
PHYSICAL REVIEW E 109, 055301 (2024)

Ising model partition-function computation as a weighted counting problem

Shaan Nagy,1,2 Roger Paredes ,3 Jeffrey M. Dudek,1 Leonardo Dueñas-Osorio,3 and Moshe Y. Vardi1
1Department of Computer Science, Rice University, Houston, Texas 77005, USA

2Department of Computer Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
3Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, USA

(Received 19 February 2024; accepted 27 March 2024; published 6 May 2024)

While the Ising model is most often used to understand physical phenomena, its natural connection to combi-
natorial reasoning also makes it one of the best models to probe complex systems in science and engineering. We
bring a computational lens to the study of Ising models, where our computer-science perspective is twofold: On
the one hand, we show that partition function computation (#Ising) can be reduced to weighted model counting
(WMC). This enables us to take off-the-shelf model counters and apply them to #Ising. We show that one model
counter (TensorOrder) outperforms state-of-the-art tools for #Ising on midsize and topologically unstructured
instances, suggesting the tool would be a useful addition to a portfolio of partition function solvers. On the
other hand, we consider the computational complexity of #Ising and relate it to the logic-based counting of
constraint-satisfaction problems or #CSP. We show that known dichotomy results for #CSP give an easy proof
of the hardness of #Ising and provide intuition on where the difficulty of #Ising comes from.

DOI: 10.1103/PhysRevE.109.055301

I. INTRODUCTION

The Ising spin glass model is a fundamental tool in statis-
tical mechanics to study many-body physical systems [1,2].
One important property of an Ising model is its partition func-
tion (also called its normalization probability) [3]. Spin-glass
models have also been recently leveraged in problems within
data science, e.g., community detection [4].

Similarly, weighted counting is a fundamental problem
in artificial intelligence, with applications in probabilistic
reasoning, planning, inexact computing, and engineering re-
liability [5–10]. The task is to count the total weight, subject
to a given weight function, of the solutions to a given set of
constraints [9]. Weighted counting is a core task for many
algorithms that normalize or sample from probabilistic dis-
tributions (arising from graphical models, conditional random
fields, and skip-gram models, among others [11]).

From a complexity-theoretic view, both weighted counting
and the computation of the Ising-model partition function
lie in the complexity class #P-Complete under standard as-
sumptions (e.g., weighted counting instances with rational,
log-linear weights) [1,12–14]. Although proving the difficulty
of #P-Complete problems is still open, it is widely believed
that #P-Complete problems are fundamentally hard. Member-
ship in #P-Complete means that the two problems are in some
sense equivalent: computing an Ising model partition function
can be done through a single weighted counting query with
only a moderate (meaning polynomial) amount of additional
processing, and vice versa.

In this work, we demonstrate that weighted counting
provides useful lenses through which to view the problem
of computing the partition function of an Ising spin glass
model. We focus here on two closely related formaliza-
tions of weighted counting: weighted model counting (WMC)
problems [9], and weighted constraint satisfaction problems

(w#CSPs). Section II introduces Ising models and weighted
counting.

Through one lens, viewing the partition function of an
Ising model as a WMC problem allows us to compute the
partition function in practice. The study of WMC problems
has largely focused on the development of practical tools
(called counters) for solving WMC instances. This has re-
sulted in a huge variety of counters [13,15–23], which, despite
the computational difficulty of counting, have been used to
solve large, useful applied problems in a variety of fields (e.g.,
informatics, infrastructure reliability, etc.) [24].

We show in Sec. III that powerful, off-the-shelf weighted
model counters can be used to compute Ising partition func-
tions. In particular, we find that the counter TensorOrder
[15,16] outperforms a variety of other counters and tra-
ditional approaches to computing the partition function
of Ising models for midsized square lattices and highly
disordered topologies, including direct tensor network ap-
proaches in computational physics [25,26]. TensorOrder’s
success on disordered topologies makes previously challeng-
ing Ising instances easier in practice. Thus, TensorOrder
shows promise as part of a portfolio of Ising parition func-
tion solvers. Moreover, TensorOrder is able to outperform
these approaches while still exactly computing the parti-
tion function, unlike other methods (e.g., CATN [25] and
Cotengra [26]) that, despite typically computing results
to machine precision, produce approximate counts with no
accuracy guarantees, which are desirable in safety-critical
applications. The key idea of TensorOrder is to divide the
computation of a WMC problem into two phases—a planning
phase of high-level reasoning, followed by an execution phase
of low-level computation—in such a way that well-known
high-performance computing libraries (FlowCutter [27] and
numpy [28]) can be used directly for each phase.

2470-0045/2024/109(5)/055301(18) 055301-1 ©2024 American Physical Society

https://orcid.org/0000-0003-3683-2186
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.109.055301&domain=pdf&date_stamp=2024-05-06
https://doi.org/10.1103/PhysRevE.109.055301

SHAAN NAGY et al. PHYSICAL REVIEW E 109, 055301 (2024)

Through another lens, viewing the partition function of an
Ising model as a w#CSP gives us foundational insights into
its computational complexity. It is useful to consider w#CSPs
here since their study has largely been from a complexity-
theoretic perspective and has led to deep results for the
computational complexity of counting (e.g., Theorem 1) [8].
In Sec. IV we highlight how this w#CSP dichotomy theorem
can be used to better understand the complexity and structure
of Ising model partition function computation. Specifically,
our analysis suggests that the difficulty of Ising partition func-
tion computation can be traced to the difficulty of answering
the following problem: A partial assignment of spins to lattice
sites defines a set of configurations. How does changing one
lattice site’s spin affect the probability of the set of configura-
tions agreeing with the partial assignment?

We conclude in Sec. V and offer ideas for future research
and development.

II. PRELIMINARIES

The Ising model is well known in computer science, and
it appears in a number of interesting applications due to its
expressiveness and dissimilarity from traditional computer
science problems [29]. The relationship between Ising models
and SAT is especially rich. Critical topological and hardness
insights in SAT can be related to topological features of Ising
models [30], and each problem has inspired many compu-
tational techniques for the other [31–33]. More than SAT,
combinatorial optimization has seen a rash of Ising-based and
Ising-inspired software and hardware techniques, particularly
in quantum computing [34,35]. In adiabatic quantum opti-
mization, the Ising model is used to represent a wide range of
discrete optimization problems [29], which can then be solved
using quantum devices [36]. These techniques find application
in AI as well [37]. Additionally, methods developed outside
statistical physics, such as engineering reliability methods,
have been used in the study of the Ising model [38].

To inform our discussion of Ising models, we give a versa-
tile yet formal definition of the Ising model. In particular, we
define the partition function of an Ising model.

A. Ising models

Definition 1. An Ising model is a tuple (�, J, h) where
(using R to denote the real numbers):

� is a set whose elements are called lattice sites

J : �2 → R is a function whose output J (i, j) is called the
interaction of i, j ∈ � and

h : � → R is a function, called the external field.

A configuration is a function σ : � → {−1, 1}, which as-
signs a spin (either −1 or 1) to each lattice site. The (classical)
Hamiltonian is a function H that assigns an energy to each
configuration, as follows:

H (σ) ≡ −
∑

i, j∈�

J (i, j)σ (i)σ (j) −
∑
j∈�

h(j)σ (j). (1)

Notationally, J , σ , and h accept arguments as subscripts
and � is implicit. Thus, the Hamiltonian of an Ising model is

often written

H (σ) ≡ −
∑
i, j

Ji jσiσ j −
∑

j

h jσ j . (2)

An Ising model can be interpreted physically as a set of
discrete magnetic moments, each with a “spin” of −1 or 1.
The entries of J indicate the strength of local interactions
between two magnetic moments. The signed entries of h
indicate the strength and orientation of an external magnetic
field. Also note that the set of Ising Hamiltonians can be seen
exactly as the set of degree-two polynomials over � with no
constant term (when no self-interaction is assumed). A key
feature of an Ising model is its set of ground states, which are
configurations that minimize the Hamiltonian (i.e., minimal-
energy configurations). Finding a ground state of a given Ising
model is famously NP-hard [1] (and a suitable decision variant
is NP-complete). This connection between Ising models and
Boolean satisfiability (SAT) has been especially important
for the study of SAT phase transitions, where the behavior
of randomized SAT problems can be understood through the
behavior of spin-glass models [39].

An important problem for Ising models is the computation
of the partition function:

Definition 2. The partition function (or normalization
probability) of an Ising model (�, J, h) with Hamiltonian H
at parameter β � 0 (called the inverse temperature) is

Zβ ≡
∑

σ :�→{−1,1}
e−βH (σ). (3)

As its other name suggests, the partition function serves as
a normalization constant when computing the probability of
a configuration. These probabilities are given by a Boltzmann
distribution: for a configuration σ , we have Pβ (σ) = e−βH (σ)

Zβ
.

There are several special cases of the Ising model that are
studied in research and practice. A few of the most common
ones are the following.

Ferromagnetic and Antiferromagnetic Ising Models. The
term “Ising model” is sometimes (especially historically)
used to refer to the ferromagnetic Ising model, which is
the special case where all interactions are non-negative,
i.e., where Ji j � 0 for all i, j ∈ �. Interactions where
Ji j < 0 are called antiferromagnetic.

2D Ising Models. In a 2D Ising model the elements of �

are vertices of a two-dimensional grid, and Ji j = 0 unless
vertices i and j are adjacent in the grid.

Sparse Interactions. In many Ising models J can be repre-
sented as a sparse matrix, i.e., J is 0 on most values. For
example, 2D Ising models are sparse.

No External Field. A common simplification is to assume
that there is no external magnetic field, which means
considering only Ising models where hi = 0 for all i ∈ �.

No Self-Interaction. In most studied cases (including this
paper) Jii = 0 for all i ∈ �. Interactions of a particle
with itself only contribute a constant additive factor to
the Hamiltonian.

Symmetric/Triangular Interactions. We can always assume
without loss of generality that, for all distinct i, j ∈ �,

055301-2

ISING MODEL PARTITION-FUNCTION COMPUTATION AS … PHYSICAL REVIEW E 109, 055301 (2024)

either Ji j = 0 or Jji = 0. Similarly, we can instead as-
sume without loss of generality that J is symmetric.
These assumptions are mutually exclusive unless J is
diagonal (which is uninteresting; see prior point).

Additionally, there is often interest in describing the phys-
ical connectivity of the lattice sites, as in 2D (planar) Ising
models. This physical connectivity is sometimes called the
topology of the model, and information about a model’s
topology is useful in analyzing it. Such topologies may be
represented as graphs, defined below.

Definition 3 ((Simple) Graphs). An undirected graph (or,
graph, for short) is a pair (V, E) where

V is a set whose elements are called vertices.

E is a collection of sets of the form {v,w}, where v and w

are distinct elements in V . Each set {v,w} represents an
(undirected) edge between vertices v and w.

Typically, we restrict our attention to graphs that are finite
(i.e., V is finite) and simple (a vertex cannot have an edge with
itself, and no two vertices can share more than one edge).

B. Weighted counting problems

In computer science, the most foundational problems are
decision problems, simple yes or no questions. One well-
studied class of decision problems is the class of constraint
satisfaction problems (CSPs). Broadly speaking, CSPs are
problems in which one asks whether a solution exists that sat-
isfies some given constraints. One famous example is Boolean
satisfiability (SAT) in which one is given a Boolean formula
and asked whether the formula can be made true by any
assignment to its variables.

Connections between statistical models and CSPs are well
known in physics [40]; the solutions of CSPs can be mapped
to the ground states of spin glasses. By extension, counting
the number of solutions to CSPs can be mapped to partition
function evaluations in the zero-temperature limit. These deep
connections between spin glasses and CSPs are exploited by
celebrated counting algorithms such as the survey propagation
algorithm and the cavity method [41].

Computer scientists are often also interested in counting
problems, which focus on counting the number of solutions in
a solution space that satisfy certain constraints. For example,
one might wish to know the number of satisfying solutions to a
Boolean formula or the number of 3-colorings for a particular
graph. One might also be interested in weighted counting
problems, where one assigns weights to particular elements of
a solution space and sums the weights over the solution space.
Computation of the partition function of an Ising model is a
good example of this case. We assign a weight (e−βH (σ)) to
each configuration of the model and sum these weights over
all configurations to determine the partition function. This sort
of problem is common across many fields and, in many cases,
is computationally intractable.

