2 with a p value = 8.0%.

We have also checked that the impact of the factor f (s) =
(s−ω − 1)/(1 − s1/ν ) is negligible. Actually, if we perform the
same fit setting f (s) = 1 we obtain Tc = 1/β∞

c = 2.755(15)
with χ2/dof = 5.48/2 with a p value = 6.5%.

E. Study of the λr parameter

Finally, let us consider the λr parameter from Eq. (8), that
we have computed using the three-, four-, and six-replica
estimators of ω1 and ω2. These multiple calculations enable
us to check two predictions from the RS theory. First, it
predicts that the three and four replicas estimators give the
true value of λr (which is the one of the six-replica estimator)
near the critical point. Second, this theory predicts a value
of λr ∈ [0, 1]. The two following subsections address these
points.

1. Comparison of λr computed with three, four, and six replicas

We represent in Fig. 4 the three-, four-, and six-replica
estimator of λr for different lattice sizes L = 6, 7, and 8
(bottom, middle, and top panels, respectively). We also plot

FIG. 4. Plot of the three-, four-, and six-replica estimator of λr ,
Eqs. (C7), (C8), and (B9), respectively, as a function of the temper-
ature for L = 6 (bottom panel), for L = 7 (middle panel), and for
L = 8 (top panel). We also plot the infinite temperature limits for
three and four replicas.

the infinite temperature values for three and four repli-
cas. The three-replica estimator seems to converge to the
infinite value faster than the four-replica estimator, which
exhibits a crossover between the six-replica behavior at low
temperatures and the infinite temperature one at higher tem-
peratures. Note that, at the estimated critical temperature
Tc = 2.755(13), the four- and six-replica estimators are com-
patible within one standard deviation. Thus, we will use
the four-replica estimator which exhibits a smaller statistical
error.

In Fig. 5 we show the values of six-replica estimator of λr

as a function of the temperature for different lattice sizes.
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FIG. 5. Plot of the six-replica estimator of λr , Eq. (B9) and (C5),
as a function of the temperature for all the lattice sizes L.

2. Value of λr(T +
c )

The validity of the prediction of λr ∈ [0, 1] can be ad-
dressed from Fig. 6 (we employ dark colors for the values
of λr computed with three replicas and light colors for the
four-replica estimator). Notice that the scaling corrections of
the three- and four-replica estimators have opposite signs.
Hence we can assume that λr (T +

c ) lies between the three-
and four-replica estimate of λr for our largest lattice at our
estimate of the critical point. In this way, we conclude that
λr (T +

c ) = 0.52(6).

IV. CONCLUSIONS

We have found numerical evidences for a second-order
phase transition in the six-dimensional Ising spin glass in
an external field by using state-of-the-art techniques for the
Monte Carlo simulations and for the data analysis. We have
also performed a first computation of the critical exponents

FIG. 6. Three- and four-replica estimators of λr , Eqs. (C7) and
(C8), as a function of the temperature. The six-replica estimator,
shown in Appendix C, turned out to be compatible with—but much
noisier than—the four-replica estimator.

for this phase transition. Our finding of a second-order phase
transition in six dimensions in a field corroborates, and
complements, the analysis based on high-temperature series
expansions by Singh and Young [19].

The difficulty in interpreting this finding lies in the absence
of a stable fixed point in the one-loop studies for this problem
based in the renormalization group by Bray and Roberts [10],
which opens the doors to nonperturbative scenarios. In fact,
a recent study (conducted up to second order in perturbation
theory) has found an additional and stable fixed point [21,22].
Furthermore, in Ref. [20] it has been claimed that the upper
critical dimension is eight (rather than six). Our findings are
most easily interpreted in this context. An scenario in which
a nonperturbative fixed point appears below eight dimensions,
which controls the second-order phase transition in six dimen-
sions, seems quite natural.

