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Comparison of viscoelastic flows in two- and three-dimensional serpentine channels
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Polymer solutions in the dilute regime play a significant role in industrial applications. Due to the intricate
rheological properties of these highly viscoelastic fluids, especially in complex flow geometries, a thorough
numerical analysis of their flow dynamics is imperative. In this research, we present a numerical investigation of
purely elastic instability occurring in two- and three-dimensional serpentine channels under conditions where
fluid inertia is negligible and across a broad spectrum of polymer relaxation times. Our findings reveal a
strong qualitative agreement between the existing experimental results obtained from dilute solutions of flexible
polymers in microfluidic devices and the numerical simulations conducted in two and three dimensions using
the Oldroyd-B model. Spatial flow observations and statistical analysis of temporal flow features indicate
that this purely elastic turbulent flow exhibits nonhomogeneous, non-Gaussian, and anisotropic characteristics
across all scales. Additionally, our comparison of two- and three-dimensional simulations demonstrates that
the elastic instability is primarily driven by the curvature of the streamlines induced by the flow geometry,
rather than the weak secondary flow in the azimuthal direction. Therefore, our two-dimensional numerical
simulations successfully replicate, at least qualitatively, the features observed in three-dimensional experiments.
Furthermore, spectral analysis suggests that, in comparison to elastic turbulence in the dilute regime, the range
of scales for the excited fluctuations is narrower.

DOI: 10.1103/PhysRevE.109.055108

I. INTRODUCTION

Viscoelastic flows are commonly encountered in various
scientific and industrial scenarios. These include secondary
flows in blood and DNA suspensions, as well as in the
manufacturing of polymeric products [1], particle focusing
(i.e., the tendency of identical particles to align themselves
to certain locations in a flow) [2], or cooling of electronics
[3]. The flow of such fluids is complex and gives rise to
instabilities that are unique to viscoelastic fluids. Under
certain conditions, viscoelastic fluids exhibit non-Newtonian
behavior, especially in dilute polymer solutions. Elastic
forces become significant when polymer chains stretch due to
fluid velocity gradients. When elasticity surpasses a critical
value, these forces can trigger instabilities, causing irregular
turbulence-like flow even at low Reynolds (Re) numbers,
a phenomenon known as elastic turbulence [4–10]. Elastic
turbulence is marked by rapid growth in the largest Lyapunov
exponent [7,11,12] and exhibits power-law behavior in
spatial and temporal kinetic energy spectra, indicating a
range of active scales in the flow [4,8,13]. Despite its
resemblance to turbulent flow, elastic turbulence offers

*himani.garg@energy.lth.se
†christer.fureby@energy.lth.se

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Funded
by Bibsam.

promising opportunities for improving mixing [5], enhancing
heat transfer [14,15], and aiding in oil recovery [16].

The phenomenon of elastic turbulence has been extensively
researched. A concise summary of the main theoretical find-
ings on elastic turbulence is provided by Fouxon and Lebedev
[17], further explored by Brughelea et al. [8], Soulies et al.
[9], and Steinberg [13]. However, the lack of experimental
techniques for in situ measurement of elastic stresses poses
a significant challenge to the much-needed understanding of
the turbulent-like dynamics in elastic turbulence. As a solu-
tion, recent two-dimensional (2D) numerical simulations have
demonstrated the possibility of accurately reproducing the
essential characteristics of elastic turbulence through a sim-
plified flow model of a highly elastic polymer solution at low
Re numbers. These investigations focused on the Oldroyd-B
model dynamics in a 2D, inhomogeneous, periodic, Kol-
mogorov flow setup [11,18–20]. A recent numerical study by
Garg et al. [20] focused on the statistical properties of elastic
turbulence in the same system, examining single- and mul-
tipoint statistics in both temporal and spatial domains. Their
findings indicate nearly identical scaling in both temporal and
spatial spectra of velocity fluctuations, with an exponent of
approximately −4. In contrast, van Buel et al. [21] found
significant scaling exponent variations in the radial direction
in Taylor-Couette flow.

Since both theory and experiments deal with a fully 3D
flow, 2D simulations cannot represent vortex stretching and
other inherently 3D flow physics phenomena. Therefore, 2D
simulations should albeit their extensive use in elastic tur-
bulence be availded. Recent studies have started exploring
3D elastic turbulence flows, particularly in Taylor-Couette
flows [22]. While studies using 2D simulations and simplified
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models have shown outcomes strikingly similar to experimen-
tal findings, the reasons for this are unclear. Also, there has
not been a detailed comparison of elastic turbulence flows in
both 2D and 3D. This highlights the need for future research
to directly compare the two and fill this gap.