In the following two subsection, we discuss two computa-
tional modes which generalize CSPs and SAT from decision
problems to weighted counting problems, w#CSPs and WMC.
As in the decision case, weighted counting problems describe

a general sort of problem, the w#CSP framework captures
many such problems, and WMC is a well-studied problem
expressible in the w#CSP framework. Casting Ising model
partition function computation in these two modes provides
deep theoretical insight and extends the range of techniques
that can be used to compute partition functions.

1. Weighted counting constraint satisfaction problems

Many (but not all) weighted counting problems can be
expressed as Weighted Counting Constraint Satisfaction Prob-
lems (w#CSPs). Framing weighted counting problems as
w#CSPs introduces a standard form, which allows work done
on the standard form to be applied to many different weighted
counting problems. This is especially evident when analyzing
the hardness of w#CSPs as we discuss later (see Theorem 1).

In defining w#CSPs, we use C to denote the complex
numbers and we use Z+ to denote the positive integers.

Definition 4 (Constraint Language). Let D be a finite set
and, for each k ∈ Z+, let Ak be the set of all functions F :
Dk → C. Then a constraint language F is a subset of

⋃
k∈Z+

Ak .

We write #CSP(F) as the weighted #CSP problem corre-
sponding to F .

Definition 5 (Weighted #CSP: Instance and Instance Fun-
ction). Let F be a constraint language. Then an instance of
#CSP(F) is a pair (I, n) where n ∈ Z+ and I is a finite set
of formulas each of the form F (xi1 , . . . , xik), where F ∈ F
is a k-ary function and i1, . . . , ik ∈ [n] with each xi j being a
variable ranging over D. Note that k and i1, . . . , ik may differ
in each formula in I .

Given an instance (I, n), we define the corresponding in-
stance function FI : Dn → C to be the following conjunction
over I:

FI (y) =
∏

F (xi1 ,...,xik)∈I

F (y[i1], . . . , y[ik]). (4)

The output of the instance (I, n) is Z (I) = ∑
y∈Dn

FI (y), analo-

gous to the partition function of an Ising model.
As we will see, representing problems as w#CSPs allows

us access to a rich body of theoretical and computational
work. In Sec. III we will see that converting a problem
to a w#CSP allows us to easily assess its computational
complexity—how the number of operations needed to solve
the problem scales with input size. Converting a problem
to a w#CSP also allows access to a slew of standardized
computational tools. For example, a common approach for
computing the partition function of an Ising model is to rep-
resent the problem as a tensor network. In fact, all w#CSPs
can be converted to tensor networks, so recognizing partition
function computation as a w#CSP makes the applicability of
tensor networks immediate. In Sec. IV we show that Ising
partition function computation is a w#CSP and discuss the
deep theoretical consequences.

2. Weighted model counting

All weighted counting problems (and their w#CSPs forms)
can be reduced to weighted model counting (WMC). By
converting a w#CSP to WMC, we can take advantage of
well-developed existing solvers which, in many cases, outper-

055301-3

SHAAN NAGY et al. PHYSICAL REVIEW E 109, 055301 (2024)

form problem-specific methods. Propositional model counting
or the Sharp Satisfiability problem (#SAT) consists of count-
ing the number of satisfying assignments of a given Boolean
formula. Without loss of generality, we focus on formulas in
conjunctive normal form (CNF).

Definition 6 (Conjunctive Normal Form (CNF)). A for-
mula φ over a set X of Boolean variables is in CNF when
written as

φ =
m∧

i=1

Ci =
m∧

i=1

⎛
⎝ ki∨

j=1

li j

⎞
⎠, (5)

where every clause Ci is a disjunction of ki � |X | literals, and
every literal li j is a variable in X or its negation.

Given a truth-value assignment τ : X → {0, 1} (such as a
microstate of a physical system), we use φ(τ) to denote the
formula that results upon replacing the variables x ∈ X of φ

by their respective truth values τ (x), and say τ is a satisfying
assignment of φ when φ(τ) = 1. Thus, given an instance φ

of #SAT, one is interested in the quantity
∑

τ∈[X] φ(τ), where
[X] denotes the set of truth-value assignments.

Literal weighted model counting (WMC) is a general-
ization of #SAT in which every truth-value assignment is
associated to a real weight. Formally, WMC is defined as
follows.

Definition 7 (Weighted Model Counting). Let φ be a for-
mula over a set X of Boolean variables, and let W : X ×
{0, 1} → R be a function (called the weight function). Let
[X] denote the set of truth-value assignments τ : X → {0, 1}.
Analogous to the Ising partition function and w#CSP instance
output, we define the weighted model count of φ w.r.t. W is

W (φ) ≡
∑
τ∈[X]

φ(τ) ·
∏
x∈X

W (x, τ (x)). (6)

One advantage of WMC with respect to #SAT is that it
captures problems of practical interest such as probabilistic
inference [42] more naturally. Network reliability [43] and
Bayesian inference [10] are specific instances of probabilistic
inference problems. Thus, the development of practical WMC
solvers remains an active area of research, where algorithmic
advances can enable the solution of difficult combinatorial
problems across various fields.

In this paper we cast the Ising model partition function
computation as a well-understood problem of weighted model
counting, which, in turn, enables its computation via actively
developed off-the-shelf WMC solvers. Significantly, this pa-
per gives empirical evidence that the runtime of exact model
counters outperforms approximate state-of-the-art physics-
based tools currently used for partition function computations
[44] in some cases. In particular, some model counters (i.e.,
TensorOrder) do better for Ising instances with sufficiently
disordered topologies.

III. ISING WEIGHTED MODEL COUNTING

Computing the partition function of an Ising model
amounts to taking a weighted sum over possible states. In the
realm of model counting, this type of problem is expressible
as a weighted model counting (WMC) problem (Definition 7).
Reducing partition function computation to weighted model

TABLE I. Truth-table of formulas pi j = [(xi ⇔ x j) ⇔ xi j] and
sign of σiσ j . Note that every assignment τ such that pi j (τ) = 1 is
consistent with encoding sough after in Eq. (7).

xi x j xi j pi j σi σ j σiσ j Eq. (7)

0 0 1 1 − − + True
1 0 0 1 + − − True
0 1 0 1 − + − True
1 1 1 1 + + + True

0 0 0 0 − − + False
1 0 1 0 + − − False
0 1 1 0 − + − False
1 1 0 0 + + + False

counting allows us to take advantage of various dedicated
WMC solvers which can handle very large formulas [24]. In
this section we develop a succinct reduction from partition
function computation to WMC, and we show that dedicated
WMC solvers (in particular TensorOrder [15,16]) outper-
form existing tools for partition function computation (CATN
[25] and Cotengra [26]) for midsized square lattices and
sufficiently disordered topologies. This suggests that model
counters constitute a valuable addition to a portfolio of Ising
solvers.

A. Ising model partition function as WMC

We now reduce the problem of computing the partition
function of the Ising model, Zβ (Definition 2), to one of
weighted model counting (Definition 7). Formally, our reduc-
tion takes an Ising model and constructs an instance W (φ)
of weighted model counting such that Zβ = W (φ). The re-
duction consists of two steps. In Step 1 we construct a CNF
formula, φ, over a set X of Boolean variables, such that the
truth-value assignments τ ∈ {0, 1}X that satisfy the formula
correspond exactly to the configurations σ ∈ {±1}� of the
Ising model. In Step 2, we construct a literal weight function,
W , such that for every satisfying assignment, τ , the product of
literal weights,

∏
x∈X W (x, τ (x)), is equal to the Boltzmann

weight of the corresponding Ising model configuration σ .
Together, Step 1 and Step 2 ensure that Zβ = W (φ), which
we make explicit at the end of this section. We next show the
details of the two steps.

1. Step 1 of 2: The Boolean formula in CNF

To construct the Boolean formula φ in CNF, we first in-
troduce the set X of Boolean variables xi, with i ∈ �, and
Boolean variables xi j , with i, j ∈ � and i �= j.1 We use the
variable xi to represent the spin state σi ∈ {±1} for every
i ∈ �. We use the variable xi j to represent the interaction
σiσ j ∈ {±1} for every i �= j. By convention, we associate the
truth-value one with the positive sign, and the truth-value zero
with the negative sign. The semantic relation between truth-
value assignments τ ∈ {0, 1}X and Ising model configuration
σ ∈ {±1}� is formally encoded by the equations below and

1Whenever Ji j = Jji = 0, we can ignore variable xi j for i �= j.

055301-4

ISING MODEL PARTITION-FUNCTION COMPUTATION AS … PHYSICAL REVIEW E 109, 055301 (2024)

Table I:

σi = 2τ (xi) − 1,for i ∈ �,

σiσ j = 2τ (xi j) − 1, for i, j ∈ � : i �= j. (7)

The first equation ensures that truth-value assignments
τ (xi) = 1 and τ (xi) = 0 correspond exactly to spin states σi =
+1 and σi = −1 respectively. The second equation ensures
that truth-value assignments, τ (xi j) = 1 and τ (xi j) = 0, cor-
respond exactly to positive and negative interactions, σi = σ j

and σi �= σ j , respectively. As not every truth-value assignment
τ ∈ {0, 1}X describes a valid Ising configuration, we ensure
that the set of truth-value assignments that satisfy the relations
of Eq. (7) must also be such that τ (xi j) = 1 exactly when
τ (xi) = τ (x j) (i.e., when the spins have equal sign σi = σ j),
and τ (xi j) = 0 otherwise. This is consistent with the signs of
interactions, which are positive for equal spin states and neg-
ative otherwise. Hence, the set of assignments that describe
valid configurations via the encoding of Eq. (7) is exactly the
set of satisfying assignments of the Boolean formula:

φ ≡
∧

i, j:i �= j

pi j, (8)

with pi j = [(xi ⇔ x j) ⇔ xi j]. We can equivalently express pi j

in CNF as the conjunction of the clauses (xi ∨ x̄ j ∨ x̄i j), (xi ∨
x j ∨ xi j), (x̄i ∨ x j ∨ x̄i j), and (x̄i ∨ x̄ j ∨ xi j). The correctness
of this CNF encoding can be shown by first noting that a
satisfying assignment of φ must satisfy all predicates pi j .
Then, from the truth table of predicate pi j depicted in Table I,
it follows that Eq. (7) maps every satisfying assignment τ of
φ to an Ising model configuration σ , and vice versa. Thus, the
satisfying assignments of φ and the configurations of the Ising
model are in one-to-one correspondence.

2. Step 2 of 2: The literal-weight function

To construct the literal-weight function W that assigns
weights to variables depending on the values they take, first
note that the Boltzmann weight of an arbitrary configuration
σ of the Ising model can be written as

e−βH (σ) =
(∏

i∈�

eβhiσi

)
·
⎛
⎝ ∏

i, j∈�

eβJi jσiσ j

⎞
⎠. (9)

We construct W such that the first term in the right-hand side
of Eq. (9) is the product of literal weights W (xi, τ (xi)), for
every i ∈ �, and the second term of the same expression is
the product of literal weights W (xi j, τ (xi j)), for every i �= j.
Specifically, we introduce the literal-weight function:

W (xi, τ (xi)) = eβhi[2τ (xi)−1], for i ∈ �,

W (xi j, τ (xi j)) = eβJi j [2τ (xi j)−1], for i �= j,
(10)

and observe that when φ(τ) = 1, or equivalently when Eq. (7)
maps τ to an Ising model configuration σ , we find that
the product of literal weights,

∏
x∈X W (x, τ (x)), is equal to

the Boltzmann weight e−βH (σ) of the respective Ising model
configuration.

