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Inverse bremsstrahlung absorption rate for super-Gaussian electron distribution
functions including plasma screening
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We provide analytic expressions for the effective Coulomb logarithm for inverse bremsstrahlung absorption
which predict significant corrections to the Langdon effect and overall absorption rate compared to previ-
ous estimates. The calculation of the collisional absorption rate of laser energy in a plasma by the inverse
bremsstrahlung mechanism usually makes the approximation of a constant Coulomb logarithm. We dispense
with this approximation and instead take into account the velocity dependence of the Coulomb logarithm, leading
to a more accurate expression for the absorption rate valid in both classical and quantum conditions. In contrast
to previous work, the laser intensity enters into the Coulomb logarithm. In most laser-plasma interactions the
electron distribution function is super-Gaussian [Langdon, Phys. Rev. Lett. 44, 575 (1980)], and we find the
absorption rate under these conditions is increased by as much as ≈30% compared to previous estimates at
low density. In many cases of interest the correction to Langdon’s predicted reduction in absorption is large;
for example at Z = 6 and Te = 400 eV the Langdon prediction for the absorption is in error by a factor of
≈2. However, we also account for the additional effect of plasma screening, which predicts a reduction in
absorption by a similar amount (up to ≈30%). These two effects compete to determine the overall absorption,
which may be increased or decreased, depending on the conditions. The corrections can be incorporated
into radiation-hydrodynamics simulation codes by replacing the familiar Coulomb logarithm with an analytic
expression which depends on the super-Gaussian order “M” and the screening length.

DOI: 10.1103/PhysRevE.109.055201

I. INTRODUCTION

At laser intensities in the range I � 1016 W cm−2, absorp-
tion of laser energy by a plasma primarily occurs via the
collisional inverse bremsstrahlung process. This is caused by
the gain in thermal energy of an electron, at the expense of
oscillatory energy, when the electron loses directed momen-
tum as a result of electron-ion scattering. The process is most
easily understood in terms of the binary scattering picture
[1–3] but can also be derived from linearized Vlasov-Poisson
theory [4], which additionally accounts for resonant coupling
to plasma waves close to critical density, and Vlasov-Fokker-
Planck theory by considering the average power delivered to
the isotropic component of the electron distribution by an
oscillating electric field [5]. By invoking detailed balance, it
can be equated to the bremsstrahlung rate of a plasma in local
thermodynamic equilibrium, where the majority of the work
which takes into account quantum effects has been carried out.
In the bremsstrahlung literature the seminal result was given
by Sommerfeld [6,7], who solved for the emission rate during
a single electron-ion encounter in the dipole approximation
using a partial wave expansion of the electron wave function,
accounting for both small and large momentum transfers, cor-
responding to small and large angle scattering in the classical
picture. Karzas and Latter [7] obtained thermally averaged
Gaunt factors for a Maxwellian electron distribution, using the
Sommerfeld cross section. Quantum effects have also been
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considered from the perspective of laser absorption and are
usually calculated in the Born approximation [8]. The absorp-
tion of laser energy is a process of fundamental importance in
laser-plasma experiments since it determines the location and
extent of heating and overall efficiency. The absorption has
recently been measured to high accuracy in well-characterized
experimental conditions [9]. Throughout this paper we use SI
units unless otherwise stated.

A common feature of previous work is the use of a thermal
value for the Coulomb logarithm, which is usually defined
in a classical plasma in terms of the maximum (bmax) and
minimum (bmin) impact parameters of relevance, as ln Λt =
ln(

√
1 + b2

max/b2
min ), with subscript “t” denoting “thermal.”

Note that this thermal logarithm has not been rigorously justi-
fied; rather, the use of the thermal velocity inside the logarithm
is an ad hoc assumption of previous work. If the electrons are
weakly coupled, as is the case for the majority of laser-plasma
applications, then bmax = vt/ω ≡ bω where vt = √

Te/m, Te

is the electron temperature in Joules, m is the electron mass,
and ω is the angular frequency of the laser. In the binary
scattering picture, electrons that have an impact parameter
b � bω interact with the laser wave adiabatically because their
scattering interaction time is longer than the period of oscilla-
tion, justifying the neglect of more distant encounters [1,8,10].
This cutoff also arises naturally in the Vlasov-Poisson the-
ory [4] and the classical theory of free-free bremsstrahlung,
where the emission becomes negligible for b � bω [11]. In the
classical regime, the minimum impact parameter corresponds
to that for a π/2 deflection: b⊥t = Ze2/4πε0mv2

t , where Z
is the ion charge state, ε0 is the permittivity of free space,
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FIG. 1. The velocity-dependent Coulomb logarithm ln ΛS (v) (orange dashed), the constant “thermal” Coulomb logarithm ln Λt (green
dashed) and the quantum mechanical result in the limit h̄ω � 1

2 mv2 (blue). The vertical line represents the thermal velocity vt = √
Te/m

and the maximum velocity shown corresponds to 3vt . The conditions are Z = 4, Te = 2 keV and radiation wavelength λ0 = 0.35 µm. This
calculation neglects plasma screening.

and e is the elementary charge. Under these conditions, the
standard thermal, classical, Coulomb logarithm is therefore
ln Λt ≡ ln(

√
1 + b2

ω/b2
⊥t ).

More accurately, we can consider the fact that
the Coulomb logarithm depends on the velocity v

of each individual electron undergoing scattering,
in the form ln Λc(v) = ln[

√
1 + {bmax(v)/b⊥(v)}2],

where b⊥(v) = Ze2/4πε0mv2 and bmax(v) = v/ω, or
ln Λc(v) = ln(

√
1 + {4πε0mv3/Ze2ω}2). Although the

variation with velocity is weak because it appears under
the logarithm, in this paper we show that taking it into
account during the average over all electron velocities leads
to non-negligible corrections to the absorption rate, especially
when the electron distribution function is super-Gaussian.
A form for the Coulomb logarithm that we will work with,
which provides good accuracy in both the classical and
quantum regimes (provided h̄ω � 1

2 mv2), is

ln �S = ln

{√
b2

ω(v) + b2
⊥(v)

b2
q(v) + b2

⊥(v)

}
, (1)

where bq(v) = h̄/2mv is the reduced de Broglie wavelength
and bω(v) = v/ω. Due to the dependence of b⊥ on Z , approx-
imately speaking, quantum corrections become important for
Z � 4 in typical laser-plasma interactions. A plot of ln ΛS (v)
is shown in Fig. 1 for the conditions Z = 4 and Te = 2 keV,
where it is compared to the thermal logarithm ln Λt . Clearly
we should expect a reduction in absorption at low velocities
and an enhancement at high velocities, compared to the ther-
mal logarithm ln �t . The form for the logarithm in Eq. (1)
is a reasonably accurate fit to the quantum mechanical (Som-
merfeld) result in the limit of small h̄ω, also plotted in Fig. 1.
Note that throughout this paper we use the high-energy limit
( 1

2 mv2 � h̄ω) of the Sommerfeld expression, which we refer
to as the quantum high-energy limit. This limit is consistent
with the Fokker-Planck approximation and is described in
more detail in the Appendix. The fit Eq. (1) becomes er-
roneous at very low velocities for which the kinetic-energy
approaches h̄ω and can therefore only be considered accu-
rate enough to estimate the total absorption in plasmas for

which Te � h̄ω. A more accurate, numerical treatment of
the absorption which retains finite h̄ω contributions in the
cross section reveals this region typically contributes only
≈0.5–2.6% to the total absorption due to the lack of electrons
in this velocity range. However, a number of other effects
contribute to reduce the cross section or introduce uncertainty
in this region. Most notably, the inclusion of screening via
a Debye potential [12] results in a severely reduced cross
section at low velocities which is neglected in the Sommer-
feld result and the use of the dipole approximation limits
the applicability of the Sommerfeld result to 1

2 mv2 � 1
2 mv2

osc.
Since our focus in this paper is on the study of the effect of
super-Gaussian electron distribution functions, we work with
the form Eq. (1), because it allows us to capture the most
important aspect of the quantum high-energy limit, which is
its ability to describe the classical (bq � b⊥), quantum (bq �
b⊥), and intermediate (bq ≈ b⊥) regimes. The reduction in
absorption at subthermal velocities and the enhancement at
high velocities evident in Fig. 1 largely cancel for the case
of a Maxwellian electron distribution and the result is close
to previous estimates, given in either the classical or Born
regimes. However, significant corrections occur for super-
Gaussian electron distributions which are a common feature
of laser-plasma interactions, and this leads to large corrections
to the well-known Langdon effect [5].