To the best of our knowledge, no existing literature directly
compares 2D and 3D numerical simulations of elastic turbu-
lence. In this study, we analyze the statistical characteristics
of elastic turbulence in 2D and 3D microserpentine channels
by directly comparing them, inspired by experiments [23].
Our investigation primarily focuses on spatial flow features
and single-point statistics in the temporal domain. We aim
to distinguish between flow in 2D and 3D, explaining their
similarities and differences. Additionally, we quantify the ho-
mogeneity and isotropy of velocity fluctuations, emphasizing
the role of dimensionality. Our analysis covers various flow
properties, including strain rate, vorticity, and topology factor,
as well as velocity fluctuation power spectra and second-order
structure functions of velocity increments at different Weis-
senberg numbers, Wi, comparing elastic and viscous forces.
Furthermore, we explore the interplay between polymer dy-
namics and flow geometry, analyzing the Lumley triangle.

The paper is organized into five main sections, with the
remaining sections following as outlined: Sections II and III
describe the methodology used for the numerical simulations
and provide details regarding boundary conditions and dimen-
sionless numbers used in the analysis. Section IV presents the
results and discussions, and, finally, the conclusions are drawn
in Sec. V.

II. VISCOELASTIC CONSTITUTIVE EQUATION
AND NUMERICAL METHODOLOGY

Based on the continuum hypothesis and incompressible
flow condition, the velocity v (x, t ) at position x and time t
evolves according to the mass and momentum equations given
by

∇ · v = 0, (1)

ρ

[
∂v

∂t
+ ∇ · (v ⊗ v)

]
= −∇p + ∇ · τ, (2)

where ρ is the fluid density, p the fluid pressure, and τ = τs +
τ p the fluid stress tensor which consists of both solvent (τs)
and elastic (τ p) solute contributions.

In the framework of the Oldroyd-B model [24], τs = 2ηsD,
where ηs is the zero-shear dynamic viscosity of the solvent,
D = 1

2 [∇v + (∇v)T ] the strain-rate tensor, and τ p the elastic
solute stress tensor and is expressed by the following consti-
tutive equation following Oldroyd [25]:

τ p + λ

{
∂τ p

∂t
+ ∇ · (v ⊗ τ p) − [(∇v)T ⊗ τ p] − (τ p ⊗ ∇v)

}

= 2ηpD, (3)

where λ is the largest polymer relaxation time and ηp is
the polymer contribution to viscosity. Equation (3) can also
be written in terms of conformation tensor, σ = λ

ηp
τp + I, as

FIG. 1. Schematic of the microfluidic domain with constant inner
and outer curvatures. x is the primary flow direction, H is the channel
height, and R1 and R2 are the inner and outer radius where the origin
is taken as the inner edge of each loop. Ai’s and Bi’s correspond to
probes location nomenclature.

follows:

∂σ

∂t
+ ∇ · (v ⊗ σ) − [(∇v)T ⊗ σ] − (σ ⊗ ∇v) = 1

λ
(I − σ),

(4)
where I is the identity tensor.

Although the Oldroyd-B model exhibits an unbounded
steady-state extensional viscosity above a critical strain-rate
(1/2λ), in shear-dominated serpentine channel geometries,
such deficiencies are unimportant, and it is arguable the
simplest constitutive equation that can capture many aspects
if highly elastic flows [19,20,26]. The Oldroyd-B model
emerges as a simplified version within certain limits of the
more comprehensive viscoelastic models, such as the FENE-
P, Giesekus, and Phan-Thien-Tanner models (see, e.g., Bird
et al. [24]). This simplified representation makes it partic-
ularly suitable for fundamental studies of viscoelastic fluid
behavior.

Equations (1) through (3) are numerically integrated using
the open-source solver RheoTool [27], which was developed
within the OpenFOAM framework [28]. This solver relies
on a finite-volume discretization method and implements the
log-conformation technique [29] to mitigate numerical in-
stabilities associated with high values of Wi. It is worth
noting that we do not introduce polymer-stress diffusion in
this context. For solving the components of the polymeric
stress tensor, we employ a biconjugate gradient solver in
conjunction with a diagonal incomplete LU preconditioner
(DILU-PBiCG). The velocity and pressure fields are solved
using a conjugate gradient solver coupled with a diagonal
incomplete Cholesky preconditioner (DIC-PCG). We employ
a second-order backward scheme for time discretization. The
convective fluxes are discretized using the third-order accurate
CUBISTA scheme for the momentum and energy conser-
vation equations [30]. Additionally, a second-order-accurate
scheme is employed for discretizing the convective term in
the conformation tensor transport equation.