3. The partition function equals the weighted model count

Given the Boolean formula φ in Eq (8), and given the literal
weight function W in Eq. (10), we can verify the equivalence
between the partition-function value Zβ and the weighted

model count, W (φ), by writing the latter as a summation of
the form

∑
τ∈R

∏
x∈X W (x, τ (x)), where R = {τ : φ(τ) = 1}

is the set of satisfying assignments of φ. Moreover, Eq. (7)
establishes a one-to-one correspondence between the satisfy-
ing assignments τ ∈ R and the configurations σ ∈ {±1}� of
the Ising model. Since

∏
x∈X W (x, τ (x)) = e−βH (σ) for every

satisfying assignment τ ∈ R, we conclude that Zβ = W (φ).
Next, we review off-the-shelf weighted model counters and

evaluate their performance relative to state-of-the-art solvers
(developed by the physics community) used to compute Ising
partition functions.

B. Weighted model counters

Increasingly, model counters are finding applications in
fundamental problems of science and engineering, including
computations of the normalizing constant of graphical models
[45], the binding affinity between molecules [46], and the
reliability of networks [43]. Thus, the development of model
counters remains an active area of research that has seen
significant progress over the past two decades [16,47].

In terms of their algorithmic approaches, exact weighted
model counters can be grouped into three broad categories:
direct reasoning, knowledge compilation, and dynamic pro-
gramming. Solvers using direct reasoning (e.g., Cachet [48])
exploit the structure of the CNF representation of the input
formula to speed up computation. Solvers using knowledge
compilation (e.g., miniC2D [18]) devote effort to converting
the input formula to an alternate representation in which the
task of counting is computationally efficient, thereby shift-
ing complexity from counting to compilation. Solvers using
dynamic programming (e.g., DPMC [21] and TensorOrder
[16]) exploit the clause structure of the input formula to
break the counting task down to simpler computations. The
problem breakdown and subproblem recall is achieved by
using graph-decomposition algorithms in the constraint graph
representation of the formula.

In addition to exact solvers, there is a pool of approximate
model counters that seek to rigorously trade precision (up to
an admissible error and a level of confidence specified by the
user) for speed [49]. The numerical experiments in the next
section use representative solvers from the three groups of
exact solvers outlined, as well as an approximate solver.

C. Numerical experiments

We empirically demonstrate the utility of weighted model
counters in Ising model partition function computations
by comparison with two state-of-the-art approximate tensor
network contraction tools often used to compute partition
functions in physics. Note that contracting tensor networks
can be reduced to WMC and vice versa, so these physics
tools can be applied to the same range of problems as model
counters. The first tool comes from Ref. [25]. There, it was
shown that tensor network contraction and a matrix product
state calculus outperform other strategies in computational
physics to obtain machine-precision approximations of the
free energy, denoted as F . The free energy and the partition
function are related as F = −(1/β) ln Zβ . Hereafter, we re-
fer to the publicly available implementation of their method
as CATN [50]. The latter can outperform various competitive

055301-5

SHAAN NAGY et al. PHYSICAL REVIEW E 109, 055301 (2024)

FIG. 1. Running time of the partition function computation for the exact weighted model counters, miniC2D [18], Cachet [48],
TensorOrder [16], and DPMC [21]; the approximate model counter, ApproxMC [52]; and the approximate reference tool from physics, CATN
[25]. Left: Two-dimensional square lattice with linear size L at β = 1. Right: Random graphs with average degree three at β = 1.

mean-field methods in physics with a small runtime over-
head, so we take CATN as a baseline for comparison in our
weighted counting-based experiments. It is worth highlighting
that, unlike CATN, model counters are exact or have accuracy
guarantees. In practice CATN produces machine-precision re-
sults, but it cannot promise to always do so.

The second state-of-the-art approximate tool from the
physics community that we compare against is Cotengra
[26]. This tensor contraction tool uses a variety of techniques
including hypergraph partitioning and Bayesian optimiza-
tion to construct efficient contraction trees. These contraction
trees are then approximated via a “compressed contraction”
strategy. The comparisons of Ref. [51] suggest Cotengra
outperforms CATN on square and cubic lattices in terms of
FLOPs (number of floating point operations), but our results
suggest this is not borne out in the actual runtime. However,
Cotengra does demonstrate a runtime advantage on random
graphs.

Our computational evaluation includes random graphs of
average degree three and two-dimensional L × L lattices,
where L is referred to as the linear size. Square lattices are
a standard type of model used to benchmark performance in
the Ising context [25]. Random graphs are also considered
because they challenges solvers’ abilities to exploit irregular
structure. We expect WMC solvers to perform well on ran-
dom graphs because they are designed to find any exploitable
structure even on random substrates.

Each experiment in Fig. 1 was run in a high-performance
cluster using a single 2.60 GHz core of an Intel Xeon CPU
E5-2650 and 32 GB RAM. Experiments in Fig. 2 were
run on a high-performance cluster using a single 2.60 GHz
core of an Intel Xeon Gold 6126 CPU and 32 GB RAM.
Each implementation was run once on each benchmark. An
experiment is deemed to be successful when there are no
insufficient memory errors or timeouts.

The results of the experiments and comparisons across
multiple tools are summarized in Fig. 1, with a larger
set of instances and the two competitive physics-based

tools in Fig. 2. Significantly, for every square lattice with
linear size less than 25, there is an exact weighted model
counter that outperforms the state-of-the-art approximate tool
(CATN). In particular, TensorOrder was consistently faster
than CATN in all shown midsized instances with L > 10
and on random graphs, as well as faster than Cotengra
for all random graphs and square lattices with L > 11. We
stress that partition function computations by model coun-
ters are exact or have accuracy guarantees. Overall, for
these instances, the dynamic-programming solvers (DPMC and
TensorOrder) displayed the best performance, especially for
random graphs. We attribute TensorOrder’s advantage on all
random benchmarks and most square lattices to the power of
dynamic-programming model counters, which not only excel
at finding optimal solution strategies in structured instances,
like the square lattice, but also display excellent performance
for randomly generated topologies given their sequential plan-
ning and execution phases that identify anything exploitable in
the problem instances while deferring long-range interactions
as much as possible. Also, miniC2D (knowledge compilation)
seems to be better suited than Cachet (direct reasoning),
though neither performed especially well for this Ising task.

Regarding ApproxMC, the approximate model counter
used, it fails on all benchmarks except those of extremely
small size because it requires that weighted model counting
problems be encoded as unweighted problems, greatly in-
creasing the number of variables and clauses in the formulas
it operates over.

Overall CATN, Cotengra, and TensorOrder were the
only solvers that did not timeout quickly. In addition, on
all benchmarks except large square lattices, TensorOrder’s
exact calculations were generally faster than both Cotengra’s
and CATN’s approximate computations, at times an order of
magnitude faster. We note that all three tools are tensor net-
work contraction-based; however, TensorOrder is a dynamic
programming solver that uses state-of-the-art graph decompo-
sition techniques to select contraction orderings. We take the
better performance of TensorOrder on the midsized bench-

055301-6

ISING MODEL PARTITION-FUNCTION COMPUTATION AS … PHYSICAL REVIEW E 109, 055301 (2024)

FIG. 2. Running time of the partition function computation for the exact weighted model counter TensorOrder [16] and the approximate
reference tools from physics, CATN [25] and Cotengra [26]. Note that TensorOrder outperforms both Cotengra and CATN for midsize
lattices. For the sizes we were able run, TensorOrder maintains a strong advantage on random graphs (210 spins with treewidth 31). Left:
Two-dimensional square lattice with linear size L at β = 1. Right: Random graphs of average degree 3 at β = 1.

marks and especially on random graphs, as evidence that its
contraction orderings are more robust than those used by CATN
and Cotengra. On the large square lattice benchmarks (L >

25), on the other hand, the running time of TensorOrder
increases since it spends more time looking for better graph
decompositions; the runtime of TensorOrder could be im-
proved by incorporating graph decomposition techniques that
are optimized for such highly structured graphs. For these
large benchmarks, the tree widths of TensorOrder’s decom-
positions ranged from 35 at L = 25 to 42 at L = 30.

Regarding the inverse temperature parameter in our exper-
iments, it is fixed at β = 1, as we consider the same Ising
model instances in the work of Pan et al. [25]. Typically,
weighted counting solvers use fixed-point arithmetic that may
lead to numerical errors due to decimal truncation. We did
not detect significant numerical errors for the Ising model
instances in this study; however, we expect numerical errors
may amplify for large inverse temperature values of β. In our
preliminary experiments, solvers’ runtimes were not found to
vary with β, supporting the choice to fix β.

Taking all results together, we believe that the computa-
tional advantage of weighted counters over state-of-the-art
tools in this study is partly due to their ability to detect and
take advantage of treelike structures of Ising model instances.
Thus, the computational advantage of weighted counters will
hold in graphs where the tree width stays fixed as the number
of spins increases across a variatey of interaction topolo-
gies. In contrast, for graphs where the tree width increases
as the number of spins increases, like the square lattice,
weighted counters will face the same challenges of every
other tool in combinatorics, exact or approximate. In sum,
our evaluation shows that weighted model counters (espe-
cially TensorOrder) outperform state-of-the-art tools in the
physics community in computating partition functions for
some Ising instances. In particular, model counters have an
advantage on instances with disordered topologies. This sug-
gests that TensorOrder would be of use in a portfolio of

partition function solvers. Additionally, exact model counters
are more robust than alternatives such as Cotengra and CATN,
which are approximate tools lacking guarantees of accuracy,
although these two approximate tools give machine-precision
results in practice.

IV. HARDNESS AND RELATIONSHIP TO WEIGHTED
CONSTRAINT SATISFACTION

Weighted model counting of CNF formulas, the problem to
which we reduced partition function computation in Sec. III,
is #P-complete [53] meaning that WMC is likely to be com-
putationally intractable. It is also known that computing the
partition functions of Ising models is itself #P-hard [54]. This
all means that the problem of computing Ising model partition
functions is at least as hard as WMC. In this section we
demonstrate how this #P-hardness can be easily derived from
a formulation of partition-function computation as a w#CSP
(Definition 5). While the hardness of computing Ising-model
partition functions is well known, most proofs are extremely
complex. The method we discuss below is a straightforward
dichotomy test that can be directly applied to many similar
problems without the difficulties of a more classical proof
(i.e., selecting an appropriate #P-hard problem to reduce from,
and constructing a clever reduction). Furthermore, we fold the
discussion of hardness of computing the Ising-model parti-
tion functions into a much broader discussion of evaluating
w#CSPs, and from this we gain a better understanding of what
makes partition functions so hard to compute—the difficulty
in relating the change of a single lattice site’s spin to a change
in probability across configurations.

In Appendix A we show that any problem expressible
as a w#CSP can be reduced to WMC. As in Sec. III, we
encode both variables’ values and satisfaction of constraints
as Boolean variables, and we introduce formulas so that all
valid assignments correctly relate constraints to configura-
tions. This generalizes the approach of Sec. III to arbitrary
w#CSPs.

055301-7

SHAAN NAGY et al. PHYSICAL REVIEW E 109, 055301 (2024)

A. Introduction to computational complexity

We provide here a high-level overview of computational-
complexity theory—complexity theory for short—for count-
ing problems. Readers interested in a more rigorous treatment
of complexity theory might refer to Sipser’s Introduction to
the Theory of Computation [55].

One use of a general problem format such as w#CSP is
to be able to assess the computational complexity of prob-
lems representable in the format. A problem is a mapping
from problem instances to their associated outputs. When dis-
cussing problems, it is always important to be explicit about
the set of instances over which a problem is defined (often
called a problem’s “domain”). Hardness of a problem, as we
see below, is a property of a problem’s domain, which consists
of an infinite class of instances.

A problem’s computational (time) complexity describes
how the time (more formally the number of operations) re-
quired to solve a problem grows with the size of the input.
Algorithms with low computational complexity are called
scalable, while algorithms with high computational complex-
ity are not considered to be scalable. Thus, there is often
interest in knowing whether an algorithm with low compu-
tational complexity exists for a given problem [56].