However, we should stress that both techniques have their
own limitations: truncation of the series in the case of the
high-temperature expansions and the impossibility to simulate
very large lattices in the case of numerical simulations. As
a consequence, both techniques could miss a crossover to a
different behavior that would appear at higher orders in the
series expansion, or for larger systems in the case of the
simulations. This could be a crossover to a quasi-first-order
transition scenario [23] or even to a no-phase transition sce-
nario [12–16]. If present, this change of behavior should occur
at a crossover length larger than our simulated sizes L = 8. We
are unaware of quantitative estimates of this crossover length
in the literature. We should stress, however, that in the absence
of a field (when there is no doubt that six is the upper critical
dimension) our simulated sizes L 
 8 are enough for a char-
acterization of the phase transition, including its associated
logarithmic corrections; see Ref. [41] and Appendix G.

Let us conclude by stating that we consider that additional
analytical and numerical studies are needed to fully under-
stand the intriguing challenge of characterizing the critical
behavior of a spin glass in a field in finite dimensions.
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APPENDIX A: THE HAMILTONIAN AND THE
STRUCTURE OF THE PROPAGATORS

The effective Hamiltonian describing the critical behavior
of the D-dimensional Ising spin-glass model in presence of a
magnetic field h can be written using the replica framework as
[11]
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where the replicated overlap, φab, is a n × n symmetric matrix
with zero in the diagonal and n is the number of replicas (n →
0).

The three fundamental modes of the correlation function
are named replicon, anomalous, and longitudinal modes. The
anomalous and longitudinal modes become identical when
one takes the limit of vanishing n. The fundamental propa-
gators of the theory GR(x − y) and GA(x − y) are related to
the natural propagators G1(x − y), G2(x − y), and G3(x − y)
as

GR(x − y) = G1(x − y) − 2G2(x − y) + G3(x − y),

GA(x − y) = GL(x − y) = G1(x − y) − 4G2(x − y)

+ 3G3(x − y), (A2)

where

G1(x − y) = 〈sxsy〉2 − q2, (A3)

G2(x − y) = 〈sxsy〉〈sx〉〈sy〉 − q2, (A4)

G3(x − y) = 〈sx〉2〈sy〉2 − q2, (A5)

with, as usual, q = 〈sx〉2 being the average overlap.
The Fourier transform of the correlation functions is

Ĝα (k) =
∑

r

eik·rGα (r), α ∈ {1, 2, 3, R, L, A}. (A6)

Associated with each two-point correlation functions one can
define a susceptibility χα as

χα = Ĝα (0), α ∈ {1, 2, 3, R, L, A}. (A7)

In the particular case of h = 0 case one finds χR = χA =
χL (because χ2 = χ3 = 0). However, as soon as h �= 0, the
replicon χR becomes significantly larger than χA = χL in the
spin-glass phase. Details on how to compute the correlation
functions with a multispin coding algorithm can be found in
Appendix D.

APPENDIX B: THE HELMHOLTZ AND GIBBS
FREE ENERGIES

With this Hamiltonian we can compute the associated free
energy, the Helmholtz one, defined as

F (λab) = − 1

V
ln〈e

∑
(ab) V λabδQ̃ab〉r, (B1)

where (ab) denotes sum over a �= b, the average over the
replicated system is denoted as 〈(· · · )〉r (see Ref. [33]) and

δQ̃ab ≡ Qab − q, (B2)

with

Qab ≡ 1

V

∑
x

sa
xsb

x. (B3)

This free energy allows us to compute the average value of the
overlap

〈δQ̃ab〉r = − ∂F

∂λab
. (B4)

The Gibbs free energy, G(δQab), is just the Legendre trans-
form of F (λab) given by

G(δQab) = F (λab) +
∑

ab

λabδQab, (B5)

λab being a function of δQab

λab = ∂G

∂δQab
. (B6)

The Taylor expansion of the Helmholtz free energy (up to
third order) is

F (λ) = −1
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The coefficients Wab,cd,e f can take only eight different val-
ues in a RS phase, namely, Wab,bc,ca = W1, Wab,ab,ab = W2,
Wab,ab,ac = W3, Wab,ab,cd = W4, Wab,ac,bd = W5, Wab,ac,ad

= W6, Wac,bc,de = W7, and Wab,cd,e f = W8.
In terms of these Wi (i = 1, . . . , 8) the cubic part of the

Helmholtz free energy can be written as∑
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We quote here only the relationship between ω1 and ω2 (the
two relevant terms in this context [33]) and the Wi [47]:

ω1 = W1 − 3W5 + 3W7 − W8,

ω2 = 1
2W2 − 3W3 + 3

2W4 + 3W5 + 2W6 − 6W7 + 2W8.