III. FLOW GEOMETRY, DIMENSIONLESS NUMBERS,
BOUNDARY CONDITION, AND COMPUTATIONAL GRIDS

In this study, we examine the flow of elastic turbulence
within a serpentine microchannel, using both 2D and 3D
geometry setups. The microchannel configuration is inspired
by Ducloué et al. [31] and is shown from the side in Fig. 1.
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The fluid is assumed to be incompressible and inertialess. For
both the 2D and 3D simulations, the microchannel consists
of three sections: an initial planar channel with a length of
Lin

x = 190 µm, followed by a series of N = 7 connected half-
circular rings, and last followed by another planar channel
with a length of Lout

x = 190 µm (see Fig. 1). The inner and
outer radii of these rings are R1 = 40 µm and R2 = 150 µm,
respectively. The height of the channel is H = R2 − R1 =
110 µm, and the width is W = 65 µm (applicable to the 3D
case). The geometric aspect ratio, which is pertinent to the
onset of the primary elastic instability [23,31], is defined as
a = R1/H = 0.364. For the presentation of qualitative results,
we focus on the section between the bends in the second and
sixth half loops. On the other hand, for quantitative findings,
we concentrate on the bend in the fourth half loop to eliminate
any biases arising from the proximity to the inlet and outlet.

It is important to clarify that the coordinate system (x, y, z)
is fixed in space. However, for the sake of consistency, we will
consistently refer to the velocity components in the following
manner: the direction aligned with the flow is denoted as u,
the wall-normal or transverse direction is represented as v,
and the spanwise direction is indicated as w. Consequently,
the streamwise velocity component, u, for example, is aligned
exclusively with the x direction in the straight inlet and outlet
channels, as well as at locations A2, A4/B0, and so forth. As a
result, at location A0, the wall-normal (or transverse) velocity
corresponds to the velocity component in the y direction.
However, at A1, following a 90◦ change in the flow direction,
it corresponds to the component in the x direction. In contrast,
the velocity in the spanwise direction (often referred to as the
“neutral” or “spanwise” direction) is consistently designated
as w.

A crucial parameter in our analysis is the viscosity ra-
tio, β = ηs/(ηs + ηp), which is inversely proportional to the
polymer concentration. For a given value of β, the pri-
mary controlling parameters in the dynamics, as described
by Eqs. (2) and (3), are Re and Wi. The Reynolds number
is defined as Re = ρUmaxH/(ηs + ηp), where Umax represents
the maximum velocity at the inlet. The Weissenberg number
is given by Wi = λUmax/H , with λ representing the poly-
mer relaxation time. We also introduce a critical Weissenberg
number, denoted as Wicrit, which serves as the threshold value
of Wi at which elastic instabilities begin to manifest in a
viscoelastic fluid. It is worth noting that, in our current investi-
gation, Wi2D

crit is approximately in the range of 3–4 [32], while
Wi3D

crit is approximately 2–3. These values represent the critical
Wi numbers for 2D and 3D setups, respectively, and will be
discussed in later sections. Additionally, we have removed the
convective term from Eq. (2) to ensure that inertial forces are
truly negligible in our analysis.

In our current investigation, we maintain the values of
β = 0.8 [23] and Re number at a constant level. This is
done to solely explore the impact of varying Wi within the
range of 0–20 on flow properties. The value of Re number
is set to approximately ∼10−3 to ensure we operate within
the low Re number regime, where the flow of a Newtonian
fluid is inherently laminar. It is important to note that at
Wi = 0, we are dealing with a Newtonian laminar flow. For
our simulations, the time step is determined as �t = 0.1 ×
min (λ, tc, td ), where tc = H/U represents the convective time

step, and td = H2/ν corresponds to the diffusive time step. In
a prior study [32], we conducted a comprehensive analysis to
assess the mesh independence of the curvilinear 2D microser-
pentine channel at Wi = 5. Based on the mesh sensitivity
findings by Garg et al. [32], we created two computational
domains. The first one is designed for the 2D serpentine
channel with a grid size of Nx × Ny = 4480 × 42 cells, while
the second one accommodates the 3D serpentine channel with
Nx × Ny × Nz = 4480 × 42 × 25 cells.