In addition to these corrections, the effect of plasma screen-
ing must be considered for a wide range of conditions relevant
to laser-plasma interactions, and we also provide correction
factors that account for this. We have recently reported on the
importance of accounting for screening in the interpretation
of experimental measurements of the inverse bremsstrahlung
absorption rate of a laser passing through well-characterized
plasma conditions [9]. Screening reduces the electron-ion ra-
dius of interaction which in turn reduces the average scattering
rate. Approximately speaking, we expect this effect to be-
come important if the screening length λs drops below the
maximum impact parameter, i.e., when λs � v/ω, so that the
appropriate choice of maximum impact parameter becomes
bmax = min(λs, v/ω). If electron Debye screening is assumed,
λs = λDe =

√
εoTe/e2ne, then this effect is important for
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electrons of velocity v � (ω/ωp)vt , where ωp =
√

e2ne/ε0m,
i.e., the effect becomes increasingly important at high den-
sity. The inclusion of ion Debye screening via λD = (λ−2

De +
λ−2

Di )−1/2, where λDi =
√

εoTe/Z2e2ni, typically reduces the
screening length further. When the Debye screening is used,
the screening length should not be allowed to drop below
the ion sphere radius ai = (3/4πni )1/3, by requiring λs =
max(λD, ai ). If instead the ion sphere radius ai is chosen as the
effective screening length to take into account moderate ion
coupling, then the condition is even more stringent, affecting
a broader range of electrons for which v � aiω. These issues
can be addressed in the calculation of absorption by making
use of the cross section for screened Coulomb collisions [13].
Thus, in this paper, we consider two effects: the first, related
to the velocity dependence and super-Gaussian distribution,
increases the absorption, while the second, accounting for
screening, reduces the absorption. Both effects compete to
determine the overall absorption, which may be increased
or decreased depending on the local plasma conditions. The
screening corrections are typically necessary for densities
ne � 0.01nc, where nc is the critical density.

In Secs. II–V we calculate the effect of the velocity de-
pendence of the Coulomb logarithm on the absorption rate
and derive a new effective Coulomb logarithm that accounts
for the super-Gaussian form of the electron distribution (but
not screening). In Sec. VI we provide the corrections due to
screening. The final section (VII), combines and summarizes
the results and provides a guide on implementing the correc-
tions in hydrodynamics codes.

II. THEORY

Although we do not account for the Langdon effect
self-consistently, we rely on experimental measurements
to justify their expected order [14], which are broadly
in line with Fokker-Planck simulations that make use of
a constant Coulomb logarithm [15]. We have performed
Vlasov-Fokker-Planck simulations with a velocity-dependent
Coulomb logarithm that confirm this expectation (not shown
here). We begin by showing the classical result with a
Maxwellian, since the analysis in this case is relatively sim-
ple, then we generalize the approach to account for quantum
corrections and super-Gaussian distributions. Throughout this
paper, we use the common notation 2ω and 3ω to refer to
light of wavelength 0.527 and 0.351 µm, respectively. We use
the symbols ln and log interchangeably to refer to the natural
logarithm.

To motivate the inclusion of velocity dependence in the
Coulomb logarithm, we briefly revisit the derivation of the
absorption rate in the Vlasov-Fokker-Planck approximation
following Langdon [5]. For vosc/vt � 1, where the oscillatory
velocity vosc is related to the electric field amplitude E0 via
vosc = eE0/(mω), the electron distribution function can be
well represented by decomposing it into an isotropic ( f0)
and anisotropic ( f1) component with the total distribution
given by f (v) ≈ f0(v) + f1(v) cos θ , where θ is the angle
in velocity space between v and the x axis and the electric
field Ex = E0 sin(ωt ) is assumed to be directed along x and
uniform. An initial phase factor can be included in the os-

cillation, sin(ωt + ϕ0), but it later drops out and we ignore
it here. The assumption that the laser can be represented by
such an oscillation also limits us to v � c so that there is no
appreciable change in the phase of the electron in the motion
of the electromagnetic wave during one cycle. Under these
conditions, f1(v, t ) evolves according to [5]:

∂ f1(v, t )

∂t
= eE0

m
sin (ωt )

∂ f0(v)

∂v
− νei(v) f1(v, t ), (2)

where we neglected the time dependence of f0 because it
is assumed to evolve slowly on the timescale of evolution
of f1, and the electron-ion scattering rate νei(v) is defined
below. Electron-electron collisional effects on f1 are neglected
because they do not contribute to absorption [1] in the non-
relativistic regime. Although this result was obtained in the
Fokker-Planck approximation, it is interesting to note that
the same expression can be derived from a variety of argu-
ments including the Drude fluid model [3] and the binary
scattering model [1], so the result is quite general so long
as vosc/vt � 1. We also comment that we have successfully
obtained the same corrections to absorption as will be pre-
sented below by starting instead with the binary scattering
model of Pert [1] and dispensing with the ln Λ = const ap-
proximation. However, the mathematics of averaging in time
over the laser period is more complicated in this case, but the
approach adopted here instead performs the temporal average
before the velocity average, which is advantageous in the case
of vosc/vt � 1. The time-dependent interaction of electrons
with induced longitudinal plasma waves has been studied by
Dawson [4] who showed this effect is only important close to
the critical surface, so this also formally limits our analysis to
densities ne � nc, where nc is the critical density. In practice,
these corrections are only significant for ne � 0.8nc. In our
analysis below, we only account for static screening. Except
for the very early stages of target ablation during a laser-
plasma interaction, the absorption mainly occurs far away
from the critical surface in the vast majority of applications
of interest. For example, in NIF hohlraum plasmas, most of
the absorption occurs at ne � 0.15nc. Since we work in the
Fokker-Planck approximation, we are restricted to weakly
coupled plasmas, characterized by electron-ion coupling pa-
rameter �Ze = Ze2/4πε0aiTe � 1, where ai = (4πni/3)−1/3.
However, the weakly coupled regime is of most interest due
to the absorption occurring at low density. Approximately
speaking, our analysis is only valid for Coulomb logarithms
ln �t � 2 and the extent of the validity of this approximation
could be addressed by future molecular dynamics simula-
tions if the computational demands of simulating the weakly
coupled regime can be overcome, which is particularly chal-
lenging due to the relatively long time taken to establish an
equilibrium of the super-Gaussian order. We note that molec-
ular dynamics simulations of other transport processes [16,17]
conflict with the long-standing wisdom [18] of restricting the
logarithm to ln �t � 2.

The solution to Eq. (2) in the time domain is

f1(v, t ) = eE0

m

∂ f0(v)

∂v

× {ωe−νei (v)t − ω cos (ωt ) + νei(v) sin (ωt )}
νei(v)2 + ω2

. (3)
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FIG. 2. The integrand which determines the absorption [Eq. (9)], plotted for the case of a Maxwellian (M = 2) and a super-Gaussian of
order M = 5. The locations of the thermal (vt ) and oscillatory (vosc, taken at I = 1.85 × 1014 W cm−2 and 2ω) velocities are shown as vertical
lines.

For times � νei(v)−1 and for νei(v)2 � ω2 this is

f1(v, t ) = eE0

mω2

∂ f0(v)

∂v
{νei(v) sin (ωt ) − ω cos (ωt )}, (4)

which corresponds to a small amount of damping superim-
posed on an oscillation. Note that the condition νei(v)2 �
ω2 imposes a limit on the electron velocity for the valid-
ity of Eq. (4) which approximately coincides with the limit
imposed by the assumption h̄ω � 1

2 mv2. The oscillating elec-
tron current density is jx = −e 4π

3

∫∞
0 f1(v, t )v3dv, so the

instantaneous power density delivered to the plasma, j · E, is

P = −e2E2
0

mω2

4π

3

∫ ∞

0

∂ f0(v)

∂v
{νei(v) sin2(ωt )

− ω cos(ωt ) sin(ωt )}v3dv. (5)

Averaging this over one cycle gives:

〈P〉 = −mv2
osc

2π

3

∫ ∞

0

∂ f0(v)

∂v
νei(v)v3dv. (6)

This is valid so long as f0 does not vary significantly on
the timescale ν−1

ei . Although the Fokker-Planck approxima-
tion was used, the same result, Eq. (6) can be arrived at
from quantum-mechanical arguments [11] for h̄ω � Te and
vosc/vt � 1. We have also performed first-principles classical
Monte Carlo simulations of electron-ion scattering, account-
ing for large-angle collisions from close encounters that
confirm the validity of an electron-ion collision operator of
the form −νei(v) f1(v, t ) when the plasma is weakly coupled.