(B9)
that can expressed as

ω1 = 1

V
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ω2 = 1

2V

∑
xyz

〈sxsysz〉2
c, (B10)

where by 〈(· · · )〉c we denote connected correlation functions.
Notice that the coefficients of the terms of order O(λm) in the
expansion of the Helmholtz free energy, F (λ), are the m term
connected susceptibilities.

At this point the Gibbs free energy can be written as

G(δQ) = 1
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Observe that the cubic coupling in the Hamiltonian are
written as w̃1, w̃2, and they are different from the coefficients
w1,w2 of the Gibbs free energy [33] (the so-called vertices
in field theoretical language). The coefficients w̃i and wi are,
respectively, the bare and dressed couplings, The bare and
dressed couplings generally differ; they are equal only at the
level of the tree approximation in field theory.

APPENDIX C: DETAILS FOR THE COMPUTATION OF
THE PARAMETER λr IN NUMERICAL SIMULATIONS

A good way to study the nature of the transition is by means
of the parameter λr defined as

λr = w2,r

w1,r
, (C1)

where w1,r and w2,r are the renormalized exact vertices of the
static replicated Gibbs free energy [33] defined in terms of the
connected correlation functions computed at zero momenta as
[48]

wi,r = ωi

χ
3/2
R ξ

D/2
2

(i = 1, 2). (C2)

Therefore

λr = w2,r

w1,r
= ω2

ω1
. (C3)

In addition, it can be shown that the exact vertices (wi) can be
expressed in terms of the connected correlations functions at
zero momenta (ωi) as [33]

wi = ωi

χ3
R

(i = 1, 2) (C4)

and so

λr = w2,r

w1,r
= ω2

ω1
= w2

w1
. (C5)

Notice that the parameter λr is also related with the cubic
couplings w̃1 and w̃2 of the replica symmetric Hamiltonian
of Bray and Roberts [10] since, at the mean-field (MF) level,
we have w̃i = wi (i = 1, 2). Then, λr < 1 signals the breaking
point from RS to replica symmetry breaking [49]. Let us
finally remark that all microscopic models, each of them with
its own λr parameter at a general temperature, will display
the same T → Tc limit for λr = w2,r/w1,r . Indeed, in Parisi’s
renormalization scheme both w1,r and w2,r are universal, i.e.,
independent of the microscopic Hamiltonian [48].

In numerical simulations we compute ω1 and ω2 using
Eq. (B9) with the Wi given by [33]

W1 ≡ V 2〈δQ̃12δQ̃23δQ̃31〉,
W2 ≡ V 2〈δQ̃3

12

〉
,

W3 ≡ V 2
〈
δQ̃2

12δQ̃13
〉
,

W4 ≡ V 2
〈
δQ̃2

12δQ̃34
〉
,

W5 ≡ V 2〈δQ̃12δQ̃13δQ̃24〉,
W6 ≡ V 2〈δQ̃12δQ̃13δQ̃14〉,
W7 ≡ V 2〈δQ̃12δQ̃13δQ̃45〉,
W8 ≡ V 2〈δQ̃12δQ̃34δQ̃56〉, (C6)

and the overlap fluctuations δQ̃ab can be computed in terms of
independent real replicas (a and b) using Eq. (B2).

To compute each cubic cumulant Wi requires a number
of different real replicas equal to the largest index in its
expression. The RS field theory predicts that the amplitudes
of the {W1, . . . ,W8} set are not independent [33]. Using the
linear relationship between them one can compute ω1 and ω2

in terms of three- and four-replica estimators. In particular, the
three-replica estimators are [33]

ω
(3)
1 ≡ 11

30W1 + 2
15W2, ω

(3)
2 ≡ 4

15W1 − 1
15W2, (C7)

and the four-replica ones [33]

ω
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5
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2
,
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5
+ W6. (C8)

Within the framework of the RS theory, the values of the
three- and four-replica estimators differ in general from the
true values of ω1 and ω2 but coincide with them at the critical
temperature [33]. This gives us the opportunity to check the
validity of the RS theory by computing the three-, four-, and
six-replica estimators.