At the inlet of the channel, we impose a parabolic velocity
profile, which can be expressed as u(y) = Umax(1 − y2). We
apply a zero-Neumann boundary condition for the pressure
field at the inlet, while the polymeric extra stresses, denoted
as τ p, are set to zero. Moving to the outlet, we implement a
zero-Dirichlet boundary condition for the pressure, along with
a zero-Neumann condition for both velocity and polymer extra
stresses. For the channel walls, we enforce a no-slip condition
for the velocity field, ensuring that the fluid velocity at the
wall is zero. Additionally, we utilize a linear extrapolation
technique for the polymer extra stresses at the walls. As for
the initial conditions, both the velocity and stress fields are
initialized with no flow.

In experimental setups, the channel is typically quite long,
often consisting of roughly 200 turns, to allow the flow to
fully develop, especially in the regime of high Wi numbers.
However, when conducting simulations, the use of small time
steps can make it impractical to model such extensive geome-
tries. To ensure that the selected channel length is sufficient
for the flow to reach a fully developed state, we have esti-
mated the development lengths for laminar base flow using the
correlation Llam

dev /H = 0.06Re [33]. In our current simulations,
Llam

dev is approximately 44 nm [32]. This suggests that Llam
dev is

significantly smaller than the total channel length, denoted
as Lx = 1.9 mm. On the other hand, when we reached the
fully developed elastic turbulence regime, in the absence of
a theoretical prediction, we measured the average velocity
fluctuations at different points along the channel (as illus-
trated in Fig. 1). The results revealed that for both 2D and
3D simulations, the velocity fluctuations stabilized after the
third semiturn, suggesting that the channel length we used
was adequate. Therefore, it is safe to conclude that the chosen
channel length is more than adequate for the flow to reach a
fully developed state. Furthermore, to ensure that the numer-
ical results are independent of entrance effects, we establish
fully developed flow within the elastic turbulence regime by
recycling the velocity field at the inlet from an arbitrary plane
situated at a distance of Lmap

x = 150 µm downstream of the
inlet. Cyclic boundary conditions are applied for the inlet and
the arbitrary plane downstream, enabling the recycled velocity
to flow continuously into the remaining portion of the channel
and progress toward the outlet. It is essential to note that
recycling is primarily implemented for cases involving large
values of Wi.

IV. RESULTS AND DISCUSSIONS

A. Fluctuating velocity

To investigate the statistical features of elastic turbulence,
it is convenient to analyze the fluctuating component of the
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FIG. 2. The pseudocolor plots, in (a) 2D and (b) 3D serpentine channel, correspond to instantaneous snapshots of velocity fluctuation
magnitude, |v|, as a function of Wi = 0.01–20.

velocity, defined as v′(x, y, z, t ) = v(x, y, z, t ) −
〈v(x, y, z, t )〉, where 〈. . . 〉 represents the time average. In
the 2D case, the flow is considered invariant with respect to
the z coordinate.

In Fig. 2, we compare the instantaneous velocity fluc-
tuation magnitudes between 2D and 3D simulations as a
function of Wi. Our analysis in Fig. 2 reveals that the velocity
fluctuation magnitudes remain negligible for Wi << 2 and
increase as Wi increases. Additionally, the velocity fluctuation
magnitudes are slightly higher in the 3D case compared to
the 2D case. This observation suggests an elevated level of
turbulence and improved mixing and dispersion in 3D elastic
turbulence. The presence of an additional dimension allows
for more complex flow structures and interactions, resulting in
stronger velocity fluctuations. This underscores the influence
of the third dimension and the potential role of secondary flow
and viscoelastic effects in shaping the characteristics of elastic
turbulent flow. Moreover, in qualitative terms, these results
indicate that Wi2D

crit is approximately in the range of 3–4, while
Wi3D

crit falls within the range of 2–3 for 2D and 3D simulations,
respectively.