For the case of a constant, thermal Coulomb loga-
rithm Λt = bω/b⊥t with Rutherford scattering, νei(v) =
4π ( Ze2

4πε0m )2 ni
v3 ln Λt and a Maxwellian electron distribution

f0 = fMax ≡ ne
4π

√
2
π

1
v3

t
exp(−v2/2v2

t ), the integral in Eq. (6)
gives the standard expression for the average absorbed power
density:

〈P〉Max = 1

3

√
2

π
νei(vt )ne

1

2
mv2

osc. (7)

For the case of a constant Coulomb logarithm and
super-Gaussian distribution function of order M, f0 = fSG ≡
CM

ne

23/2v3
t

exp(−[ v

αe

√
2vt

]M ), where CM = M/(4πα3
e Γ [3/M])

and α2
e = (3/2)Γ [3/M]/Γ [5/M] are defined in terms of the

gamma function �, the absorption becomes modified by
the factor R ≡ fSG(0)/ fMax(0) = 1

3

√
π
6 M�( 5

M )3/2/�( 3
M )5/2

relative to a Maxwellian [5]:

〈P〉SG = A 1
2 mv2

oscne

9
√

3v3
t

M�(5/M )3/2

Γ (3/M )5/2 . (8)

Approximate parametrizations for the reduction in ab-
sorption, R = 1

3

√
π
6 M�( 5

M )3/2/�( 3
M )5/2, in terms of the laser

intensity and plasma conditions, can be found in Ref. [15].
By writing νei(v) = Av−3 ln Λ(v) where A = 4π ( Ze2

4πε0m )2ni

we see that the more accurate expression for the absorption
is in fact:

〈P〉 = −A
e2E2

0

mω2

2π

3

∫ ∞

0

∂ f0(v)

∂v
ln �(v)dv

= Amv2
osc

2π

3

∫ ∞

0
f0(v)

∂ ln �(v)

∂v
dv. (9)

where we assumed f0(v) ln �(v)|∞0 = 0. In Fig. 2 we have
plotted the integrand in Eq. (9) for the case of a Maxwellian
f0 (M = 2) and super-Gaussian f0 of order M = 5, along with
the location of the thermal (vt ) and oscillatory (vosc, taken at
I = 1.85 × 1014 W cm−2 and 2ω) velocities. For simplicity,
the classical Coulomb logarithm is used here:

ln Λc(v) = ln[
√

1 + {bmax(v)/b⊥(v)}2]

= ln

[√
1 +

(
bω

b⊥t

)2(
v

vt

)6]
. (10)

Figure 2 shows that the absorption increase relative to
Langdon is caused by the shift of the integrand to higher
velocities as the super-Gaussian order is increased, where the
Coulomb logarithm for absorption is greater. Note that the
commonly held view that the absorption rate is only depen-
dent on f0(v = 0) is invalid and this will lead to additional
corrections to the absorption arising from nonlocal transport
corrections to f0.

Now we consider plasma conditions for which a clas-
sical Coulomb logarithm is valid, b⊥t � h̄/2mvt , and a
Maxwellian velocity distribution. Using Eq. (10) in the form
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FIG. 3. A comparison of the approximate and full expressions for ln �Max,c(ac ), Eqs. (11) and (15).

ln Λc(v) = ln[
√

1 + ac( v
vt

)6], where ac = ( bω

b⊥t
)2, the integral

can be done analytically:

〈P〉 =
9
√

6Amv2
oscneacG4,1

1,4

(
1

216ac

∣∣ 1
1, 1, 4

3 , 5
3

)
π3/2v3

t
, (11)

and is expressed in terms of the Meijer G-function, which is
simply an integral with known analytic properties enabling us
to simplify the result for small argument (= 1

216ac
in the above)

[19] and rewrite it in terms of more well-known functions. The
expression above is valid for all ac, so long as our expression
for ln Λc(v) is valid. However, in most regimes of interest the
parameter X ≡ 1

216ac
is small, so we can Taylor expand the

function G4,1
1,4(X ) in terms of X :

〈P〉 ≈ P0ne
{
8π3X 1/3 − 3

√
3�
(

1
3

)
�
(

2
3

)2
�
(

4
3

)
ln(X ) + 3

√
3�
(

1
3

)
�
(

2
3

)2
�
(

4
3

)[
ψ (0)

(
1
3

)+ ψ (0)
(

2
3

)− γ
]}

24
√

2π5/2�
(

2
3

)
�
(

4
3

)
v3

t

, (12)

where γ is the Euler-Gamma constant and ψ (0) is the digamma function and P0 = 2π
3 Amv2

osc. In obtaining this result, we
neglected terms ∝ X p for all p � 2/3. We re-express the term −3

√
3�( 1

3 )�( 2
3 )2�( 4

3 ) ln(X ) = 6
√

3�( 1
3 )�( 2

3 )2�( 4
3 ) ln(X −1/2)

and replace X = 1
216ac

:

〈P〉 ≈ P0ne
{
8π3X 1/3 + 6

√
3�
(

1
3

)
�
(

2
3

)2
�
(

4
3

)
ln(X −1/2) + 3

√
3�
(

1
3

)
�
(

2
3

)2
�
(

4
3

)[
ψ (0)

(
1
3

)+ ψ (0)
(

2
3

)− γ
]}

24
√

2π5/2�
(

2
3

)
�
(

4
3

)
v3

t

. (13)

The effective logarithm can be found from ln �Max,c =
π3/223/2v3

t
neP0

〈P〉,

ln �Max,c ≈ ln(
√

ac) + a−1/3
c + 0.174 (14)

or written in terms of the more familiar ratio of impact
parameters

√
ac = bω/b⊥t ,

ln �Max,c ≈ ln (bω/b⊥t ) + (bω/b⊥t )
−2/3 + 0.174, (15)

where we use subscript “Max,c” to refer to a Maxwellian
in the classical approximation. We conclude that the stan-
dard thermal Coulomb logarithm ln Λt should be replaced by
Eq. (15) when the distribution function is Maxwellian, the
conditions are classical, and screening can be neglected. This
leads to a ≈1–4% increase in the absorption under typical
plasma conditions of interest. The approximation 15 is com-
pared to the full expression in Fig. 3.

III. ABSORPTION OF A SUPER-GAUSSIAN
DISTRIBUTION FUNCTION VALID FOR CLASSICAL AND

QUANTUM CONDITIONS

By building on the above analysis, we now turn to the
more involved calculation of the absorption rate, valid in
both classical and quantum conditions, for an arbitrary or-
der super-Gaussian electron distribution function. As shown
above, Eq. (1) is a good match to the Sommerfeld result across
a wide range of velocities (for h̄ω � Te). We express ln �S in
terms of the normalized velocity w = v/(αe

√
2vt ) = v/vM ,

where vM = αe

√
2vt characterizes the thermal spread of a

super-Gaussian, since this simplifies a super-Gaussian func-
tion to the form ∝ exp(−wM ):

ln �S = ln

{√
ccw6 + 1

cqw2 + 1

}
, (16)

where cc = 8acα
6
e = 8(b2

ω/b2
⊥t )α

6
e =, cq = 2(b2

qt/b2
⊥t )α

2
e , and

bqt = h̄/2mvt is the thermal reduced de Broglie wave-
length, α2

e = (3/2)Γ [3/M]/Γ [5/M], M is the order of the
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super-Gaussian and again bω = vt/ω. The parameter cq is
a measure of the importance of quantum effects, which is
� 1 for classical conditions but �1 for quantum conditions,
and the parameter cc can be considered � 1 for all regimes
of interest. Note that in this notation the thermal Coulomb
logarithm, ln �St, is that for v/vt = 1, which corresponds to
w = 1/

√
2αe:

ln �St = ln

⎧⎨
⎩
√ (

b2
ω/b2

⊥t

)+ 1(
b2

qt/b2
⊥t

)+ 1

⎫⎬
⎭. (17)

The absorption is again found from integrating
f0(w)∂ ln �S (w)/∂w, so we require:

∂ ln �S (w)

∂w
= cqw(2ccw

6 − 1) + 3ccw
5

(cqw2 + 1)(ccw6 + 1)
. (18)

This is the key function for correctly accounting for the
absorption and further improvements to our work, for example
the inclusion of finite h̄ω effects, could use this as a starting
point. Electrons with a wide range of velocities contribute to

absorption, so any approximations valid for small w may be
inaccurate. The absorption integral for a Maxwellian is then:

〈P〉M=2 = P0

(
CM=2

ne

23/2v3
t

)∫ ∞

0
exp(−w2)

∂ ln �S (w)

∂w
dw

= P0CM=2
ne

23/2v3
t

IS, (19)

where

IS =
∫ ∞

0
exp(−w2)

∂ ln �S (w)

∂w
dw. (20)

This integral is challenging to perform analytically for
arbitrary M, so we use the Mathematica software to provide
the result, again in terms of the Meijer G-functions, and rely
on a numerical comparison for a verification of the final result,
which is

IS = 1

12
(
cc − c3

q

)
{√

3c1/3
c

π
AS + BS

}
(21)

with

AS = 27c2/3
c

(
3cc − c3

q

)
G4,1

1,4

(
1

27cc

∣∣∣∣ 1
1, 1, 4

3 , 5
3

)

+ cq

{
cq

[
54c2/3

c cqG4,1
1,4

(
1

27cc

∣∣∣∣ 0
0, 1, 4

3 , 5
3

)
+ G4,1

1,4

(
1

27cc

∣∣∣∣ 1
3

0, 1
3 , 1

3 , 2
3

)
+ G4,1

1,4

(
1

27cc

∣∣∣∣ − 2
3− 2

3 , 0, 1
3 , 2

3

)]}

− cq

{
3
√

ccG4,1
1,4

(
1

27cc

∣∣∣∣ 2
3

0, 1
3 , 2

3 , 2
3

)
+ 3

√
ccG4,1

1,4

(
1

27cc

∣∣∣∣ − 1
3− 1

3 , 0, 1
3 , 2

3

)}
, (22)

BS = 6e
1

cq
(
cc − c3

q

)
Ei

(
− 1

cq

)
− 6cccq

(
4c2

q + cq − 1
)
, (23)

where Ei is the exponential integral. The quantum corrections are principally accounted for by the term BS . Relying on X =
1

27cc
� 1, the Meijer G-functions can be Taylor expanded in X , again neglecting terms ∝ X p for all p � 2/3, but retaining terms

∝ X p ln X for all p. The expansions are given in the Appendix, here we quote the result for X � 1:

12π IS ≈ 8π3 3
√

X

�
(

2
3

)
�
(

4
3

) − 3
√

3X�

(
−2

3

)
�

(
−1

3

)
ln(X ) + 6πe

1
cq Ei

(
− 1

cq

)
− 6

[
4π − 9

√
3�

(
4

3

)
�

(
5

3

)]
c3

q

− 3

[√
3�

(
1

3

)
�

(
2

3

)
− 2π

]
cq − 3

√
3�

(
1

3

)
�

(
2

3

)[
ln(X ) + γ − ψ (0)

(
1

3

)
− ψ (0)

(
2

3

)]
. (24)

Replacing cc = 1
27X , and further neglecting terms with numerical prefactors � 1, for M = 2 we find:

36IS ≈
4π2 3

√
1
ac

�
(

2
3

)
�
(

4
3

) + 9
√

3�
(

1
3

)
�
(

2
3

)[
2 ln(

√
ac) − γ + ln(216) + ψ (0)

(
1
3

)+ ψ (0)
(

2
3

)]
π

+ 18e
1

cq Ei

(
− 1

cq

)
+ 9

[
18

√
3�
(

4
3

)
�
(

5
3

)− 8π
]
c3

q

π
+ 9

[
3
√

3�
(

2
3

)
�
(

4
3

)− 2π
]
c2

q

π
, (25)

where again Ei is the exponential integral. Since IS represents the effective Coulomb logarithm,

ln �M=2
SG = ln

(√
acα

3
e

)+ 0.9069 3

√
1

acα6
e

+ 1

2
exp

(
1

cq

)
Ei

(
− 1

cq

)
+ 0.1739 (26)

or

ln �M=2
SG = ln

(√
acα

3
e

)+ 0.9069a−1/3
c α−2

e + 1

2
exp

(
1

cq

)
Ei

(
− 1

cq

)
+ 0.1739, (27)
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FIG. 4. The polynomial fit for ln �SG for various M (blue curve) using Eqs. (27)–(29), for the conditions Z = 6 and Te = 550 eV.
Numerical evaluations of the integral IS in Eq. (20) are shown as black dots. The orange dashed curve is an approximation to the full polynomial
given by Eqs. (37)–(39).

where the subscript “SG” refers to a super-Gaussian. Al-
though αe is unity for M = 2, we retain it as a parameter in this
expression because the appearance of the variable

√
acα

3
e is a

common theme across solutions for all M. A comparison of
expression 27 to a numerical integration confirms the error is
< 0.1% for 0 < cq < 100. Note that the correction we arrived
at is a correction to the effective Coulomb logarithm, and it
applies in addition [20] to the well-known modification to the
absorption, R (which appears outside the effective Coulomb
logarithm).

We have performed the same analysis for the case M = 4
and arrive at

ln �M=4
SG = ln

(√
acα

3
e

)− 0.785398e
− 1

c2
q erfi

(
1

cq

)

+ 1

4
e
− 1

c2
q Ei

(
1

c2
q

)
+ 0.606809, (28)

where erfi is the imaginary error function. Again we have left
αe unevaluated. For M = 6,

ln �M=6
SG = ln

(√
acα

3
e

)+ 1

6
e

1
c3
q Ei

(
− 1

c3
q

)
+ 0.225686c2

q

− 0.44649cq − 0.150458e
1

c3
q �

(
−2

3
,

1

c3
q

)

+ 0.14883e
1

c3
q �

(
−1

3
,

1

c3
q

)
+ 0.751113. (29)

In contrast to previous work, the laser intensity now enters
the logarithm ln(

√
acα

3
e ) via its influence on αe. Specifically,

since α2
e = (3/2)�[3/M]/�[5/M] and M can be found from

fits in the literature [15] as a function of α = Zv2
osc/v

2
t , with

vosc obtained from the intensity via vosc = e
mω0

√
2I
cε0

. Note that

the integrals are significantly more tractable for even M and
this is the reason we have excluded odd M from our analysis.
However, the value of the effective Coulomb logarithm for
arbitrary M can be found from interpolation, because the

variation with M is relatively weak. For example, a quadratic
spline fit of the form

ln �SG = aM2 + bM + c (30)

can be used, where a = (ln �M=2
SG − 2 ln �M=4

SG + ln �M=6
SG )/8,

b = (−5 ln �M=2
SG + 8 ln �M=4

SG − 3 ln �M=6
SG )/4, and

c = 3 ln �M=2
SG − 3 ln �M=4

SG + ln �M=6
SG . An example of this

polynomial fit for Z = 6 and Te = 550 eV is shown in Fig. 4
(labeled as “full polynomial”) and compared to a numerical
evaluation of the integral IS , showing good agreement.
Note that, in the next section we provide more convenient
approximations to the analytic expressions presented here, so
Eq. (30) is not intended to be used in practical applications.

In Fig. 5 we compare Eq. (30) to the thermal result ln Λt ≡
ln(

√
1 + b2

ω/b2
⊥t ), plotted as a function of temperature for

Z = 1 and in Fig. 6 for Z = 50. For a Maxwellian, the absorp-
tion is enhanced by ≈1–4%, and for a super-Gaussian of order
M = 5 the absorption is enhanced by ≈30%, demonstrating
the importance of accounting for the velocity dependence. The
enhancement is approximately uniform across a wide range
of temperatures and Z , consistent with the expected scaling
predominantly with M, via the dependence of αe on M.

FIG. 5. The polynomial fit for ln �SG(Te) for various M = 2
(blue curve) and M = 5 (orange curve) for Z = 1. For comparison
the standard thermal Coulomb log ln �t is also shown (green curve).
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FIG. 6. The polynomial fit for ln �SG(Te) for various M = 2
(blue curve) and M = 5 (orange curve) for Z = 50. For comparison
the standard thermal Coulomb log ln �t is also shown (green curve).

It is important to note that although our results pre-
dict an increase in absorption compared to the standard
Langdon theory [5,15], the overall absorption of a super-
Gaussian of order M > 2 is still less than that for a
Maxwellian (M = 2). The overall reduction in absorption
predicted here is given by Rv = R ln �SG/ ln �St, where R ≡
fSG(0)/ fMax(0) = 1

3

√
π
6 M�( 5

M )3/2/�( 3
M )5/2 is the standard

expectation from previous work, ln �SG/ ln �St accounts for
our corrections to the effective Coulomb logarithm, and the
subscript “v” refers to velocity dependence. This factor is
shown in Fig. 7, where it is clear the reduction in absorp-
tion is not as severe as that predicted by Langdon (= R).
In many cases of interest the correction is large, for exam-
ple at Z = 6 and Te = 400 eV the Langdon prediction for
the absorption is incorrect by a factor >50%. Our results
can be viewed as an effective correction to the Langdon
effect [5].