1. λr infinite-temperature limit

As a part of our analysis of the behavior of the observable
λr , we have studied how far from the infinite-temperature limit
our results are. In this section we show the computations of
λr in the infinite-temperature limit for three, four, and six
replicas.
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Actually, the computation of λr at infinite temperature is
reduced to the computation of the cubic cumulants Wi with
i ∈ {1, 2, . . . , 8} in the same regime.

Let us start by computing the very simple case of the
cumulant W2. Starting from the expression of the cumulant
given by Eq. (C6) and Eq. (B2) we can develop the expression
of W2:

W2 = V 2〈(Q12 − q)3〉 = V 2
〈
Q3

12

〉 − 3q
〈
Q2

12

〉 + 2V 2q3. (C9)

In the infinite-temperature limit in which we are interested
of, the value of q tends to 0, so the only relevant term is
V 2 〈Q3

12〉. Expanding this term we get〈
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In the infinite-temperature limit, the only relevant terms are
those with x = y = z. Other possibilities vanish when thermal
averages are taken since thermal fluctuations are dominant in
that regime. Thus, we have〈
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〉
T →∞ = 1

V 3

∑
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xs2
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xs2
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〉
. (C11)

Spins appearing an odd number of times lead to cancellations
in the Eq. (C11) when thermal averages are taken. On the
contrary, spins appearing an even number of times can pair
each other and contribute one unit to the sum.

This simple reasoning indicate us that, each time a replica
is appearing an odd number of times in the expression of Wi,
that cubic cumulant will be 0 in the infinite-temperature limit.
That is the case for Wi with i � 2. However, for W1 we have

W1 = V 2〈Q12Q23Q31〉 − 3q〈Q12Q13〉 + 2V 2q3. (C12)

In Eq. (C12), the only nonzero term in the infinite limit, the
first one, contains an even number of spins of each replica
when expanding it. Therefore, this term will contribute with a
factor 1 when averages are taken. Then W1 = 1 and Wi = 0
for i � 2 in the infinite-temperature limit.

At this point, the computation of λr is easy. From Eq. (C1)
we obtain

λr = ω2

ω1
= 0. (C13)

Similar computations are valid for the three- and four-replica
cases. From Eqs. (C7) and Eqs. (C8) we have

λ(3)
r = ω

(3)
2

ω
(3)
1

= 8

11
, (C14)

λ(4)
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(4)
2

ω
(4)
1

= 14

23
. (C15)

APPENDIX D: NUMERICAL SIMULATION DETAILS

To study the six-dimensional Ising spin glass in the pres-
ence of a magnetic field we have written several computer
programs in C language. In our simulations, we use an offline
analysis approach, meaning our simulation program writes
configurations of spins and then a different analysis program
computes the correlation lengths and other magnitudes of
interest. Finally, a third program is in charge of the statistical

TABLE III. Some parameters of our simulation. The first column
refers to the size of the side of the hypercube. In the second column
we present the number of samples analyzed. The third column shows
the number of temperatures simulated for each size. This number has
been chosen in a way that ensures the random walk in temperatures
to be sufficiently ergodic. The fourth and fifth columns refer to the
lower and upper values of the temperature interval. Finally, the last
column shows the number of picoseconds (ps) per spin flip of the
simulation.

L No. samples No. temp. Tmin Tmax ps/spin flip

5 25 600 16 2.50 3.10 16
6 25 600 24 2.50 3.10 12
7 25 600 36 2.50 3.10 20
8 5120 44 2.57 3.10 16

analysis of the data, using the Jackknife technique [50,51]. It
is worth mentioning that both, the simulation and the analysis
program, make use of the POSIX thread libraries, which allow
us to create different threads that run parallel on different
cores.

We have simulated the Edwards-Anderson model in a six-
dimensional hypercube with periodic boundary conditions,
using a multispin coding Monte Carlo simulation and per-
forming a parallel tempering [36,37] proposal every 20 Monte
Carlo sweeps (MCSs). For each sample, we have simulated
six replicas. The sizes of the side L of the hypercube range
from L = 5 to L = 8. The value of the magnetic field h has
been set to h = 0.075. The number of samples used to obtain
the results that we present can be consulted in Table III, along
with other information about the simulations.