A theoretical distinction is often made between problems
that can be solved in polynomial time and those that are not
believed to be solvable in polynomial time. There are many
counting problems whose solvability in polynomial time is
an open problem. The most famous example of such a prob-
lem is propositional model counting (#SAT), which counts
the number of assignments that satisfy a given formula in
Boolean logic. Other examples include computing the number
of maximum size cut sets of a graph (#MAXCUT), computing
matrix permanents for Boolean matrices, and counting the
number of perfect matchings of a bipartite graph [14]. In
the study of counting problems, we often discuss problems
in the complexity class FP (Function Polynomial-Time) and
problems which are #P-hard. Problems in FP are known to be
solvable in polynomial time, and problems which are #P-hard
are believed (but not provably known) to be impossible to
solve in polynomial time [14].

A useful tool in establishing membership of a problem in
FP or #P-hard is the idea of polynomial equivalence. Prob-
lems that can be converted to one another in polynomial time
are said to be polynomially equivalent. If two problems are
polynomially equivalent, a polynomial-time algorithm for one
problem can be used to construct a polynomial-time algorithm
for the other, and vice versa. If a problem is polynomially
equivalent to another problem in FP, both problems are in
FP. Similarly, if a problem is polynomially equivalent to
another problem that is #P-hard, both problems are #P-hard.

B. The w#CSP Dichotomy Theorem

A landmark result in complexity theory is the following
Dichotomy Theorem, which gives criteria for determining the

complexity class of a w#CSP [8]. Every w#CSP is either in
FP, meaning that it can be solved in polynomial time, or
#P-hard, which for our purposes means it is not believed to be
polynomially solvable. While the existence of this dichotomy
is itself theoretically significant in that it helps us understand
how computational hardness arises, this paper focuses on ap-
plying the theorem to determine the hardness of computing
partition functions. Note also that the Dichotomy Theorem
applies only to problems with finite constraint languages (Def-
inition 4). The conditions referenced in the following theorem
are discussed below and in greater detail in Appendixes B
and C.

Theorem 1 (Dichotomy Theorem for w#CSPs [8]). Let
F be a finite constraint language with algebraic com-
plex weights. Then #CSP(F) is polynomially solvable if
the Block-Orthogonality Condition (Definition 13), Mal’tsev
Condition (Definition 23), and Type Partition Condition hold
(Definition 26). Otherwise, #CSP(F) is #P-hard.

The statement of the w#CSP Dichotomy Theorem and its
conditions is complex, so it is useful to include some motiva-
tion. The three criteria given by the theorem follow naturally
when we attempt to construct a polynomial-time algorithm for
w#CSPs. One reason that w#CSPs are often computationally
expensive to solve is that the effect of a single assignment to a
given variable is hard to capture. In particular, given a problem
instance I and its associated n-ary formula FI (x), it is chal-
lenging to find a general rule that relates FI (x1, x2, . . . , xn) to
FI (x′

1, x2, . . . , xn). For this reason, current computational ap-
proaches require consideration of a set of assignments whose
size is exponential in n. The algorithm driving the w#CSP
Dichotomy Theorem demands that changing the assignment
of a particular variable changes the value of FI in a predictable
way. The criteria of the Dichotomy Theorem are necessary
and sufficient conditions for these assumptions to hold.

A detailed treatment of the conditions and the intuition the
dichotomy criteria capture can be found in the appendices.
Appendix B discusses the Block Orthogonality Condition, and
Appendix C explains the Mal’tsev and Type Partition Condi-
tions. Here we are as brief as possible while including enough
information to follow Sec. IV C, which invokes Theorem 1 on
Ising model partition function computation.

In the definitions below, we take t to be an arbitrary
member of {1, . . . , n}.

Definition 8 (F [t]
I). Let F [t]

I : Dt → C be defined as

F [t]
I (y1, . . . , yt) =

∑
yt+1,...,yn∈D

FI (y1, . . . , yn). (11)

F [t]
I describes the impact on Z (I) of all assignments agree-

ing with a given partial assignment to x1, . . . , xt .
Definition 9 (F [t]

I (y, ·)). If we regard F [t]
I as a |D|t−1 × |D|

matrix, we may refer to its rows by F [t]
I (y, ·) as below. Here

y ∈ Dt−1 and D = {d1, . . . , d|D|}. Thus

F [t]
I (y, ·) =

[∑
w∈Dn−t

FI (y, d1,w), . . . ,
∑

w∈Dn−t

FI (y, d|D|,w)
]
. (12)

055301-8

ISING MODEL PARTITION-FUNCTION COMPUTATION AS … PHYSICAL REVIEW E 109, 055301 (2024)

We can group similar partial inputs y by linear dependence
of the rows F [t]

I (y, ·). We formalize that as follows.
Definition 10 (vy). Given y ∈ Dt−1 and a total order on D,

we define

vy = F [t]
I (y, ·)

F [t]
I (y, at)

(13)

for the least at ∈ D so that F [t]
I (y, at) �= 0. We say vy = 0 if

no such at exists.
Definition 11 (S[t, j]). Given y, y′ ∈ Dt−1, we say that y and

y′ are equivalent, denoted y ≡t y′ if vy = vy′
. We denote

the equivalence classes induced by this equivalence relation
S[t,1], . . . , S[t,mt].

We often use ≡ instead of ≡t , when t is clear from context.
In general, this allows us to write

Z (I) = FI (a1, . . . , an)
∏

t∈{1,...,n}

(∑
b∈D

va1,...,at−1 [b]

)
. (14)

If our equivalence classes are well structured and few in num-
ber, we can compute this efficiently.

We are now nearly ready to state the Block Orthogonal-
ity Condition. Note that while the complete formulation of
the Dichotomy Theorem for w#CSPs is for complex-valued
constraints, we simplify the statements here to cover only the
real case. Readers can refer to [8] for coverage of the general
complex case or to [57] for the simpler non-negative case.

Definition 12 (Block-Orthogonal). Consider two vectors
a and b ∈ Rk , and define |a| = (|a1|, . . . , |ak|) and |b| =
(|b1|, . . . , |bk|). Then a and b are said to be block orthogonal
if the following hold:

|a| and |b| are linearly dependent (i.e. they are scalar mul-
tiples of one another).

For every distinct value a ∈ {|a1|, . . . , |ak|}, letting Ta =
{ j ∈ [k] : |a| j = a} be the set of all indices j on which
|a| j = a, we have

∑
j∈Ta

a jb j = 0.

Note that if two vectors a and b ∈ Rk are block orthogonal,
then |a| and |b| are linearly dependent, but a and b need not
be.

Definition 13 (Block-Orthogonality Condition). We say
that a constraint language F satisfies the block orthogonality
condition if, for every function F ∈ F , t ∈ [n], and
y, z ∈ Dt−1, the row vectors F [t](y, ·) and F [t](z, ·) are
either block orthogonal or linearly dependent.

The Dichotomy Theorem for w#CSPs (Theorem 1) re-
quires two other criteria: the Mal’tsev Condition and the
Type-Partition Condition. They are reviewed in Appendix C
and more thoroughly in [8], but they are unnecessary for the
remainder of the paper.

When possible, representing an arbitrary weighted count-
ing problem as a w#CSP (such as Ising partition function
computation), allows us to more easily assess its hardness.
This analysis can produce a polynomial-time algorithm to
solve a problem when the problem is found to be in FP. Note
that the question of determining whether or not a problem
with complex (or even real-valued) weights meets or fails

these dichotomy criteria is not known to be decidable [8].
While the Block-Orthogonality Condition is easy to check,
the Mal’tsev and Type-Partition Conditions, which impose
requirements on all FI ’s, are not. In the non-negative real case,
there is a separate but analogous dichotomy theorem, which
is known to be decidable [57]. Regardless, in many cases it
is not hard to determine manually whether a given problem
instance satisfies the criteria. An example in the case of the
Ising problem can be found in Lemma 2.

C. Ising as a w#CSP

For Ising models, it is possible to reduce computation of
the partition function to a w#CSP. In doing so, however,
we must be explicit about the instances over which such a
formulation is defined. The Ising problem corresponding to
#CSP(Ising) includes all instances whose topologies are (fi-
nite) simple graphs at any temperature. Note that there is no
requirement that h = 0.

Definition 14 (#CSP(Ising)). Let A1 be the set of functions
{ f : {−1, 1} → R | f (a) = λa | λ > 0}, and let A2 be the
set of functions { f : {−1, 1}2 → R | f (a, b) = λab | λ > 0}.
Take F = A1 ∪ A2. Then define #CSP(Ising) = #CSP(F).

The functions in A1 correspond to the effect of the external
field (h) on the lattice sites, and the functions in A2 correspond
to interactions between lattice sites.

Often we restrict our constraint language to only include
rational-valued functions. This makes all the values we deal
with finitely representable, which is required for our problem
to be computable. For simplicity, we omit this detail from
our discussion of #CSP(Ising). In real-world computation,
values are expressed as floating points [58], and we accept
the small inaccuracies that entails. Thus, the instances we are
interested in in practice are rational-valued. Readers interested
in attempts to eliminate floating point inaccuracies might refer
to Schwarz [59].

Given the structural similarities between computation of
an Ising partition function and #CSP(Ising), the equivalence
of these problems should not be surprising. Recall that poly-
nomial equivalence is discussed at the end of Sec. IV A.

Lemma 1. #CSP(Ising) is polynomially equivalent to the
following problem: Given an inverse temperature and an Ising
model whose topology is a (finite) simple graph, compute the
associated partition function.

Proof. Given an Ising Model (�, J, h) and an inverse tem-
perature β � 0, we set

Fi, j ∈ F so that Fi, j (1, 1) = Fi, j (−1,−1) = eβJi, j and
Fi, j (1,−1) = Fi, j (−1, 1) = e−βJi, j ,

Fi ∈ F so that Fi(1) = eβhi and Fi(−1) = e−βhi .

Then we have an instance (I, n) of #CSP(Ising) where
n = |�| and I = {Fi, j (i, j) : i, j ∈ �} ∪ {hi(i) : i ∈ �}. See
that Z (I) = Zβ , the solution to the instance of #CSP(Ising),
is equal to the partition function at the inverse temperature β.

Similarly, see that any instance of #CSP(Ising) can be con-
verted (in polynomial time) to an instance of partition function
computation of an Ising model by the reverse construction. �

Thus #CSP(Ising) and computing partition functions of
Ising models are polynomially equivalent problems. So we

055301-9

SHAAN NAGY et al. PHYSICAL REVIEW E 109, 055301 (2024)

can easily determine the hardness of the problem of com-
puting the partition function of the Ising model by applying
the Dichotomy Theorem to #CSP(Ising). However, the Di-
chotomy Theorem for w#CSP applies only to finite constraint
languages. We have defined #CSP(Ising) with an infinite con-
straint language, so we cannot directly apply the Dichotomy
Theorem to #CSP(Ising).

To discuss hardness in a meaningful way, we con-
sider a simple finite subproblem of #CSP(Ising) (i.e., a
w#CSP whose constraint language is a finite subset of that
of #CSP(Ising)). If we show that this subproblem is #P-
hard, then #CSP(Ising) must also be #P-hard. Intuitively, if
#CSP(Ising) is believed to have no polynomial time solution
on a subset of its valid instances, then there should be no
solution for #CSP(Ising) that is polynomial time on the entire
set of valid problem instances. In general, if a subproblem
of a problem is #P-hard, then the problem itself is #P-hard
as well.

For example, one can consider weighted model counting
of Boolean formulas in CNF (Definition 6) as a subproblem
of WMC (Definition 7). Weighted model counting of CNF
formulas can be shown to be #P-hard, and from this fact we
can determine that WMC is #P-hard as well. Note that the
converse does not hold; not all subproblems of a #P-hard
problem are guaranteed to be #P-hard (e.g., partition functions
of planar Ising models can be computed in polynomial time
even though the general case is #P-hard [1]).

The instances of our subproblem of #CSP(Ising) corre-
spond to Ising models with no external field (h = 0) whose
interactions J are integer multiples of some positive a �= 1.
We construct this subproblem as follows: Let a′ �= 1 be a pos-
itive rational number, and define a = log a′. Define Fa = { fa},
where fa : {−1, 1}2 → R is

fa(x, y) =
{

ea x = y
e−a x �= y

. (15)

Clearly, Fa is a subset of the constraint language used
to define #CSP(Ising), so #CSP(Fa) is a subproblem of
#CSP(Ising).