IV. ANSATZ SOLUTION

Although our results for ln �M
SG are analytic, they involve

special functions that are not in common use in plasma
physics. Here we provide simplified fits that can be evaluated
easily, motivated by an intuitive ansatz for ln �M

SG.

FIG. 7. The overall factor that modifies absorption, Rv , for vari-
ous super-Gaussian order M (blue curve), compared to the standard
Langdon modification R (orange curve), for the conditions Z = 6 and
Te = 400 eV.

For M = 2, we showed above that

ln �M=2
SG = ln

(√
acα

3
e

)+ 0.9069a−1/3
c α−2

e

+ 1

2
exp

(
1

cq

)
Ei

(
− 1

cq

)
+ 0.1739. (31)

The quantum corrections enter in the term
1
2 exp(c−1

q )Ei(c−1
q ) ≡ QM=2(cq). Returning to our original

expression for the velocity-dependent Coulomb logarithm
ln �S (w), Eq. (16), if the dominant contribution to the
distribution function is near the thermal velocity w ≈ 1, then
we might expect an average Coulomb logarithm of the form

ln � ≈ ln

{√
cc + 1

cq + 1

}
≈ ln

⎧⎨
⎩
√

8acα6
e + 1

cq + 1

⎫⎬
⎭, (32)

where the form on the right-hand side of Eq. (32) has been mo-
tivated by the requirement ln � > 0. This is further supported
by noting that the dominant term in QM=2(cq) is ∝ ln(1/

√
cq)

when cq � 1. In terms of impact parameters, Eq. (32) is

ln � ≈ ln

⎧⎨
⎩
√√√√8(bmax/b⊥)2α6

e + 1

2
(
bq/b⊥

)2
α2

e + 1

⎫⎬
⎭. (33)

Since we require bmax > bq, a more well-behaved form for
the above is to replace b2

max → b2
max + b2

q:

ln � ≈ ln

⎛
⎝
√

8α6
e ac + 4α4

e cq + 1

cq + 1

⎞
⎠. (34)

Motivated by these hints, we seek a fit to ln �M=2
SG of the

form

ln �M=2
fit = ln

⎛
⎝
√

8α6
e ac + 4α4

e cq + 1

cq + 1

⎞
⎠

+ 0.9069

(
1 + cc

8

)−1/3

+ r
(
cq
)
, (35)

where the remainder function r(cq) ≈ ln �M=2
fit − ln �M=2

SG
should vary weakly with cq. We have replaced
0.9069a−1/3

c α−2
e in Eq. (31) with 0.9069( 1+cc

8 )−1/3 to allow
sensible behavior at low temperature. We use the following
trial form for r(cq):

r(cq) = r0 + r1cq

s0 + s1cq
(36)

and solve for the parameters r0, r1, s0, s1 by numerical least-
squares minimization across the range 10−1 � cq � 104,
resulting in r0 = 3.074868, r1 = 0.4457853, s0 = 3.537712,
and s1 = 0.766085. The final approximate form for ln �M=2

SG
is then:

ln �M=2
fit = ln

(√
8α6

e ac + 4α4
e cq + 1

cq + 1

)

+ 0.9069

(
1 + cc

8

)−1/3

− r0 + r1cq

s0 + s1cq

(
cc

1 + cc

)
.

(37)
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FIG. 8. A comparison of the full expression for ln �M=2
SG and the

approximate fit ln �M=2
fit as a function of the quantum parameter cq.

Blue and orange curves are for ac = 102. Green and red curves are
for ac = 104.

Note that the factor cc/(1 + cc) is a further purely ad
hoc modification to allow sensible (ln �M

fit > 0) behavior at
low temperatures. This fit is compared to the full expression
Eq. (27) in Fig. 8, showing good agreement across a large
range of cq for two representative choices of ac.

For M = 4 we find similarly:

ln �M=4
fit = ln

⎛
⎝
√

8α6
e ac + 4α4

e cq + 1

cq + 1

⎞
⎠

+ 0.606809 − r0 + r1cq

s0 + s1cq

(
cc

1 + cc

)
, (38)

with r0 = 13.1288, r1 = 4.90536, s0 = 12.6262, and s1 =
5.47617, which produces similar accuracy to the M = 2 case.

Finally, for M = 6 we find:

ln �M=6
fit = ln

⎛
⎝
√

8α6
e ac + 4α4

e cq + 1

cq + 1

⎞
⎠

+ 0.751113 − r0 + r1cq

s0 + s1cq

(
cc

1 + cc

)
(39)

with r0 = 5.1255, r1 = 2.63343, s0 = 4.93054, and s1 =
2.79085, again with good accuracy.

The absorption for arbitrary M can be found from:

ln �SG ≈ aM2 + bM + c, (40)

now with a = (ln �M=2
fit − 2 ln �M=4

fit + ln �M=6
fit )/8,

b = (−5 ln �M=2
fit + 8 ln �M=4

fit − 3 ln �M=6
fit )/4, and

c = 3 ln �M=2
fit − 3 ln �M=4

fit + ln �M=6
fit . This approximate

polynomial is compared to the polynomial constructed
from the full expressions of the previous chapter in Fig. 4
(orange dashed curve), showing very good agreement. The
super-Gaussian index M(α) itself can be found from fits
provided by, e.g., Ref. [15] as a function of α = Zv2

osc/v
2
t ,

with vosc obtained from the intensity via vosc = e
mω0

√
2I
cε0

.

Specifically, M(α) = 2 + 3/(1 + 1.66/α0.724).

V. COMPARISON TO QUANTUM MECHANICAL
CALCULATION

As a final check on the overall accuracy of our expres-
sions, we compare our polynomial fit to Eqs. (37)–(39), to a

FIG. 9. (Z = 1). A comparison of the polynomial constructed
from the approximate fits for ln Λ, Eqs. (37)–(39), to a numerical
integration of the Sommerfeld result. Blue is for M = 2, and orange
is for M = 5. The black dots represent numerical evaluation of the
Sommerfeld result.

numerical evaluation of the high-energy limit Sommerfeld re-
sult [6,7] averaged over super-Gaussian distribution functions.
Figure 9 shows the case Z = 1 and Fig. 10 shows the case
Z = 8. The fits reproduce the scaling with Te and M well, with
maximum error ≈1.8% for Z = 8, M = 2, and Te ≈ 1500 eV.
The main source of discrepancy is simply due to the approxi-
mation we begin with, ln ΛS in Eq. (1), which deviates slightly
from the exact Sommerfeld result (see Fig. 1).

VI. PLASMA SCREENING CORRECTION

In this section, we present corrections to the absorption
rate that arise from plasma screening. If the screening length
λs in a plasma becomes smaller than the maximum impact
parameter bω(v) = v/ω, then the appropriate maximum im-
pact parameter becomes the screening length, because all
interactions beyond this distance are curtailed. This scenario
has been treated classically [12] and quantum mechanically
[13] in the Born approximation, by calculating the velocity-
dependent scattering rate in a screened potential. Both theories
predict an approximately uniform reduction in the scattering

FIG. 10. (Z = 8). A comparison of the polynomial constructed
from the approximate fits for ln Λ, Eqs. (37)–(39), to a numerical
integration of the Sommerfeld result. Blue is for M = 2, and orange
is for M = 5. The black dots represent numerical evaluation of the
Sommerfeld result.
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FIG. 11. The Born logarithm and the screened Born logarithm due to Rozsnyai [13]. Also shown is the ratio of the screened-to-unscreened
Born result (“screening correction”), and the thermal value for the Coulomb logarithm (in the Born approximation).The screening correction
is multiplied by a factor of 4 to make it more visible. The vertical line marks the location of the thermal velocity vt = √

Te/m. The conditions
are: Z = 4, ni = 7.5 × 1025, Te = 550 eV, 2ω. The screening length is taken to be λs = ai.

rate across a wide range of velocities. An example Born result
[13] is shown in Fig. 11 for the conditions Z = 4, ni = 7.5 ×
1025, Te = 550 eV, 2ω, where we plot both the unscreened
and screened Coulomb logarithms for the choice λs = ai. Also
shown is the degree by which the logarithm is reduced due
to screening, i.e., the screened-to-unscreened ratio, which we
denote As(v). This uniformity greatly simplifies the inclusion
of screening effects in our calculations, because it can be
taken at some characteristic velocity v = vmax (see below) and
applied as a separate correction factor, As(vmax), to obtain the
total absorption:

〈P〉 = As(vmax)R
1

3

√
2

π
νei(vt )ne

1

2
mv2

osc, (41)

where νei(vt ) uses ln �SG as recommended above and again
R is Langdon’s standard absorption correction factor for a
super-Gaussian. Both the classical and Born screening correc-
tions predict similar reductions in absorption as the screening
length λs is reduced below bω, but we have found via a
comparison to numerical calculations that the approximations
used to obtain the classical expressions in Ref. [12] are too

erroneous (errors ≈20%) for our purposes. This is particularly
true near λs ≈ bω. For this reason, we use Rozsnyai’s result for
a fully ionized plasma as the best estimate for the screening
correction. However, the result provided by Rozsnyai is rel-
atively complicated and it can be simplified to the following
expression by assuming 1

2 mv2 � h̄ω:

As(v) =
ln
(

2mv2

h̄ω

y√
1+y2

)− 1
2 (1 + y2)−1

ln
(

2mv2

h̄ω

) , (42)

where y ≡ λsω/v characterizes the degree of importance of
screening and the formula is valid for y � 0.005 which cov-
ers most regimes of interest to laser-plasmas. This formula
Eq. (42) is evaluated at the thermal velocity, As(vt ), and is
plotted alongside the full result given by Rozsnyai [13] in
Fig. 12 for the conditions Te = 2000 eV, 3ω, showing close
agreement across a wide range of y. As(vt ) is useful for esti-
mating the effect of screening for given plasma conditions.

Although the screening correction has only a relatively
weak dependence on velocity (see the red curve in Fig. 11),
neglecting this dependence when calculating the absorption

FIG. 12. Modification to the absorption rate, As(vt ), calculated in the Born approximation, as a function of y = λs/bω = λsω/vt . Both the
full result [13] and our simple formula Eq. (42) are shown for the conditions Te = 2000 eV, 3ω.
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does lead to some error which can be mostly avoided by in-
stead simply evaluating the screening correction at the peak of
the function | ln �(v)∂ fSG/∂v|, which determines the velocity
vmax at which the absorption is a maximum [see Eq. (9)]. First,
we note that a super-Gaussian of order M has a maximum at
the velocity

vr = (M2 − M )1/M

M2/M
vM , (43)

where, again, vM = √
2αevt . We can find a good approx-

imation to vmax by taking advantage of the fact that the
logarithmic term is slowly varying with velocity, allowing us
to represent the function | ln �(v)∂ fSG/∂v| with a second-
order Taylor series, expanding about the point v = vr . The
calculation is given in the Appendix for a classical Coulomb
logarithm ln

√
1 + cc(v/vM )6, and here we simply state the re-

sult, given more succinctly in terms of the normalized velocity

wr = vr/vM :

wmax ≈ �2
r wr ln �r

[
M2
(
1 − 3wM

r + w2M
r

)+ 4Mαr + 3
]− 12ccw

7
r

(
2ccw

6
r + Mαr�r − 1

)
�2

r ln �r
[
M2(1 − 3wM

r + w2M
r

]+ 3Mαr + 2
)− 6ccw6

r (3ccw6
r + 2Mαr�r − 3)

, (44)

where αr = wM
r − 1, �r = 1 + ccw

6
r , and the velocity of

maximum absorption is simply vmax = wmaxvM . To ensure
sensible behavior for small Coulomb logarithms, cc can be
replaced with cc + cmin, where cmin ≈ 50, in the evaluation
of wmax. The location of vmax for super-Gaussian expo-
nents M = 2 and M = 5 is plotted alongside the function
| ln �(v)∂ fSG/∂v| in Fig. 13, for the conditions Te = 550 eV,
ni = 7.5 × 1025m−3, and Z = 4, 2ω, demonstrating the accu-
racy of the above formula for determining the velocity of peak
absorption. The screening correction can then be evaluated
at the peak, i.e., As(vmax), and this produces results that are
typically within εerr � 0.9% of a numerical evaluation of the
velocity-dependent integral (see the Appendix).

If Debye screening is considered valid (see Ref. [9] for
some comments on this as applied to experiments), then the
prescription of Stanton and Murillo [21] can be used for the
screening length:

λs =
(

1

λ2
De

+ 1

λ2
Di + a2

i

)−1/2

, (45)

where ai = (3/4πni )1/3 characterizes the interion distance
and the λDe,i are the usual electron and ion Debye lengths,
λDe = (ε0Te/e2ne)1/2 and λDi = (ε0Ti/Z2e2ni )1/2. This form

FIG. 13. The integrand which determines the absorption
| ln �(v)∂ fSG/∂v|, calculated using a classical Coulomb logarithm,
plotted for the case of a Maxwellian (M = 2), and a super-Gaussian
of order M = 5. The vertical lines correspond to our expression
for the location of the maximum absorption, vmax, also shown for
the cases M = 2 and M = 5. The conditions are Te = 550 eV,
ni = 7.5 × 1025 m−3, and Z = 4, 2ω.

guarantees λs � ai, accounting for finite ion coupling
strength. As evident in Fig. 12, the effect of screening is to
reduce the radius of interaction of electron-ion encounters,
which reduces the collisionality. Thus, this effect works in
the opposite sense to the corrections we have derived for the
super-Gaussian distributions, but in practical applications we
find that there are regions in the plasma where one or the
other correction dominates.

It is worth pointing out that ln �SG represents the Coulomb
logarithm which takes into account both velocity depen-
dence and the super-Gaussian distribution function. The
screening correction factor As is technically also a correc-
tion to the Coulomb logarithm itself, so that the overall
effective Coulomb logarithm is in fact ln �eff = As ln �SG.
The integrand [see Eq. (9)] that determines the absorption,
∂ f0(v)/∂v ln �(v), is again plotted in Fig. 14 for the cases
M = 2, 3.5, 5. In Fig. 14, the solid curves correspond to
the unscreened calculation (using ln �SG), while the dashed
curves correspond to the screened calculation (using ln �eff =
As ln �SG). It is clear that the effect of screening is to simply
reduce the absorption almost uniformly across velocity space.
In Fig. 15 we show the Maxwellian (M = 2) screening cor-
rection factor As(vmax) as a function of electron temperature,
for the density cases ne = 0.01nc and ne = 0.25nc, each calcu-
lated for both Z = 4 and Z = 50 (the wavelength corresponds
to 3ω and λs = ai was used). The reduction in absorption for
these conditions can be as large as ≈30%, and we have found
in Ref. [9] that screening corrections are essential to obtain
good agreement with experiments.

It should be stressed that the choice λs = ai, as opposed
to λs = λD, is not rigorously justified, so that these fig-
ures are only illustrative. In the experiments of Ref. [9], it
was hypothesized that the moderate ion coupling strength,
in the range 0.12 � �ii � 0.25, may result in λs ≈ ai being
the more appropriate choice than the weakly coupled limit
λs ≈ λD, although both screening lengths are comparable. For
example, with reference to the location z = 0 in Fig. 1(b)
of Ref. [9], taking Z = 6, Te = 540 eV, Ti = 110 eV, ne =
8.2 × 1025 m−3, we find λD = (λ−2

De + λ−2
Di )−1/2 ≈ 3.5 nm and

ai ≈ 2.6 nm, which results in only a small (≈2%) difference
in calculated absorption. Ion screening corrections, in the
regime of moderate ion coupling, has already been found
to lead to a reduction in absorption in molecular dynamics
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FIG. 14. The integrand which determines the absorption [Eq. (9)] calculated using ln Λs(v), plotted for the case of a Maxwellian (M = 2),
and super-Gaussians of order M = 3.5 and M = 5. The solid curves show the case without screening, while the dashed curves refer to the
case with screening. The ion sphere radius ai is taken as the screening length. The locations of the thermal (vt ) and oscillatory (vosc, taken at
I = 1.85 × 1014 W cm−2 and 2ω) velocities are shown as vertical lines. The conditions are Te = 550 eV, ni = 7.5 × 1025 m−3, Z = 4, 2ω.

simulations of the inverse bremsstrahlung process [22,23] (for
Z = 1). A reduction in absorption with increasing density,
consistent with a reduced screening length, was also seen
in the molecular dynamics simulations of Ref. [24]. These
issues should motivate future molecular dynamics simulations
to determine the appropriate choice of screening length for
moderate ion coupling in the regime Z > 1.