To ensure that we measure the equilibrium properties of the
system, the thermalization of each sample must be studied in-
dividually. We have designed a thermalization protocol based
on Ref. [38] that works in the following way.

First we simulate our supersample (a package of 128 sam-
ples) during a sufficiently large number of MCS for most of
the samples to be thermalized. This value Nsim was deter-
mined by preliminary runs.

During the simulation, the random walk in temperatures
induced by the parallel tempering algorithm for each of the
128 samples is registered. Then, when the simulation ends,
we study this random walk and compute from it the integrated
autocorrelation time τint, f for several magnitudes f , related
to the random walks [38]. We take the largest of these inte-
grated autocorrelation times, τint, f ∗, and make the assumption
τint, f ∗ ∼ τexp. The value of the exponential autocorrelation
time enables us to check if a given sample is thermalized.
In particular, we consider a sample to be thermalized if its
simulation time τsim is 30 times bigger than τexp (i.e., Nsim >

30τexp).
When in a supersample a nonequilibrated sample is found,

we proceed as follows. The last configurations of those
samples which are not thermalized are extracted from the
corresponding supersample. Then a new supersample is built
grouping nonthermalized samples and their simulation time is
doubled. Finally, the thermalization check is repeated, τexp is
measured, and if the criteria are not fulfilled, the simulations
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are extended once again. This process is repeated until all
samples reach their equilibrium states. At the end, the samples
are reintroduced into their original supersamples, ready to be
analyzed.

APPENDIX E: DETAILS OF MULTISPIN
CODING ALGORITHMS

One of the most complex tasks we have faced when trying
to generate the results that we present here is the elaboration of
coding algorithms. In this Appendix we show some examples
that can give a taste of how the problem is approached.

1. Metropolis algorithm

Current CPUs are able to execute one-clock-cycle instruc-
tions over registers (or words) of 128 bits. The 128-bit words
are coded by using the Intel Intrinsics [52] variables _ _m128i
consisting of 128 Boolean variables. We benefit from these
128-bit words by simulating at once 128 samples.

Let us define a vector S[V] of type _ _m128i, where V
is the number of spins of our system. Each element of the
vector S[i], contains 128 Boolean variables representing the
value of the spin at the ith position for the 128 samples.
Analogously, we can define a vector J[6*V] in which each
element J[i] contains the value of the coupling for the 128
samples at the ith position. Now, the problem reduces to code
the Metropolis algorithm in bitwise operations to improve the
performance up to 128 times. We work with the following
assignment:

s = +1 → bs = +1, and s = −1 → bs = 0, (E1)

J = +1 → bJ = 0 and J = −1 → bJ = 1, (E2)

where the b variables are the bit variable of our program. This
seemingly arbitrary election has a virtue: the equivalence

bs1 ∧ bJ ∧ bs2 = (1 − Js1s2)/2, (E3)

where ∧ represents the Boolean exclusive or (XOR).
We use a variation from the original Metropolis algorithm

to decide if a given spin is flipped or not. The Hamiltonian
is composed of an interaction term HJ and a magnetic field
term Hh. The probability of performing a given spin flip is
determined by the product

min{1, exp(−�HJ )}min{1, exp(−�Hh)}. (E4)

This election is not completely equivalent to the standard
Metropolis algorithm, but it verifies the detailed balance con-
dition and has the virtue of simplifying the implementation.
One can execute this spin flip simultaneously for the 128
samples having an _ _m128i variable flip which encodes
the information. If the spin from the ith sample must be
flipped, then flipi = 1, if it must remain in the same position
flipi = 0. Then one can carry out the flip decision simulta-
neously using the XOR operator

S[site] = S[site] ∧ flip[site]. (E5)

The flip variable has two different contributions, one com-
ing from the difference in the interaction energy considering
the spin neighbors, flipJ, and other coming from the spin

alignment with the field h, fliph, so that

flip = flipJ & fliph (E6)

we denote with & the boolean AND operation.
Since we consider only nearest-neighbor interactions this

energy difference coming from the interactions with the
neighboring sites will be