Lemma 2. #CSP(Fa) does not satisfy the Block-
Orthogonality Condition

Proof. We will show that #CSP(Fa) does not satisfy the
Block-Orthogonality Condition, and thus that it is #P-hard.
Consider F [2] as a matrix,

F [2] =
[

ea e−a

e−a ea

]
. (16)

Clearly, the rows of F [2] are not linearly dependent (ea

e−a =
e2a �= e−2a = e−a

ea). Furthermore, |F [2](0)| and |F [2](1)| are
not linearly dependent, so the rows of F [2] are not block-
orthogonal. We conclude that #CSP(Fa) does not satisfy the
Block-Orthogonality Condition. �

Since #CSP(Fa) does not satisfy the Block-Orthogonality
Condition, it is #P-hard by our earlier Dichotomy Theorem.
The next theorem follows.

Theorem 2. #CSP(Ising) is #P-hard.
To summarize, we first saw that computing the partition

function of Ising models whose interactions are integer mul-
tiples of some positive rational a �= 1 is #P-hard. We then

determined that computing the partition function of Ising
models in general is #P-hard. These results followed imme-
diately from a straightforward application of the Dichotomy
Theorem for w#CSPs rather than a laborious bespoke reduc-
tion. Furthermore, our application of the Dichotomy Theorem
provides some intuition on where the difficulty of Ising parti-
tion function computation comes from (i.e., the large number
of St,· equivalence classes, corresponding to the difficulty in
relating the change of a single lattice site’s spin to a change
in probability across configurations). This connection is made
more apparent by the explanation of the Block-Orthogonality
Condition in Appendix B.

Insofar as hardness of subproblems is concerned, our
w#CSP formulation does not cover all cases. We might also
consider the case where we restrict Ising models’ interactions
to take on values of either a or 0. In many physical systems
of interest, only a single type of interaction with a fixed
strength can occur (e.g., in models of ferromagnetism with
only nearest-neighbor interactions) [60]. This formulation of
the Ising problem is unfortunately not easily expressible as a
w#CSP, since constraint functions can be applied arbitrarily
many times to the same inputs. While the w#CSP approach is
not applicable here, it is known that even in this restricted case
computing the Ising partition function is #P-hard. This fol-
lows from a reduction of #MAXCUT to polynomially many
instances of Ising model partition function computation [54].
This reduction from #MAXCUT gives a stronger statement
than our application of the w#CSP Dichotomy Theorem, but
it requires much more work than applying an out-of-the-box
theorem. Specifically, the instances of Ising partition func-
tion computation are used to approximate the integer-valued
solution to #MAXCUT, and the solution to #MAXCUT is
recovered once the error of the approximation is sufficiently
small (<0.5).

There is also often interest in hardness when we restrict
our attention to planar Ising models [1]. This case too is not
easily represented as a w#CSP, since w#CSPs do not give us
control over problem topologies. However, it is known that the
partition functions of planar Ising models (with no external
field) are polynomially computable [1]. The typical approach
is to reduce the problem of computing the partition function
to a weighted perfect matching problem and apply the Fisher-
Kasteleyn-Temperley (FKT) Algorithm. This solution is given
in great detail in [1].

The inability of w#CSP to capture these Ising subproblems
demonstrates the limitations of the w#CSP framework and
opportunities to expand beyond them. For example, there has
been recent work on Holant Problems, a class of problems
broader than w#CSP, which adds the ability to control how
many times variables may be reused [61]. The Holant frame-
work still does not allow the degree of specificity needed to
easily capture some Ising formulations, although it is perhaps
a step in the right direction. While these problem classes
and their accompanying dichotomy theorems are intended to
answer deep theoretical questions about the source of compu-
tational hardness, applying them to real-world problems gives
very immediate and useful hardness results. Application to
real-world problems also suggests where the expressiveness
of problem classes like w#CSP can be improved. As the
expressiveness of these problem classes increases, so does

055301-10

ISING MODEL PARTITION-FUNCTION COMPUTATION AS … PHYSICAL REVIEW E 109, 055301 (2024)

our ability to determine the hardness of precisely defined
subproblems [61].

V. CONCLUSIONS

The principal aim of our work has been to demonstrate the
utility of casting Ising-model partition-function computation
to standard forms in the field of computer science (i.e., w#CSP
and WMC). Because these standard forms are well studied,
they provide immediate theoretical and computational results
without the need for laborious, handcrafted techniques as in
Jerrum [54] and Pan [25].

By representing partition-function computation as a
w#CSP, we were able to determine the computational com-
plexity of computing Ising model partition functions with
minimal effort. While lacking the flexibility of bespoke
reductions, the w#CSP framework serves as a very easy, out-
of-the-box way to determine the hardness of some problems
for Ising models. This w#CSP representation also provided
some intuition on where the difficulty of Ising partition-
function computation comes from (i.e., the difficulty in
relating the change of a lattice site’s spin to a change in
probability across configurations).

From our #wCSP formulation, we were inspired to develop
a reduction from Ising-model partition-function computation
to weighted model counting (WMC), a well-studied problem
for which many off-the-shelf solvers exist. Some exact WMC
solvers, most notably TensorOrder, were able to outper-
form state-of-the-art approximate tools used for computing
partition functions on midsized and disordered benchmarks,
running in a tenth of the time in many cases. TensorOrder’s
success on disordered topologies makes previously challeng-
ing Ising instances easier in practice. TensorOrder (and
weighted model counters more generally) shows promise as
part of a portfolio of Ising parition function solvers. Moreover,
Tensororder is capable of handling more general constraints
and higher rank tensors than required to compute Ising model
partition functions, suggesting its use for more complex mod-
els (e.g., Potts models). Furthermore, as weighted model
counters continue to improve, Ising-model partition-function
computation performed using weighted model counters will
improve in lockstep.

While our work offers effective strategies for partition
function computation in most cases, the zero-temperature
limit (β → ∞) remains challenging for both exact and ap-
proximate tools. Nonetheless, Liu et al. [2] recently showed
that if one replaces the usual sum and product binary op-
erators for ordinary real numbers with the max and sum
operators respectively (i.e., if one operates over the tropical
algebra), then partition function computations is feasible in
the zero-temperature limit. We believe that the computational
complexity analyses and Ising reductions to weighted model
counters offered in our study for finite β in partition function
computations may pave the way for future tropical algebra
counters, especially as they rely on the common language of
tensor network contractions [15,16].

While we have focused primarily on the Ising model in this
paper, the same type of analysis is easily done for Potts models
and other related models. Our hope is that by demonstrating
the utility of the w#CSP and WMC frameworks in this setting,

readers will be encouraged to apply them to other settings
and problems of interest in statistical physics, engineering
reliability, or probabilistic inference.

Furthermore, we believe that weighted counters could be
applied in the computation of the partition function of non
classical models such as the quantum Ising model. The main
justification is that computing the ground state degeneracy and
density of states for both classical and quantum Hamiltonians
is computationally equivalent [62]. A systematic study of the
computational complexity of the partition function of non-
classical models and the promise of using existing weighted
counters in this context is left as a promising avenue for future
research.

In addition, the approach of Sec. III may complement
emerging strategies in quantum simulation. Many techniques
in this area are limited to restricted topologies (e.g., Tindall
[63] is effective only over short-range interactions), so the
application of weighted model counters may support broader
simulation in the future.

We provide all code, benchmarks, and detailed data from
benchmark runs at [64].

ACKNOWLEDGMENTS

This work was supported in part by the Big-Data Pri-
vate Cloud Research Cyberinfrastructure MRI award funded
by the NSF under Grant No. CNS-1338099 and a Civil In-
frastructure Systems award also funded by the NSF through
Grant No. CMMI-2037545. We also acknowledge the use of
computational resources from Rice University’s Center for
Research Computing (CRC). The authors are also grateful for
discussions with members of the Quantum Algorithms Group
at Rice University, including Professors Kaden Hazzard and
Guido Pagano (Physics and Astronomy), as well as Anastasios
Kyrillidis (Computer Science).

APPENDIX A: REDUCING W#CSPS TO WEIGHTED
MODEL COUNTING

Every instance of a weighted counting constraint-
satisfaction problem (w#CSP, Definition 5) can be reduced to
an equivalent instance of weighted model counting (WMC,
Definition 7) expressed in conjunctive normal form (CNF,
Definition 6). One particular reduction for computing the par-
tition function of the Ising model is given in Sec. III. In this
Appendix, we give a more general reduction from an aribtrary
w#CSP to WMC.

Lemma 3. For every constraint language F , there is
a polynomial-time reduction reduction from #CSP(F) to
WMC.

Proof. Consider a constraint language F with a do-
main D = {0, 1, . . . , |D| − 1}, and the associated problem
#CSP(F). Consider an instance (I, n) over the variables
x1, . . . , xn. Let D = �log2(|D|)�. We reduce (I, n) to a WMC
instance as follows.

We first define the set X of Boolean variables in the WMC
instance.

055301-11

SHAAN NAGY et al. PHYSICAL REVIEW E 109, 055301 (2024)

x j,1, . . . , x j,D: For each of the n variables x j in the input
instance, we add D corresponding Boolean variables
x j,1, . . . , x j,D to X . These variables encode the value of
each x j . In particular, the value of x j corresponds to the
binary number that results from concatenating the values
of Boolean variables: x j,D · · · x j,1.

x(i1,...,ik),d : For each formula F (xi1 , . . . , xik) in I , we add
|D|k Boolean variables x(i1,...,ik),d , one for each d ∈ Dk .
These variables encode the value of the input variables
(xi1 , . . . , xik) of each formula F (xi1 , . . . , xik) in I .

We now introduce the following formulas.

First, we must restrict the allowed values of the variables
x j,1, . . . , x j,D so that the value of x j is in D. Specifically,
we want to disallow the binary number x j,D · · · x j,2x j,1

from exceeding |D| − 1. The most straightforward way
to express this condition is that x j,D · · · x j,2x j,1 should
not be greater than the binary representation of |D| − 1,
written BD · · · B2B1, with respect to the following strict
lexicographic order (<) on binary strings of equal length:

0 < 1

0ωa < 1ωb for arbitrary binary strings ωa and ωb of
equal length

0ωa < 0ωb and 1ωa < 1ωb if ωa < ωb for arbitrary
binary strings ωa and ωb of equal length.

For a, b ∈ {0, 1} and binary strings of equal length ωa

and ωb, we have that aωa < bωb if a < b or if a = b
and ωa < ωb. We now construct inductively a formula
φ(am · · · a1, bm · · · b1) that checks whether am · · · a1 <

bm · · · b1, defined as follows:

φ(am · · · a1, bm · · · b1) (A1)

=
⎧⎨
⎩

(am < bm) m > 1
∨((am = bm) ∧ φ(am−1 · · · a1, bm−1 · · · b1))

(am < bm) m = 1
(A2)

= (am < bm) (A3)

∨((am = bm) ∧ (am−1 < bm−1))

∨((am = bm) ∧ (am−1 = bm−1) ∧ (am−2 < bm−2))

∨ · · ·

=
∨

p∈[m]

⎛
⎝

⎛
⎝ ∧

q∈[m],q>p

(aq = bq)

⎞
⎠ ∧ (ap < bp)

⎞
⎠ (A4)

=
∨

p∈[m],ap=0

⎛
⎝

⎛
⎝ ∧

q∈[m],q>p

(aq = bq)

⎞
⎠ ∧ (ap < bp)

⎞
⎠ (A5)

=
∨

p∈[m],ap=0

⎛
⎝

⎛
⎝ ∧

q∈[m],q>p

(aq = bq)

⎞
⎠ ∧ (bp = 1)

⎞
⎠. (A6)

The last two simplifications come from the fact that ap <

bp can only be true if ap = 0 and bp = 1.
Next, we construct a Boolean formula to capture
¬φ(BD · · · B2B1, x j,D · · · x j,2x j,1).
Now define

φ j = ¬φ
(
BD · · · B2B1, x j,D · · · x j,2x j,1

)
, (A7)

and note that terms in φ j checking equality can be
replaced with positive and negative literals over
x j,D, . . . , x j,2, x j,1 determined by the values of
BD, . . . , B2, B1. As the negation of a DNF formula,
φ j is a CNF formula.