VII. PRACTICAL APPLICATION IN HYDRO CODES

We now summarize the steps that need to be taken to
calculate the overall absorption rate. Note that the expres-
sion for ln ΛSG derived in Sec. III is accurate but relatively
complicated. In all practical applications, we therefore use the
simpler expression Eq. (40) derived from the ansatz approach

of Sec. IV. As stated above [Eq. (41)], the average power
density transferred to electron thermal energy is

3

2
ne

dTe

dt
= As(vmax)R

1

3

√
2

π
νei(vt )ne

1

2
mv2

osc, (46)

where vmax = wmaxvM is the velocity of maximum absorp-
tion; vM = √

2αevt characterizes the velocity spread of the
super-Gaussian, with α2

e = (3/2)�[3/M]/�[5/M]; and M is
the order of the super-Gaussian, which has a maximum at the
velocity vr = wrvM , where

wr = (M2 − M )1/M

M2/M
. (47)

The velocity of maximum absorption is estimated as

wmax ≈ �2
r wr ln �r

[
M2
(
w2M

r − 3wM
r + 1

]+ 4Mαr + 3
)− 12ccw

7
r

(
2ccw

6
r + Mαr�r − 1

)
�2

r ln �r
[
M2
(
w2M

r − 3wM
r + 1

)+ 3Mαr + 2
]− 6ccw6

r

(
3ccw6

r + 2Mαr�r − 3
) , (48)

where αr = wM
r − 1, �r = 1 + ccw

6
r , and cc = 8acα

6
e +

cmin = 8(b2
ω/b2

⊥t )α
6
e + cmin, with e.g., cmin ≈ 50. Alterna-

tively, if errors of up to ≈5% are regarded as acceptable

for the calculation of the screening correction, then the sim-
pler choice of As(vt ) can be used in Eq. (46) instead of
As(vmax).

FIG. 15. The screening correction factor As(vmax) for ne = 0.01nc and ne = 0.25nc (at 3ω and λs = ai). The cases Z = 4 and Z = 50 are
shown for each density, and a Maxwellian is assumed (M = 2) for all cases.
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In Eq. (46), the electron-ion scattering rate is defined as

νei(v) = 4π

(
Ze2

4πε0m

)2
ni

v3
ln �SG (49)

and the screening correction factor is

As(v) =
ln
(

2mv2

h̄ω

y√
1+y2

)− 1
2 (1 + y2)−1

ln
(

2mv2

h̄ω

) , (50)

with y ≡ λsω/v and λs the screening length. The loga-
rithm ln �SG appearing in Eq. (49) is determined from the
polynomial fit to the ansatz, Eq. (40), which makes use
of the polynomial coefficients (a, b, and c) given under
Eq. (40). These coefficients can be found from the three
logarithms ln �M=2

fit , ln �M=4
fit , and ln �M=6

fit , which are given
by Eqs. (37)–(39). The super-Gaussian order M can be es-
timated from the fits to Vlasov-Fokker-Planck simulations
in Ref. [15] via M(α) = 2 + 3/(1 + 1.66/α0.724), where α =
Zv2

osc/v
2
t , vosc = e

mω0

√
2I
cε0

, and vt = √
Te/m. The usual cor-

rection to the absorption arising from the Langdon effect,
R, is given by R = 1

3

√
π
6 M�( 5

M )3/2/�( 3
M )5/2, where � is the

Gamma function.
Again, we note that the overall effective Coulomb loga-

rithm is ln �eff = As(vmax) ln �SG but the screening correc-
tion As(vmax) has been factored out of the collision rate in
Eq. (46).

VIII. SUMMARY

We have calculated the absorption rate of laser energy in
a weakly coupled plasma, improving on previous work by
taking into account the velocity dependence of the Coulomb
logarithm, the super-Gaussian nature of the electron distribu-
tion function and plasma screening. For the case in which
screening can be neglected, our results suggest the absorp-
tion is increased over previous estimates by ≈1–4% for a
Maxwellian electron distribution and by as much as ≈30%

for a super-Gaussian distribution. The reduction in absorption
for a super-Gaussian distribution predicted by Langdon is in
error by a factor of ≈2, due to the assumption of a constant
Coulomb logarithm. However, we have also accounted for
the effect of plasma screening, which reduces the electron-ion
cross section, leading to a reduction in absorption which can
also be as much as ≈30%. Therefore, overall, the absorption
rate may be increased or decreased in comparison to previous
estimates, depending on the conditions.

The results are valid in both the classical and quantum
regimes (provided h̄ω � Te) and are expressed in terms of an
effective Coulomb logarithm for a super-Gaussian distribution
function, ln �SG [Eq. (40)] and a screening correction factor
As given by Eq. (50). We provide a polynomial fit to results
valid for arbitrary super-Gaussian order M, Eq. (40).

The expressions derived may also have application to free-
free emission in plasmas for radiation with h̄ω � Te.
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APPENDIX A: EXPANSIONS

The Meijer G-functions are a special class of integrals that
have useful analytic properties. Here we present the expan-
sions of the Meijer G-functions in terms of X = 1

27cc
� 1

neglecting terms ∝ X p for all p � 2/3. For brevity we only
show the expansions for the functions that appear in the case
of a Maxwellian (M = 2), Eq. (21), although similar analysis
has been carried out for M > 2,

G4,1
1,4

(
X | 1

1, 1, 4
3 , 5

3

)
≈ X 2/3�

(
−1

3

)
�

(
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3

)
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(
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)
�

(
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X −1/3 + 8π3
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3�
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�
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(
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, (A1)
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Note that in Eq. (A3), the term in X −2/3 appears to be
dominant but in the final expression we obtain, it is multiplied
by a factor c1/3

c /(cc − c3
q ) ≈ c−2/3

c ∝ X 2/3 rendering it small.
This can be seen by considering the prefactors in Eq. (21).

APPENDIX B: QUANTUM GAUNT FACTOR

Sommerfeld [6] obtained the Gaunt factor g f f for photon
absorption and emission in the presence of a Coulomb po-
tential by a partial wave analysis, in the dipole approximation.
The result, written in terms of the 2F1 hypergeometric function
has been given by many authors (e.g., Refs. [7,11]):

g f f = 2
√

3

πηiη f

[(
η2

i + η2
f + 2η2

i η
2
f

)
I0

− 2ηiη f
(
1 + η2

i

)1/2(
1 + η2

f

)1/2
I1
]
I0, (B1)

where

Il = 1

4

[
4kik f

(ki − k f )2

]l+1

eπ |ηi−η f |/2

× |�(l + 1 + iηi )�(l + 1 + iη f )|
�(2l + 2)

Gl , (B2)

Gl =
∣∣∣∣k f − ki

k f + ki

∣∣∣∣
iηi+iη f

2F1

×
[

l + 1 − iη f , l + 1 − iηi; 2l + 2; − 4kik f

(ki − k f )2

]
,

(B3)

η2
i = Z2ERy

Ei
, (B4)

η2
f = Z2ERy

E f
, (B5)

with ERy a Rydberg. In the above, Ei represents the kinetic
energy of the electron prior to absorption or emission of a
photon of energy h̄ω, and E f is the energy afterwards. The
energies are related to ki and k f via

Ei = h̄2k2
i

2m
, (B6)

E f = h̄2k2
f

2m
. (B7)

In order to obtain a form for the Gaunt factor compati-
ble with the Fokker-Planck approximation used to obtain the
absorption in the presence of nonlinear effects induced by
the laser, we require h̄ω � Ei, f . This leads us to make the
following approximations which we refer to as the quantum
high-energy limit:

η2
i + η2

f + 2η2
i η

2
f 
 2η2

i + 2η4
i , (B8)

ηiη f
(
1 + η2

i

)1/2(
1 + η2

f

)1/2 
 η2
i

(
1 + η2

i

)
, (B9)

eπ|ηi−η f |/2 
 1, (B10)

k f − ki

k f + ki


√

mEi

2h̄2

h̄ω

Ei(k f + ki )
, (B11)

kik f

(ki − k f )2

 2kik f

h̄2

mEi

(
Ei

h̄ω

)2

. (B12)

The resulting form for g f f is then valid for electron kinetic
energies E much greater than the photon energy, which is typi-
cally h̄ω ≈ 1 eV for high power lasers. This limits the validity
of our approach to temperatures � 3.5 eV, which introduces
a small error for laboratory conditions associated with the
low-energy electrons for which E ≈ h̄ω, despite the lack of
electrons at low energy in a Maxwellian electron distribu-
tion. For example, the total absorption rate for a Maxwellian
plasma, according to the full Sommerfeld expression Eq. (B1)
with Z = 4, Te = 550 eV is increased over the high-energy
limit by ≈2.6%. For the conditions Z = 50, Te = 3500 eV,
the increase is ≈0.5%. The error arises from the fact that
the full Sommerfeld result Eq. (B1) is ≈1 when E � h̄ω,
whereas our high-energy limit expression is close to zero for
this energy range. We can estimate the scaling of the error for
the case of a Maxwellian velocity distribution by considering
that the neglected contribution to the absorption integral oc-
curs for energies 1