�HJ = −2sx

∑
y

Jxysy, (E7)

where the sum is restricted over the 12 neighbors of sx. In
the {+1,−1} base the energy difference �HJ can take 12
values ranging from −24 to +24 in steps of 4. To compute
�EJ in the bit base {0, 1} we define nun, which represents the
number of unsatisfied couplings of a given spin. The maxi-
mum possible value of nun is 12, and the energy difference
is �HJ = 24 − 2nun. To compute nun we select a given spin
S[site] and check if a given coupling is satisfied using
Eq. (E3). This information is then encoded in eight 128-bit
variables. To account for the heat bath effect, we generate a
random number R ∈ [0, 1) and check if R < exp(−β�HJ )
for each sample. We use the same random number for all
samples, so we can check if it surpass a barrier of exp(−4β ),
exp(−8β ), . . . , exp(−24β ). The number of barriers surpassed
is encoded in three new _ _m128i variables named id1, id2,
id3. We assign flipJ a value of one if

id1 + 2id2 + 4id3 + nun � 6. (E8)

Computationally, taking this decision takes a total of 54
Boolean operations.

Finally one checks if after the flip the spin is aligned with
the field h, and if so make the assignment fliph = 1. This
process is repeated for every spin of the system.

2. Multispin coding for correlation functions

Our goal is to compute the correlation functions GR(x) and
GA(x) as defined in Appendix A. For convenience, we define
two new propagators �1 and �2 as

�1(x − y) = 〈(sx − 〈sx〉)(sy − 〈sy〉)〉2, (E9)

�2(x − y) = 〈sxsy〉2 − 〈sx〉2〈sy〉2. (E10)

It can be easily shown that

GR(x − y) = �1(x − y) (E11)

and

GA(x − y) = 2�1(x − y) − �2(x − y), (E12)

so it is enough for us to compute �1 and �2 in order to
obtain the replicon and anomalous propagators. They can be
computed with the help of replicas as

�1(x − y) = 〈ϕab;cd (x)ϕab;cd (y)〉, (E13)

�2(x − y) = 〈�ab;cd (x)�ab;cd (y)〉, (E14)
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where

ϕab;cd (x) =
(
sa

x − sb
x

)(
sc

x − sd
x

)
2

, (E15)

�ab;cd (x) =
(
qab

x − qcd
x

)
√

2
. (E16)

Notice that one needs at least four replicas to compute the two
point connected correlation functions estimators. We would
like to evaluate the fields ϕab;cd (x) and �ab;cd (x) simultane-
ously for the 128 systems, so we are forced to do it just using
Boolean operations. One can easily check that ϕab;cd (x)/2 can
take three values: +1, 0,−1. Then its value can be completely
determined using three auxiliary Boolean variables defined as

ϕ1 = (sa ∧ sb)&(sc ∧ sd ), (E17)

ϕ2 = (sa ∧ sd ), (E18)

ϕ3 = ϕ1&ϕ2. (E19)

In particular, ϕ1 = 1 if the field in this point ϕab;cd (x)/2 is not
zero and ϕ3 = 1 if it is +1. Then one can compute the value of
the field in a given hyperplane P using a Boolean sum function
and computing

1

2

∑
x∈P

ϕab;cd (x) = 2
∑
x∈P

ϕ3(x) −
∑
x∈P

ϕ1(x). (E20)

To compute �ab;cd (x) one proceeds in a similar way. In par-
ticular, the auxiliary Boolean variables are

�1 = (sa ∧ sb) ∧ (sc ∧ sd ), (E21)

�2 = �1&(sc ∧ sd ). (E22)

The value of �1(x) tells you if �ab;cd (x)/
√

2 is +1 and �2 if
it is not zero.

APPENDIX F: COMPUTING THE CRITICAL EXPONENTS

The value of the critical exponents can be estimated us-
ing the quotient method. Usually, the exponent η would be
extracted from the replicon susceptibility χR, but to avoid
the problematic k = 0 wave vector we compute it from F as
defined in Eq. (14), which has the same scaling behavior of
χR. The quotient method idea is to compute

QF = FL2 (Tc)

FL1 (Tc)
=

(
L2

L1

)2−η

+ · · · , (F1)

and then, to leading order,

η = 2 − lnQF
ln(L2/L1)

. (F2)

From our data we can obtain an estimation of η, given the
three combinations of increasing values L1 and L2.