We now have a formula φ j that is satisfied exactly when
x j,D · · · x j,2x j,1 � |D| − 1.

Next, we want to relate the variables that encode the inputs
to the constraint functions (i.e. x(i1,...,ik),d) to the variables
encoding the value of x j (i.e. x j,1, . . . , x j,D). To do this,
we introduce the following shorthand:

φ j,d =
∧

q∈[D]

l j,q,d , (A8)

where d ∈ D with the binary representation dD · · · d1,

and l j,q,d = {x j,q dq = 1
¬x j,q dq = 0.

Evidently, φ j,d is true exactly when x j = d . We also
introduce the following formulas:

ψF (xi1 ,...,xik) =
∧

d∈Dk

⎛
⎝x(i1,...,ik),d ⇒

∧
p∈[k]

φip,d p

⎞
⎠ (A9)

055301-12

ISING MODEL PARTITION-FUNCTION COMPUTATION AS … PHYSICAL REVIEW E 109, 055301 (2024)

=
∧

d∈Dk

⎛
⎝ ∧

p∈[k]

(¬x(i1,...,ik),d ∨ φip,d p

)⎞⎠ (A10)

=
∧

d∈Dk ,p∈[k]

⎛
⎝¬x(i1,...,ik),d ∨

∧
q∈[D]

l j,q,d p

⎞
⎠ (A11)

=
∧

d∈Dk ,p∈[k]

⎛
⎝ ∧

q∈[D]

(¬x(i1,...,ik),d ∨ l j,q,d p

)⎞⎠ (A12)

=
∧

d∈Dk ,p∈[k],q∈[D]

(¬x(i1,...,ik),d ∨ l j,q,d p

)
(A13)

and

γF (xi1 ,...,xik) =
∨

d∈Dk

x(i1,...,ik),d , (A14)

which together force x(i1,...,ik),d to be true exactly when
the value assigned to (xi1 , . . . , xik) is d. Specifically,
ψF (xi1 ,...,xik) ensures that if x(i1,...,ik),d is true, then the
value assigned to (xi1 , . . . , xik) is d. Since the value as-
signed (xi1 , . . . , xik) will be equal to exactly one d ∈ Dk ,
x(i1,...,ik),d can be true for at most one d ∈ Dk . Moreover,
from γF (xi1 ,...,xik), we have that x(i1,...,ik),d is true for at least
one d ∈ Dk . Thus, x(i1,...,ik),d will be true exactly when the
value assigned to (xi1 , . . . , xik) is d.

All together, we write

� =
⎛
⎝ ∧

j∈[n]

φ j

⎞
⎠

∧
∧

F (xi1 ,...,xik)∈I

(
ψF (xi1 ,...,xik) ∧ γF (xi1 ,...,xik)

)
. (A15)

This formula � is the formula whose weighted count our
WMC reduction of the (I, n) instance will compute.

Finally, we need a weight function W . For each
x j,q, W (x j,q, 1) = W (x j,q, 0) = 1. For each x(i1,...,ik),d ,
W (x(i1,...,ik),d , 0) = 1 and W (x(i1,...,ik),d , 1) = F (d).

All together, X , �, and W constitute the WMC instance
produced by the reduction. Correctness of the reduction
follows by construction. The variables x j,D, . . . , x j,1 give a
binary encoding of the value of x j , thanks to φ j . For each
formula F (xi1 , . . . , xik) ∈ I , the literals x(i1,...,ik),d indicate the
value of the arguments of F , and the weight assigned to
each literal x(i1,...,ik),d is exactly the value of F (d). The total
weight of an assignment to the variables of � is a product
of these weights, which is precisely the product of the values
taken by the formulas in I for the corresponding assignment
to x1, . . . , xn. So the weight W on each assignment over the
Boolean variables is equal to the value of FI on the corre-
sponding assignment to x1, . . . , xn. Since there is a bijection
between assignments to the Boolean variables satisfying �

and assignments to x1, . . . , xn, we can show W (�) = Z (I).
Thus the WMC instance that the reduction produces is equiv-
alent to the #CSP(F) instance (I, n) as desired. �

Note that we have D ∗ n variables of the form x j,q and at
most |D|K ∗ |I| variables of the form x(i1,...,ik),d , where K is
the maximum arity of the constraints used in I . There are n
formulas of the form φ j in �, each with D literals. There are
|I| formulas of the form ψF (xi1 ,...,xik) in �, each with at most

|D|K ∗ K ∗ D CNF clauses, each clause having two literals. Fi-
nally, there are |I| formulas of the form γF (xi1 ,...,xik), each with
at most |D|K literals. The reduction of (I, n) is exponential
only in K , the maximum arity of the functions appearing in I .

If the arities of the constraints comprising F are bounded,
then the reduction is polynomial. Any finite constraint
language F has bounded arity, but many useful infinite con-
straint languages have bounded arity as well. In the case of
#CSP(Ising), the functions in the associated (infinite) con-
straint language have arity at most 2.

For many particular problems, a more compact reduction
can be found. For example, when there is symmetry in the
constraints F in F (i.e., when the constraints are not injective),
more efficient encodings of the constraints’ inputs can be
used.

APPENDIX B: HARDNESS AND RELATIONSHIP
TO WEIGHTED CONSTRAINT SATISFACTION

In Sec. IV B we took a very brief look at the Dichotomy
Theorem (Theorem 1), but we omitted much of the intuition
behind its criteria. In this Appendix we develop the Block
Orthogonality Condition more carefully, giving insight into
the reason for the criterion. The Mal’tsev and Type Partition
Conditions are handled in Appendix C.

As previously mentioned, the three criteria given by the
Dichotomy Theorem follow naturally when we attempt to
construct a polynomial-time algorithm for w#CSPs. One rea-
son that w#CSPs are often computationally expensive to
solve is that the effect of a single assignment to a given
variable is hard to capture. In particular, given a problem
instance I and its associated n-ary formula FI (x), it is chal-
lenging to find a general rule that relates FI (x1, x2, . . . , xn) to
FI (x′

1, x2, . . . , xn). For this reason, current computational ap-
proaches require consideration of a set of assignments whose

055301-13

SHAAN NAGY et al. PHYSICAL REVIEW E 109, 055301 (2024)

size is exponential in n. The algorithm driving the w#CSP
Dichotomy Theorem demands that changing the assignment
of a particular variable changes the value of FI in a predictable
way. The criteria of the Dichotomy Theorem are necessary
and sufficient conditions for these assumptions to hold.

We now establish some definitions to help us describe the
effect of an assignment on the value of FI . Recall the definition
of an instance of a w#CSP (Definition 5). An instance of
#CSP(F) is written as (I, n) with n a positive integer and I a
finite collection of formulas each of the form F (xi1 , . . . , xik).
Here each F ∈ F is a k-ary function, i1, . . . , ik ∈ [n], and each
variable xi j ranges over D. Note that k and i1, . . . , ik may
differ in each formula in I . Given an instance (I, n), we define
FI : Dn → C as follows, where y ∈ Dn:

FI (y) =
∏

F (xi1 ,...,xik)∈I

F (y[i1], . . . , y[ik]). (B1)

So FI is a mapping that takes an assignment y to the variables
(x) and returns a value in C, where the value assigned to each
xi j is given by y[i j]. The output of the instance (I, n) is the sum
over all assignments Z (I) = ∑

y∈Dn FI (y), as in Definition 5.

Note the similarity between this sum of products and our Ising
partition function (Definition 2).

Our first step is to break up the computation of Z (I) so
that we can understand the effect each individual variable
assignment has on its value. We would like to be able to split
Z (I) into a sum of smaller sums, each restricted to a particular
partial assignment. Then we can consider how differences
between these partial assignments affect their contributions to
Z (I).

In the development below, we take t to be an arbitrary
member of {1, . . . , n}.

Definition 15 (F [t]
I). Let F [t]

I : Dt → C be defined as

F [t]
I (y1, . . . , yt) =

∑
yt+1,...,yn∈D

FI (y1, . . . , yn). (11)

So F [t]
I describes the impact on Z (I) of all assignments

agreeing with a given partial assignment to x1, . . . , xt . We
can decompose Z (I) into a sum of such terms. Thus Z (I) =∑
a∈D

F [1]
I (a), and in general, we have that Z (I) = ∑

y∈Dt

F [t]
I (y).

We now consider F [t]
I as a |D|t−1 × |D| matrix, where

F [t]
I (y, d) = F [t]

I (y1, . . . , yt−1, d) for y ∈ Dt−1 and d ∈ D:

F [t]
I =

⎡
⎢⎣ F [t]

I (y1, d1) · · · F [t]
I (y1, d|D|)

...
...

...

F [t]
I (y|D|t−1

, d1) · · · F [t]
I (y|D|t−1

, d|D|)

⎤
⎥⎦ (B2)

=

⎡
⎢⎢⎢⎣

∑
w∈Dn−t

FI (y1, d1,w) · · · ∑
w∈Dn−t

FI (y1, d|D|,w)

...
...

...∑
w∈Dn−t

FI (y|D|t−1
, d1,w) · · · ∑

w∈Dn−t

FI (y|D|t−1
, d|D|,w)

⎤
⎥⎥⎥⎦. (B3)

Writing F [t]
I as a matrix invites us to consider the following question: How does changing the assignment of a single variable

change the contribution of a partial assignment to the instance’s output Z (I)? In our notation, how does changing d affect the
value of F [t]

I (y, d) for a given y?
Definition 16 (F [t]

I (y, ·)). If we regard F [t]
I as a |D|t−1 × |D| matrix, we may refer to its rows by F [t]

I (y, ·) as below. Here,
y ∈ Dt−1 and D = {d1, . . . , d|D|}. Thus

F [t]
I (y, ·) =

[∑
w∈Dn−t

FI (y, d1,w), . . . ,
∑

w∈Dn−t

FI (y, d|D|,w)
]
. (12)

We now have a way to relate similar partial assignments. In
particular, for each partial assignment y, the vector F [t]

I (y, ·)
captures the contributions to Z (I) of partial assignments to the
first t variables that agree with y on the first t − 1 variables.
These vectors are now our objects of interest.

The set of such vectors F [t]
I (y, ·) is quite large, since there

are |D|t−1 choices for y. We would like to reduce the compu-
tation and information needed to manage this set. We make
the observation that if two vectors F [t]

I (y, ·) and F [t]
I (y′, ·) are

scalar multiples of one another, then if we know F [t]
I (y, ·)

and a nonzero entry of F [t]
I (y′, ·), we can compute F [t]

I (y′, ·)
easily. This motivates us to introduce an equivalence relation
on our set of partial assignments y. Given y, y′ ∈ Dt−1, we
say that y ≡ y′ if the vectors F [t]

I (y, ·) and F [t]
I (y′, ·) are scalar

multiples of one another. This notion is formalized below in
Definition 12.

If we have a small number of equivalence classes and if it is
easy to determine to which equivalence class a partial assign-
ment y ∈ Dt−1 belongs to, then using this equivalence relation
would make it easier to compute and manage the F [t]

I (y, ·)
vectors. The dichotomy criteria of Theorem 1 guarantee both
these desiderata.

If we want our partition to be useful, we need to assign
to each equivalence class a representative element. Then for
each y in the equivalence class, we can compute F [t]

I (y, ·)
by scaling this representative. We construct such a vector of
dimension |D| as follows.

Definition 17 (vy). Given y ∈ Dt−1 and a total order on D,
we define

vy = F [t]
I (y, ·)

F [t]
I (y, at)

(13)

055301-14

ISING MODEL PARTITION-FUNCTION COMPUTATION AS … PHYSICAL REVIEW E 109, 055301 (2024)

FIG. 3. Diagram of contributions of partial assignments to Z (I). The colors of each vector denote its equivalence class, thus a1 ≡ a3. When
computing F [2]

I (a3, a2), we can use va1 , which we already know from F [2]
I (a1, ·). In this way, we need only check one partial assignment to

two variables (a3, a1) to determine F [2]
I (a3) when we otherwise would have needed to check three. As we work further down the tree, repeated

applications of this shortcut result in an exponential speedup (assuming we have sufficiently few equivalence classes, guaranteed by the criteria
of Theorem 1).

for the least at ∈ D so that F [t]
I (y, at) �= 0. We say vy = 0 if

no such at exists.
Observe that for an arbitrary y ∈ Dt−1, we have that

F [t]
I (y, ·) = F [t]

I (y, at) · vy. In addition, given y, y′ ∈ Dt−1, if
y ≡ y′ as discussed earlier, then vy = vy′

. This motivates the
following formalization of the equivalence relation discussed
above.