2 mv2 � h̄ω ≡ 1
2 mv2

c , which defines a cutoff
velocity vc below which the error is significant. With reference
to Eq. (9), the error scaling is approximately given by

εerr ≈
π√

3

∣∣∫ vc

0
∂ fM (v)

∂v
g f f (v)dv

∣∣∣∣∫∞
0

∂ fM (v)
∂v

ln Λ(v)dv
∣∣ . (B13)

To avoid the complications of evaluating the full integrals,
we use the simplified velocity dependence for the logarithm:

ln Λ(v) = ln

{
1 + α

(
v

vt

)n}
, (B14)

where α characterizes the expected thermal value of Λ (i.e.,
ln �t ≈ ln α) and n = 3 applies to classical conditions, while
n = 2 applies to quantum conditions. Taking g f f (v) ≈ 1 for
the integral in the numerator, and assuming (vc/vt )2 � 1, the
error evaluates to

εerr ≈ π√
3

{
1 − exp

(
− v2

c

2v2
t

)}
1

ln �
≈ π

ln �
√

3

h̄ω

Te
, (B15)

so that our quantum high-energy limit is accurate so long as
h̄ω � Te and ln � is not too small (consistent with the above
numerical estimates). Note that, technically, we have only
estimated the scaling of the error rather than the magnitude,
because vc does not determine the region of error with high
accuracy.

However, the Sommerfeld result neglects plasma screen-
ing, which is known (classically, at least) to severely reduce
the cross section at low energies [12], so that the Sommerfeld
result is likely invalid at low energy in a plasma for this reason.
Therefore we expect the maximum possible error incurred by
working in the high-energy limit to be in accordance with the
above estimates but the more likely error to be lower than
this. Without a quantum theory of scattering including plasma
effects, we are unable to obtain an accurate estimate of the
error associated with the assumption E � h̄ω. We note that
there are a number of other issues which are unresolved at
low electron velocities: The assumption νei(v) � ω0 is only
valid for sufficiently high electron velocities; the validity of
a Maxwell-Boltzmann velocity distribution at low velocities
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is questionable due to the importance of electron coupling
at low velocity; finite 1

2 mv2
osc effects are important at low

velocity. These issues associated with the cross section would
need to be addressed, along with understanding the validity of
the Markov approximation for low-energy electrons if greater
accuracy is to be achieved.

APPENDIX C: ESTIMATE OF THE VELOCITY
OF PEAK ABSORPTION

Here we provide an estimate of the location of peak absorp-
tion in velocity space. As mentioned in the main text, the peak
of the function − ln �(v)∂ fSG/∂v determines the velocity
vmax at which the absorption is a maximum. In general, it is
not possible to find an analytic expression for vmax, but we can
find a good approximation to vmax by taking advantage of the
fact that the logarithmic term is slowly varying with velocity.
We work with the normalized velocity w = v/vM and use a
generic classical logarithm for simplicity, so that

ln �(w) = 1
2 ln{1 + ccw

6} (C1)

and look for solutions to ∂{ln �(w)∂ fSG/∂w}∂w = 0. First
we determine the velocity of the maximum of the function

∂ fSG/∂w, which is

wr = (M2 − M )1/M

M2/M
. (C2)

Then we assume that the maximum of the function
ln �(w)∂ fSG/∂w is close to wr , which enables us to represent
ln �(w)∂ fSG/∂w as a second-order Taylor series about the
point w = wr :

1

4
Me−wM

r wM−3
r {A0 + A1(w − wr ) + A2(w − wr )2}, (C3)

A0 = 2w2
r ln �r, (C4)

A1 = −2wr
[
�r (Mαr + 1) ln �r − 6ccw

6
r

]
�r

, (C5)

A2 = ln �r
[
M2
(−3wM

r + w2M
r + 1

)+ 3Mαr + 2
]

− 6ccw
6
r

(
3ccw

6
r + 2Mαr�r − 3

)
�2

r

, (C6)

where αr = wM
r − 1 and �r = 1 + ccw

6
r . The location of the

maximum of | ln �(w)∂ fSG/∂w| can then be approximated as
the location of the maximum of the above function, which is

wmax = �2
r wr ln �r

[
M2
(
w2M

r − 3wM
r + 1

)+ 4Mαr + 3
]− 12ccw

7
r

(
2ccw

6
r + Mαr�r − 1

)
�2

r ln �r
[
M2(w2M

r − 3wM
r + 1) + 3Mαr + 2

]− 6ccw6
r

(
3ccw6

r + 2Mαr�r − 3
) , (C7)

from which it follows vmax = vMwmax. The ability of this
expression to accurately estimate the location of peak ab-
sorption is shown in Fig. 13 in the main text. We plot the
above expression for wmax as a function of M in Fig. 16
(blue curve labeled cq = 0) for cc = 105, which shows that the
naive choice vmax ≈ vM (corresponding to wmax ≈ 1) is most
erroneous at small M. This is because the Coulomb logarithm
changes more rapidly with v at lower v, and a Maxwellian has
a maximum at lower v than does a super-Gaussian.

When this expression is used to calculate the absorption
by replacing the full velocity integration over As(v) with
the factor As(vmax), the error can be estimated as εerr =

FIG. 16. The normalized velocity of maximum absorption wmax,
plotted as a function of M for the case cc = 105. The blue curve
shows the case for a purely classical Coulomb logarithm, while the
orange curve includes quantum effects with cq = 10.

1 − |As(vmax)
∫∞

0 ∂ fSG/∂v ln Λ(v)dv|/| ∫∞
0 As(v)∂ fSG/∂v

ln Λ(v)dv|, where the integrals are carried out numerically.
For the conditions Z = 50, Te = 3 keV, 3ω, ne = 1027 m−3,
the error is εerr = 0.004, εerr = 0.009, and εerr = 0.007 for
M = 2, M = 3.5, and M = 5, respectively. For the conditions
Z = 4, Te = 550 eV, 3ω, ni = 2.5 × 1026 m−3, the error
is εerr = 0.006, εerr = 0.008, and εerr = 0.008 for M = 2,
M = 3.5, and M = 5, respectively.

Although we have assumed a classical form for the
Coulomb logarithm, the result Eq. (C7) tends to work well
even when quantum effects are important. This can be shown
by carrying out the same analysis as above, but with a more
general form for the logarithm:

ln �(w) = 1

2
ln

{
1 + ccw

6

1 + cqw2

}
, (C8)

which yields

wmax = wr − w3
r

C1 + C2 + C3

×
{

cq
(
4ccw

6
r − 2

)+ 6ccw
4
r

�rc�rq
− (Mαr + 1) ln �r

w2
r

}
,

(C9)
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where

C1 = ln �r
{
M2
(
w2M

r − 3wM
r + 1

)+ 3Mαr + 2
}
, (C10)

C2 = 2w2
r

�2
rc�

2
rq

{
c2

q

(
17ccw

8
r + w2

r − 2c2
cw

14
r

)
+ cq

(
28ccw

6
r − 7c2

cw
12
r − 1

)− 3ccw
4
r

(
ccw

6
r − 5
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,

(C11)

C3 = −4w2
r (Mαr + 1)

[
cq
(
2ccw

6
r − 1

)+ 3ccw
4
r

]
�rc�rq

, (C12)

�rq = 1 + cqw
2
r , (C13)

�rc = 1 + ccw
6
r , (C14)

and note that the definition of �r now corresponds to the
general form for the Coulomb logarithm:

�r = 1 + ccw
6
r

1 + cqw2
r

. (C15)

This result recovers the classical result [Eq. (C7)] when
cq → 0, and is plotted in Fig. 16 for a case in which quantum
corrections are large, cq = 10 (and again, cc = 105). Since
this result is close to the classical result, in the main text
we recommend only the classical result, to keep the model
relatively easy to implement, but the model presented above
might be useful if increased accuracy is required in the
quantum regime. Note that the small error in wmax in quantum
conditions, evident in Fig. 16, leads to an even smaller
error in the actual absorption estimate, meaning the use of a
classical Coulomb logarithm for determining wmax is largely
acceptable.
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