To gain a more quantitative understanding of the effect of
Wi on the initiation of velocity fluctuations, we provide an
example of data obtained from pointlike probes in Fig. 3 for
both the 2D and 3D cases. This figure displays the time series
of the fluctuations in the streamwise velocity component, u′,
the cross-stream component, v′, and the spanwise component,
w′ (in the case of 3D), all normalized by the mean flow inten-
sity. These data are collected at one selected probe location,
specifically, B3 as indicated in Fig. 1, for different values of
Wi, such as Wi = 0.01, 5, 10, and 20. In these plots, time is
normalized by the polymer relaxation time, denoted as λ. It
is important to note that the data presented here correspond
to a subset of the complete time series, which extends up to

100λ. Clearly, for Wi = 0.01, the fluctuations are negligible,
and with increasing Wi, we observe the onset of elastic in-
stabilities. However, for Wi � 5, it becomes challenging to
distinguish the impact of Wi on velocity fluctuations, as all
the curves exhibit a similar behavior. It is worth noting the
varying intensities of fluctuations in the x, y, and z directions.

Additionally, we calculated the autocorrelation times, τ c
i ,

from the autocorrelation functions of each velocity fluctuation
component [20]. In our 2D simulations, we found that the
values of τ c

u′/τ and τ c
v′/τ during fully developed elastic turbu-

lence regime ranged between 9.625–3.146 and 10.903–2.970,
respectively. For the 3D case, these values were between
9.008–2.728 and 9.368–2.521, respectively. These findings
differ from the experimental results of Soulies et al. [9], where
τ c

u′/τ = 190 and τ c
v′/τ = 13. However, our results are in line

with the findings of experiments conducted on millimeter
serpentine channel [34] in terms of order of magnitude at
high Wi. The significant variability observed among different
experimental results, theoretical predictions, and numerical
simulations need further investigation, but this is beyond the
scope of our current study.

In Fig. 4(a), we present the time-averaged magnitude of ve-
locity fluctuations, normalized by the mean flow, as a function
of the Wi number for both 2D and 3D cases. We observe three
distinct flow regimes: For Wi < 3, turbulence intensity is neg-
ligibly small, indicating a laminar flow regime. In the range of
3 < Wi � 5, there is a sharp increase, signifying the onset of
elastic turbulence. At this point, we refer to Wi as the critical
Weissenberg number (Wicrit). Finally, for 5 < Wi � 20, there
is a continuous increase approaching asymptotic values of
|v′|/U = 0.125 for the 2D case and |v′|/U = 0.18 for the 3D
case, indicating a fully developed elastic turbulence regime.
In qualitative terms, the 2D and 3D simulation results exhibit
similar behavior but differ in absolute values. To compare the
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(a) (b)

(c) (d)

(e)

FIG. 3. Time series of velocity fluctuations [(a) and (b)] for 2D and [(c)–(e)] for 3D simulation cases. All results are normalized by the
mean flow amplitude, U , at Wi = 0.01, 5, 10, and 20. To ease visualization, only a short subset of the full data set (which reaches t/λ = 100)
is shown.

similarities between 2D and 3D simulations, we performed
data fitting using a a ∗ Wib function and obtained scaling
exponents for each case. In the laminar regime, for both 2D
and 3D cases, we found that |v′/U | scales approximately as
Wi1.29 and Wi2.15 respectively. In the fully developed elastic
turbulence regime, |v′/U | scales approximately as Wi0.5 and
Wi0.52 respectively. The critical value of Wi3D

crit , approximately
3, is consistent with experimental observations in serpen-
tine channel flow as reported in Refs. [6] and [7]. However,
Wi2D

crit , estimated at approximately 4–5, appears to be slightly
overestimated compared to experiments and 3D simulations.

Similarly, in Fig. 4(b), the average value of the trace of the
polymer conformation tensor, tr(σ), is plotted. In both cases,
tr(σ) increases with increasing Wi number. For the 2D case,
the absolute stretching of the polymers is roughly two times
smaller compared to the 3D case, especially in the range of
large Wi numbers. This could be associated with the occur-
rence of vortex stretching, a phenomenon that is not present
in the 2D case, which will be discussed later in detail. More-
over, we observed that for tr(σ), the scaling is Wi1.06 for 2D
simulations and Wi1.12 for 3D simulations. The difference in
scaling between the two is small.
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FIG. 4. Comparison of (a) velocity fluctuations magnitude normalized by U and (b) the trace of the polymer conformation tensor, as a
function of Wi number, for 2D and 3D simulations.