Definition 18 (S[t, j]). Given y, y′ ∈ Dt−1, we say that y and
y′ are equivalent, denoted y ≡t y′ if vy = vy′

. We denote
the equivalence classes induced by this equivalence relation
S[t,1], . . . , S[t,mt].

We often use ≡ instead of ≡t , when t is clear from context.
We now have a way to discuss symmetries between partial
assignments in Dt−1. We can consider computing Z (I) in this
framework to understand what advantages we have gained.
This computation can be visualized as in Fig. 3. We regard
Z (I) as F [0]

I () and compute it recursively, traversing the tree
in Fig. 3 in a depth-first traversal.

Consider the vector v = F [1]
I (·)

F [1]
I (a1)

∈ D|D|, where a1 is the

least element of D such that F [1]
I (a1) �= 0 as in Definition 11.

We denote entries of v as v[a] = F [1]
I (a)

F [1]
I (a1)

. Observe

Z (I) = F [0]
I () =

∑
a∈D

F [1]
I (a) (B4)

=
∑
a∈D

F [1]
I (a1)

F [1]
I (a)

F [1]
I (a1)

(B5)

=
∑
a∈D

F [1]
I (a1)v[a] (B6)

= F [1]
I (a1)

∑
a∈D

v[a]. (B7)

So to compute Z (I), one needs to compute F [1]
I (a1) and v.

We first compute F [1]
I (a1). As per Definition 11, consider the

least a2 ∈ D so that F [2]
I (a1, a2) �= 0 and write va1 = F [2]

I (a1,·)
F [2]

I (a1,a2)
.

Then

F [1]
I (a1) =

∑
b∈D

F [2]
I (a1, b) (B8)

=
∑
b∈D

F [2]
I (a1, a2)

F [2]
I (a1, b)

F [2]
I (a1, a2)

(B9)

=
∑
b∈D

F [2]
I (a1, a2)(va1 [b]) (B10)

= F [2]
I (a1, a2)

∑
b∈D

va1 [b]. (B11)

In order to finish computing F [1]
I (a1), we must compute

F [2]
I (a1, a2) and va1 . We continue walking down our tree in

this way until we reach the leaves where F [n]
I = FI is easily

computable. When we compute our vy vectors, we find each
entry as per Definition 11 by visiting unexplored branches
of the tree in a depth-first fashion. However, we can apply
the equivalence relation ≡ to avoid computing vy when it
is known from earlier computation of an equivalent partial
assignment. This speedup is explained next in the context of
the top level of our tree.

After computing F [1]
I (a1), we must compute v. For each

a′
1 ∈ D such that a1 ≡ a′

1, we have that

v[a′
1] = F [1]

I (a′
1)

F [1]
I (a1)

(B12)

= 1

F [1]
I (a1)

F [2]
I (a′

1, a2)
∑
b∈D

(va′
1 [b]) (B13)

= 1

F [1]
I (a1)

F [2]
I (a′

1, a2)
∑
b∈D

(va1 [b]). (B14)

Since we have already computed va1 in our computation
of F [1]

I (a1), we need only compute F [2]
I (a′

1, a2) to determine
v[a′

1]. This reduces the number of partial assignments of
length 2 we must explore to determine v[a′

1] by a factor of
n (see Fig. 3). As we proceed with our computation of various
vy and F [t]

I (·), the ability to reuse previously computed v’s

055301-15

SHAAN NAGY et al. PHYSICAL REVIEW E 109, 055301 (2024)

substantially reduces the search space we must explore (sup-
posing the number mt of equivalence classes of ≡t is small
enough [mt << |D|t−1 for each t ∈ {1, . . . , n}]).

More generally, we may write

Z (I) = FI (a1, . . . , an)
∏

t∈{1,...,n}

(∑
b∈D

va1,...,at−1 [b]

)
, (B15)

and as we have just seen, the computation of each va1,...,at−1

is made easier each time we have (a1, . . . , at−1, d) ≡
(a1, . . . , at−1, d ′) for distinct d, d ′ ∈ D.

For this approach to be useful, we must be able to deter-
mine in polynomial time to which equivalence class S[t, j] a
given y belongs (so that we can reuse vy). The Dichotomy
Theorem criteria are precisely the conditions required for the
collection of these data to be determined in polynomial time.

While the complete formulation of the Dichotomy The-
orem for w#CSPs is for complex-valued constraints, we
simplify the statements here to cover only the real case. In-
terested readers can refer to [8] for coverage of the general
complex case or to [57] for the simpler non-negative case.
First, we go over the three criteria of the Dichotomy Theorem.

The Block-Orthogonality Condition guarantees that the
number mt of equivalence classes of ≡t is not too large.

Definition 19 (Block-Orthogonal). Consider two vectors
a and b ∈ Rk , and define |a| = (|a1|, . . . , |ak|) and |b| =
(|b1|, . . . , |bk|). Then a and b are said to be block orthogonal
if the following hold:

|a| and |b| are linearly dependent (i.e. they are scalar mul-
tiples of one another).

For every distinct value a ∈ {|a1|, . . . , |ak|}, letting Ta =
{ j ∈ [k] : |a| j = a} be the set of all indices j on which
|a| j = a, we have

∑
j∈Ta

a jb j = 0.

Note that if two vectors a and b ∈ Rk are block orthogonal,
then |a| and |b| are linearly dependent, but a and b need not
be.

Definition 20 (Block-Orthogonality Condition). We say
that a constraint language F satisfies the block orthogonality
condition if, for every function F ∈ F , t ∈ [n], and
y, z ∈ Dt−1, the row vectors F [t](y, ·) and F [t](z, ·) are
either block orthogonal or linearly dependent.

The Dichotomy Theorem for w#CSPs (Theorem 1) re-
quires two other criteria: the Mal’tsev Condition and the
Type-Partition Condition. These conditions make comput-
ing membership in S[t, j] tractable. They are reviewed in
Appendix C and more thoroughly in [8].

APPENDIX C: THE MAL’TSEV
AND TYPE PARTITION CONDITIONS

Recall the discussion from Sec. IV B. We consider there a
problem instance (I, n) and the associated instance function
FI . For each t < n, we partition the partial assignments Dt−1

into equivalence classes S[t, j] based on the contributions of
each partial assignment to Z (I). We take mt to be the num-
ber of these equivalence classes for each t . The discussion
then proceeds with an analysis of these objects to determine

conditions under which a problem is polynomially solvable.
Section IV B introduces the Block-Orthogonality Condition.
Here we review the remaining two conditions: the Mal’tsev
Condition and the Type-Partition Condition.

The Block-Orthogonality Condition given in Sec. IV B
gives us that mt is reasonably small. This means that the
speedup we get from using the equivalence relation will be
substantial, provided we are able to easily identify equivalent
partial assignments.

To make this identification, we require that membership
in S[t, j] is computable in polynomial time. This requirement
is guaranteed by the Mal’tsev Condition. In particular, the
Mal’tsev Condition, by requiring the existence of Mal’tsev
polymorphisms (defined below) for each S[t, j], guarantees the
existence of a witness function for each S[t, j] whose evaluation
time is linear in t . For our purposes, a witness function for a set
is a function that verifies whether a given input is an element
of that set. Further details about such witness functions and
their construction is given in [8].

Understanding the Mal’tsev Condition requires us to define
polymorphisms and Mal’tsev polymorphisms.

Definition 21 ((Cubic) Polymorphism). A cubic poly-
morphism (polymorp-hism, for short) of � ⊂ Dt is
a function φ : D3 → D such that, for all u, v,w ∈ �,
(φ(u1, v1,w1), . . . , φ(ut , vt ,wt)) ∈ �.

Definition 22 (Mal’tsev Polymorphism). A Mal’tsev poly-
morphism of � ⊂ Dt is a polymorphism φ : D3 → D of
� such that, for all a, b ∈ D, we have that φ(a, a, b) =
φ(b, a, a) = a.

Definition 23 (Mal’tsev Condition). We say that a con-
straint language F satisfies the Malt’sev Condition if, for
every instance function FI of #CSP(F), all the equivalence
classes S[t, j] associated with FI share a common Mal’tsev
polymorphism.

With the Mal’tsev Condition, we know that there exists
a tractable witness function for each S[t, j]. Given sufficient
information about each S[t, j], we might hope to compute such
witness functions. However, we will in general not know mt ,
nor will we know much about each S[t, j]. The existence of a
shared Mal’tsev polymorphism, along with the Type-Partition
Condition below, allows us to overcome this lack of informa-
tion. When these conditions are satisfied, we can determine
each mt and construct witness functions for each S[t, j] without
requiring prior knowledge or construction of each S[t, j].

We present the Type-Partition Condition below. A com-
plete coverage can be found in [8].

Definition 24 (Prefix). Let n, m ∈ Z+ with n � m be
given. Let v = (v1, . . . , vn) ∈ Rn be given. We say a vector
w ∈ Rm is a prefix of v if, for all j � m, w j = v j . Thus
v = (w1, . . . ,wm, vm+1, . . . , vn), so w appears as a prefix
of v.

Definition 25 (typeF). Let a function F : Dn → C with
n � 2 be given. Let P([m]) denote the power set of
{1, . . . , m}. We define the map typeF :

⋃
k∈[n] Dk → P([m])

so that for each y ∈ ⋃
k∈[n] Dk , we have typeF (y) = { j ∈ [m] :

y is a prefix of an element of S[n, j]}.
Definition 26 (Type-Partition Condition). We say that a

constraint language F satisfies the Type-Partition Condi-
tion if, for all instance functions FI in #CSP(F) with arity

055301-16

ISING MODEL PARTITION-FUNCTION COMPUTATION AS … PHYSICAL REVIEW E 109, 055301 (2024)

n � 2, for all t ∈ [n], l ∈ [t − 1], and y, z ∈ Dl , we have
that the sets typeF [t]

I
(y) and typeF [t]

I
(z) are either equal or

disjoint.
All together, the criteria for the dichotomy theorem give

us the ability to make real use of our equivalence relation
≡t . The Block-Orthogonality Condition guarantees that we
do not have too many equivalence classes. The Mal’tsev and
Type-Partition Conditions together let us construct witness
functions that we use to identify which equivalence class a

given partial assignment belongs to. With a guarantee that
our equivalence relation is useful and the ability to determine
elements’ equivalence classes, we are able to use the method-
ology described in Sec. IV B to determine Z (I) in polynomial
time.

This provides some intuition that the dichotomy theorem
criteria are sufficient for a problem to be in FP. For a proof
that w#CSPs that do not obey the dichotomy theorem criteria
are #P-hard, refer to [8].

[1] F. Barahona, J. Phys. A: Math. Gen. 15, 3241 (1982).
[2] J.-G. Liu, L. Wang, and P. Zhang, Phys. Rev. Lett. 126, 090506

(2021).
[3] F. Tanaka and S. Edwards, J. Phys. F 10, 2769 (1980).
[4] E. Eaton and R. Mansbach, in Proceedings of the AAAI Confer-

ence on Artificial Intelligence (Association for the Advancement
of Artificial Intelligence, Toronto, Canada, 2021), Vol. 26, pp.
900–906.

[5] F. Bacchus, S. Dalmao, and T. Pitassi, in Proceedings of the
44th Annual IEEE Symposium on Foundations of Computer
Science, Cambridge, Massachusetts (IEEE Computer Society,
Piscataway, NJ, 2003), pp. 340–351.

[6] C. Domshlak and J. Hoffmann, J. Artif. Intell. Res. 30, 565
(2007).