The ν exponent can also be computed by using the quo-
tient method. A standard way to do it would be studying
the correlation length derivative with respect to the inverse
temperature β. However, once again we avoid the k = 0 mode

TABLE IV. Number of samples [independent systems with dif-
ferent values of the interaction coupling J’s, recall Eq. (1)] simulated
and the number of MCS made during each simulation for each value
of the lattice size L.

L MCS No. samples

3 409 600 8500
4 409 600 6500
5 409 600 5500
6 409 600 4000
7 409 600 4000
8 204 800 3000
9 307 200 1000

and compute ν by means of the derivative of the R12, defined
in Eq. (13) as

Q∂βR = ∂βRL2
12(Tc)

∂βRL1
12(Tc)

=
(

L2

L1

)1/ν

+ · · · , (F3)

ν = ln(L2/L1)

Q∂βR
. (F4)

FIG. 7. Binder cumulant g (on the top), Eq. (G2), and the second
moment correlation length ξ2 divided by the lattice size L and by the
logarithmic correction term (ln L)1/6 (on the bottom) as a function of
temperature for lattice sizes between L = 6 and L = 9. The presence
of an intersection between the curves at temperatures T B

c and T ξ
c

signals the existence of a continuous phase transition.
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FIG. 8. Second moment correlation length ξ2 divided by the lat-
tice size L and by the logarithmic correction term (ln L)1/6 (on the
top) and the spin-glass susceptibility χSG divided by L2−η (using
the mean-field result η = 0) and by the logarithmic correction term
(ln L)2/3 (on the bottom) as a function of the argument of the scaling
functions fξ and fχ for lattice sizes L = 8 and L = 9. Since Eqs. (G9)
and (G10) hold asymptotically for large vales of L we would expect
the two curves to collapse into a single one only if the used values of
the logarithmic correction critical exponents q̂ and â are the correct
one.

The values of ∂βR12 have been obtained by deriving a polyno-
mial fit of the sixth degree of R12.

APPENDIX G: THE h = 0 TRANSITION

1. Theory

As a previous step in the analysis of our system, we have
studied the six-dimensional model of an Ising spin glass with-
out a magnetic field, described by the Hamiltonian

H = −
∑
〈x,y〉

Jxysxsy, (G1)

where Jxy = ±1 with equal probabilities, sx are Ising spin
variables, and the sum is restricted over nearest neighbors.
The system has been studied by means of standard numerical
Metropolis Monte Carlo simulations (with a nonmultispin
coding program) and the help of the parallel tempering al-
gorithm. We check the existence of a phase transition by

FIG. 9. Plot of χSG(Tc )/L2 (on the top) and ξ2(Tc )/L (on the
bottom) vs the lattice size L. The data show a monotonic growth,
a strong indication of the presence of logarithmic corrections.

computing the Binder cummulant, defined as

g = 1 −
〈
q4

J

〉
3
〈
q2

J

〉2 , (G2)

where the overlap computed in a given sample, qJ , is

qJ = 1

V

∑
x

sxτx, (G3)

where {sx} and {τx} are, as usual, two replicas of the system
evolving with the same disorder but different initial condi-
tions. The correlation length ξ2 is defined using the two point
(nonconnected) correlation function

G(x − y) = 〈sxsy〉2. (G4)

We check the values of the critical exponents, and, since we
are at the upper critical dimension DU , we also check the
values of the logarithmic corrections.

In the presence of logarithmic corrections, the scaling laws
near the critical point for the correlation length and the sus-
ceptibility must be modified as [7,53]

ξ2 ∼ |t |−ν | ln |t ||ν̂ , (G5)

χSG ∼ |t |−γ | ln |t ||γ̂ . (G6)
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FIG. 10. Plot of χSG(Tc )/[L2(ln L)2/3] (on the top) and
ξ2(Tc )/[L(ln L)1/6] (on the bottom) vs the lattice size L. Our data
approach asymptotically to a constant value for L � 1, from which
we conclude that they are compatible with the values â = 2/3 and
q̂ = 1/6. The constant behavior for the bottom plot was expected
since the scaling of ξ was used to determine the value of Tc.