[7] Y. Naveh, M. Rimon, I. Jaeger, Y. Katz, M. Vinov, E. Marcus,
and G. Shurek, AI Mag. 28, 13 (2007).

[8] J.-Y. Cai, in Proceedings of the 44th Symposium on Theory of
Computing Conference (Association for Computing Machinery,
New York, 2011).

[9] C. P. Gomes, A. Sabharwal, and B. Selman, in Handbook of
Satisfiability, edited by A. Biere, M. Heule, H. van Maaren, and
T. Walsh (IOS Press BV, 2009), pp. 633–654.

[10] M. Chavira and A. Darwiche, Artif. Intell. 172, 772 (2008).
[11] D. Koller and N. Friedman, Probabilistic Graphical Mod-

els: Principles and Techniques (MIT Press, Cambridge, MA,
2009).

[12] S. Chakraborty, D. Fried, K. S. Meel, and M. Y. Vardi,
in Proceedings of the 24th International Conference on Ar-
tificial Intelligenc, IJCAI’15, edited by Q. Yang and M.
Wooldridge (AAAI Press, Buenos Aires, Argentina, 2015),
pp. 689–695.

[13] J. Dudek, D. Fried, and K. S. Meel, in Advances in Neural
Information Processing Systems, edited by H. Larochelle, M.
Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (Curran Asso-
ciates, Inc., Vancouver, Canada, 2020), pp. 1071–1082.

[14] L. G. Valiant, SIAM J. Comput. 8, 410 (1979).
[15] J. M. Dudek, L. Dueñas-Osorio, and M. Y. Vardi,

arXiv:1908.04381.
[16] J. M. Dudek and M. Y. Vardi, in MCW (2020), https://api.

semanticscholar.org/CorpusID:220250670.
[17] T. Sang, P. Beame, and H. Kautz, in Theory and Applications

of Satisfiability Testing, edited by F. Bacchus and T. Walsh
(Springer, Berlin, Heidelberg, 2005), pp. 226–240.

[18] U. Oztok and A. Darwiche, in Proceedings of the 24th Inter-
national Conference on Artificial Intelligence, IJCAI’15, edited
by Q. Yang and M. Wooldridge (AAAI Press, Buenos Aires,
Argentina, 2015), pp. 3141–3148.

[19] J.-M. Lagniez and P. Marquis, in Proceedings of the 26th Inter-
national Joint Conference on Artificial Intelligence, IJCAI’17,
edited by C. Sierra (AAAI Press, Melbourne, Australia, 2017),
pp. 667–673.

[20] J. M. Dudek, V. H. N. Phan, and M. Y. Vardi, in Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI Press,
New York, NY, 2020), Vol. 34, pp. 1468–1476.

[21] J. M. Dudek, V. H. N. Phan, and M. Y. Vardi, in Principles and
Practice of Constraint Programming: 26th International Confer-
ence, CP 2020, Louvain-La-Neuve, Belgium, September 7–11,
2020, Proceedings, edited by H. Simonis (Springer-Verlag,
Berlin, Heidelberg, 2020), pp. 211–230.

[22] J. K. Fichte, M. Hecher, S. Woltran, and M. Zisser, in 26th An-
nual European Symposium on Algorithms (ESA 2018), Leibniz
International Proceedings in Informatics (LIPIcs), edited by A.
Yossi, B. Hannah, and H. Grzegorz (Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, Dagstuhl, Germany, 2018), Vol. 112,
pp. 28:1–28:16.

[23] J. K. Fichte, M. Hecher, and M. Zisser, in Principles and Prac-
tice of Constraint Programming: 25th International Conference,
CP 2019, Stamford, CT, USA, September 30 - October 4, 2019,
Proceedings, edited by T. Schiex and S. de Givry (Springer-
Verlag, Berlin, Heidelberg, 2019), pp. 491–509.

[24] J. K. Fichte, M. Hecher, and F. Hamiti, ACM J. Exp.
Algorithmics 26, 13 (2021).

[25] F. Pan, P. Zhou, S. Li, and P. Zhang, Phys. Rev. Lett. 125,
060503 (2020).

[26] J. Gray and S. Kourtis, Quantum 5, 410 (2021).
[27] M. Hamann and B. Strasser, J. Exp. Algorithmics (JEA) 23, 1

(2018).
[28] T. E. Oliphant, A Guide to NumPy (Trelgol Publishing, USA,

2006), Vol. 1.
[29] A. Lucas, Front. Phys. 2, 5 (2014).
[30] Z. Zhang, Mathematics 11, 237 (2023).
[31] O. Gableske, in Theory and Applications of Satisfiability

Testing—SAT 2014, edited by C. Sinz and U. Egly (Springer
International Publishing, Cham, 2014), pp. 367–383.

[32] W. Huang, D. A. Kitchaev, S. T. Dacek, Z. Rong, A. Urban,
S. Cao, C. Luo, and G. Ceder, Phys. Rev. B 94, 134424
(2016).

[33] T. Jagielski, R. Manohar, and J. Roychowdhury,
arXiv:2306.01569.

[34] N. Mohseni, P. L. McMahon, and T. Byrnes, Ising machines as
hardware solvers of combinatorial optimization problems, Nat.
Rev. Phys. 4, 363 (2022).

[35] K. Tanahashi, S. Takayanagi, T. Motohashi, and S. Tanaka,
J. Phys. Soc. Jpn. 88, 061010 (2019).

055301-17

https://doi.org/10.1088/0305-4470/15/10/028
https://doi.org/10.1103/PhysRevLett.126.090506
https://doi.org/10.1088/0305-4608/10/12/017
https://doi.org/10.1613/jair.2289
https://dl.acm.org/doi/10.5555/1597122.1597129
https://dl.acm.org/doi/10.5555/1597122.1597129
https://dl.acm.org/doi/10.5555/1597122.1597129
https://dl.acm.org/doi/10.5555/1597122.1597129
https://doi.org/10.1016/j.artint.2007.11.002
https://doi.org/10.1137/0208032
https://arxiv.org/abs/1908.04381
https://api.semanticscholar.org/CorpusID:220250670
https://doi.org/10.1145/3459080
https://doi.org/10.1103/PhysRevLett.125.060503
https://doi.org/10.22331/q-2021-03-15-410
https://doi.org/10.1145/3173045
https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.3390/math11010237
https://doi.org/10.1103/PhysRevB.94.134424
https://arxiv.org/abs/2306.01569
https://doi.org/10.1038/s42254-022-00440-8
https://doi.org/10.7566/JPSJ.88.061010

SHAAN NAGY et al. PHYSICAL REVIEW E 109, 055301 (2024)

[36] M. W. Johnson, M. H. Amin, S. Gildert, T. Lanting, F. Hamze,
N. Dickson, R. Harris, A. J. Berkley, J. Johansson, P. Bunyk
et al., Nature (London) 473, 194 (2011).

[37] M. Yamaoka, C. Yoshimura, M. Hayashi, T. Okuyama, H. Aoki,
and H. Mizuno, Hitachi Review 65, 156 (2016).

[38] Y. Ren, S. Eubank, and M. Nath, Phys. Rev. E 94, 042125
(2016).

[39] D. Achlioptas, A. Coja-Oghlan, M. Hahn-Klimroth, J. Lee,
N. Müller, M. Penschuck, and G. Zhou, Random Struct.
Algorithms 58, 609 (2021).

[40] A. Braunstein, M. Mézard, and R. Zecchina, Random Struct.
Algorithms 27, 201 (2005).

[41] M. Mézard and R. Zecchina, Phys. Rev. E 66, 056126
(2002).

[42] T. Sang, P. Beame, and H. A. Kautz, in 7th International Con-
ference on Theory and Applications of Satisfiability Testing,
Vancouver (BC) (Lecture Notes in Computer Science (LNCS),
Canada, 2004).

[43] L. Duenas-Osorio, K. S. Meel, R. Paredes, and M. Y. Vardi, in
Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence (AAAI Press, San Francisco, California, 2017), pp.
4488–4494.

[44] D. Agrawal, Y. Pote, and K. S. Meel, in Proceedings of the
Thirtieth International Joint Conference on Artificial Intelli-
gence, IJCAI-21, edited by Z.-H. Zhou (International Joint
Conferences on Artificial Intelligence Organization, Montreal,
Quebec, Canada, 2021), pp. 4276–4285.

[45] M. Chavira and A. Darwiche, in Proceedings of the 20th Inter-
national Joint Conference on Artifical Intelligence, IJCAI’07,
edited by R. Sangal, H. Mehta, and R. K. Bagg (Morgan Kauf-
mann Publishers Inc., Hyderabad, India, 2007), pp. 2443–2449.

[46] C. Viricel, D. Simoncini, S. Barbe, and T. Schiex, in Principles
and Practice of Constraint Programming, edited by M. Rueher
(Springer International Publishing, Cham, 2016), pp. 733–750.

[47] E. Birnbaum and E. L. Lozinskii, J. Artif. Intell. Res. 10, 457
(1999).

[48] T. Sang, F. Bacchus, P. Beame, H. A. Kautz, and T. Pitassi,
SAT: The Seventh International Conference on Theory and
Applications of Satisfiability Testing (Springer Science + Busi-
ness Media via LNCS (Lecture Notes in Computer Sciences,
Vancouver, Canada, 2004), Vol. 4, pp. 20–28.

[49] S. Chakraborty, K. S. Meel, and M. Y. Vardi, in Handbook of
Satisfiability, edited by A. Biere, M. Heule, H. van Maaren, and
T. Walsh, 2nd ed. (IOS Press, 2021), pp. 1015–1045.

[50] https://github.com/panzhang83/catn.
[51] J. Gray and G. K.-L. Chan, Phys. Rev. X 14, 011009 (2024).
[52] S. Chakraborty, K. S. Meel, and M. Y. Vardi, in Proceedings

of the Twenty-Fifth International Joint Conference on Artificial
Intelligence, IJCAI’16, edited by G. Brewka (AAAI Press, New
York, NY, 2016), pp. 3569–3576.

[53] D. Roth, Artif. Intell. 82, 273 (1996).
[54] M. Jerrum and A. Sinclair, SIAM J. Comput. 22, 1087 (1993).
[55] M. Sipser, ACM SIGACT News 27, 27 (2012).
[56] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,

Introduction to Algorithms, 3rd ed. (MIT Press, Cambridge,
MA, 2009).

[57] J.-Y. Cai, X. Chen, and P. Lu, SIAM J. Comput. 45, 2177
(2016).

[58] D. Goldberg, ACM Comput. Surv. 23, 5 (1991).
[59] J. Schwarz, in Proceedings of 9th Symposium on Computer

Arithmetic, Santa Monica (IEEE, Piscataway, NJ, 1989), pp.
10–17.

[60] G. F. Newell and E. W. Montroll, Rev. Mod. Phys. 25, 353
(1953).

[61] S. Shao and J.-Y. Cai, in 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), Durham, NC (IEEE,
Piscataway, NJ, 2020), pp. 1091–1102.

[62] B. Brown, S. T. Flammia, and N. Schuch, Phys. Rev. Lett. 107,
040501 (2011).

[63] J. Tindall, M. Fishman, E. M. Stoudenmire, and D. Sels, PRX
Quantum 5, 010308 (2024).

[64] https://github.com/vardigroup/Ising.

055301-18

https://doi.org/10.1038/nature10012
https://www.hitachi.com/rev/pdf/2016/r2016_06_110.pdf
https://doi.org/10.1103/PhysRevE.94.042125
https://doi.org/10.1002/rsa.20993
https://doi.org/10.1002/rsa.20057
https://doi.org/10.1103/PhysRevE.66.056126
https://doi.org/10.1613/jair.601
https://github.com/panzhang83/catn
https://doi.org/10.1103/PhysRevX.14.011009
https://doi.org/10.1016/0004-3702(94)00092-1
https://doi.org/10.1137/0222066
https://doi.org/10.1145/230514.571645
https://doi.org/10.1137/15M1032314
https://doi.org/10.1145/103162.103163
https://doi.org/10.1103/RevModPhys.25.353
https://doi.org/10.1103/PhysRevLett.107.040501
https://doi.org/10.1103/PRXQuantum.5.010308
https://github.com/vardigroup/Ising