At the infinite volume critical point, the correlation length
defined on a box of size L behaves as [53]

ξ2 ∼ L(ln L)q̂, (G7)

and the susceptibility

χSG ∼ L2−η(ln L)â, (G8)

so the complete scaling behavior for the six-dimensional spin
glass of ξ/L and χ is [54]

ξ2/L = | ln L|q̂ fξ (L2t/(ln L)4/3) (G9)

and

χSG = L2| ln L|â fχ (L2t/(ln L)4/3), (G10)

where we have used the MF values ν = 1/2 and η = 0. The
logarithmic corrections have been computed making use of
the renormalization group, and their values are [53–55]: q̂ =
1/6 and â = 2/3.

2. Simulation results

We have carried out simulations for systems with size L
ranging from L = 3 to L = 9 and for temperatures between

FIG. 11. Plot of ω1 (on the top), Eq. (B9), and the cummulant �1

(on the bottom), Eq. (H1), as a function of T/Tc.

Tmin = 3.012 and Tmax = 3.031. The number of MCS used for
each sample as well as the number of samples are reported in
Table IV.

The critical temperature have been computed by studying
the Binder cumulant and the correlation length (see Fig. 7),
and we have obtained a value of

Tc = 3.033(1), (G11)

which is compatible with the previously known results
obtained via simulations Tc = 3.035(10) [41] and a high-
temperature expansion Tc = 3.027(5) [42].

The theoretical value of the critical exponents and logarith-
mic corrections can be checked using the collapse method,
i.e., by representing ξ2/L| ln L|1/6 and χSG/L2−η| ln L|2/3 vs
L1/νt/(ln L)4/3. Since the expressions (G9) and (G10) holds
asymptotically for large values of L, one would expect
the curves for different lattice size to collapse into a single
curve near the critical temperature when L � 1 if and only if
the theoretical values of ν, η, q̂, and â are the correct ones.
The results can be checked in Fig. 8.

Another strong indication of the presence of logarithmic
corrections is presented in Fig. 9 in which we plot χSG(Tc)/L2

and ξ2(Tc)/L, both showing a clear growth with the lattice
size. This behavior was already observed in Ref. [41] for
the spin-glass susceptibility and enabled them to estimate
the value of the logarithmic correction’s power, which was
previously unknown at that time.

However, it is difficult to discern with precision the cor-
rect value of the logarithmic correction from Fig. 8. Despite
this, we can check the outcome of the analytical compu-
tation, q̂ and â, by representing χSG(Tc)/[L2(ln L)2/3] and
ξ2(Tc)/[L(ln L)1/6] vs the lattice size L. If the scaling behavior

055302-13



M. AGUILAR-JANITA et al. PHYSICAL REVIEW E 109, 055302 (2024)

FIG. 12. Up: Plot of ω2 as a function of T/Tc. Down: Plot of �2

as a function of T/Tc.

(G9) and (G10) holds, and the theoretical values of the criti-
cal exponents are compatible with our data, then we would

observe a constant behavior (represented by the blue line in
Fig. 10).

From the analysis above, we conclude that our simulation
results are compatible with the MF values of the critical
exponents and with the theoretical values of the logarithmic
corrections q̂ = 1/6 and â = 2/3.

APPENDIX H: � CUMULANTS

One could have addressed the computation of the two
renormalized constants wi,r (i = 1, 2), but they present strong
finite-size effects. Instead, we have resorted to the computa-
tion of the �i cumulants introduced in Ref. [40]:

�i = ωi

χ
3/2
R LD/2

with i ∈ {1, 2}. (H1)

The �i cumulants scale in the same way as a dimensionless
observable, like the Binder cumulant or ξ2/L.

In Figs. 11 and 12 one can find a two-panel fig-
ure for ω1, �1, and for ω2, �2, respectively, as a function
of T/Tc.

Notice that both � cumulants show crossing points (better
signal for �1), as expected, drifting very slowly to the critical
point.

In addition the connected susceptibilities ω1 and ω2 diverge
in the critical region as predicted by the theory: ω1,2 ∝ |T −
Tc|−γ3 with γ3 = 6ν − 3

2νη in six dimensions [40] (γ3 = 3 for
D = 6 and the MF exponents).
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