B. Mean flow profiles

Figure 5 presents the time-averaged streamwise velocity
profile along the centerline (shown in Fig. 1). In this figure, y
represents the wall-normal direction, and x denotes the main
velocity direction. The figure is plotted in a way that the
y = 0 position corresponds to the inner edge at x/W = 6.9.
For comparison sake, the profiles from the Newtonian laminar
case are also extracted for both 2D and 3D cases. In Figs. 5(a)
and 5(b), the streamwise velocity components for 2D and 3D
flow setup are shown, respectively. First, it is noticeable that
the Newtonian simulations and the small Weissenberg regime
(Wi < Wicrit) agree well, but a slight asymmetry towards the
inner wall is present. Similar observations have been made
and discussed in previous studies [23]. Second, the effect of
elasticity on the main velocity component is relatively stable,
but on examination of the profiles around the maximum of
〈ux〉 (not shown in this figure), it is apparent that elasticity
enhances this asymmetry by shifting the velocity peak away

from the center of the channel. The shift in velocity peak
becomes prominent in 3D cases compared to 2D.

C. Polymer stretching

Figures 6 and 7 exhibit a momentary snapshot of the
polymer conformation tensor’s trace, tr(σ), the strain-rate
tensor’s magnitude, ‖D‖, and in-plane vorticity, ωz =
∂v/∂x − ∂u/∂y, for 2D and 3D (only z component) cases
at Wi = 0.01, 0.1, 2, 5, 10, and 20, respectively. The trace
of σ provides information about the average alignment and
stretching of polymer chains in all directions. These visualiza-
tions enable us to understand the degree of polymer stretching
easily, the preferred elongation regions for polymers, and
the emergence of secondary vortical structures on top of the
unidirectional mean background flow as Wi increases. When
Wi < Wicrit, the flow is laminar, and the polymers assume
their coiled configuration, as evidenced by the clear dis-

FIG. 5. Mean flow profile, 〈u〉, extracted along the mid-height of the channel at the central half-bend as a function of Weissenberg number,
Wi = 0–20, for (a) 2D and (b) 3D simulations of the microserpentine channel. All profiles are normalized by the mean flow amplitude, U .
Some zooms are also included for enhanced visualizations.
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FIG. 6. The pseudocolor plots, in 2D serpentine channel, correspond to instantaneous snapshots of the trace of polymer conforma-
tion tensor, tr(σ ), magnitude of the strain-rate tensor, ‖D‖, and vorticity, ωz = ∂v/∂x − ∂u/∂y, as a function of Weissenberg number,
Wi = 0.01–20.

tinctions between stretching, elongation, and extension flow
regions.

Interestingly, these results reveal that polymers are maxi-
mally stretched in the preferential regions of high strain-rate
tensor, which is consistent with previous numerical results
[19]. In qualitative terms, we once again observe that the
onset of purely elastic instabilities happens earlier in the 3D
setup compared to the 2D simulations. However, from these
instantaneous plots, it is not immediately evident whether the
third dimension significantly influences the features of elas-
tic turbulent flow. To address this question, we conducted a
comprehensive analysis of several other parameters to initially
characterize the flow in both 2D and 3D simulations, which
will be presented in the subsequent section.

D. Flow topology and its impact on polymer behavior
and flow features

Due to the curvature of the channels, the flow becomes
weakly asymmetric, and the location of the maximum veloc-
ity occurs slightly closer to the inner wall. In between the
two half-circles, the flow regains symmetry before becoming
asymmetric towards the other side in the next half-circles.
This effect is visible in the snapshots in Fig. 8. The flow of
a semidilute polymer solution is complex due to the interplay
between fluid and flow properties. To understand the unstable
flow behavior, which depends on the molecular behavior of

the polymers in 2D and 3D flow geometries, we must first gain
insight into its origin. Previous studies have shown that the
purely elastic instability in polymer solutions is governed by
polymer deformation dynamics, which are highly influenced
by the flow type [35,36]. Thus, the flow type in the geometry
can be considered a crucial factor in determining polymer
behavior [37]. We consider a practical dimensionless number
to define the flow type, a.k.a. topology factor defined as

ζ = ‖D‖ − ‖�‖
‖D‖ + ‖�‖ , (5)

where ‖�‖ is the magnitude of rate of rotation tensor �i j =
(∂vi/∂x j − ∂v j/∂xi ) [38]. The polymers undergo intrinsic de-
formation under different flow types. At low to moderate
shear rates, the polymers remain coiled and align with the
flow direction at high shear rates. Under extensional flow, the
polymers stretch, while rotational flow tends to restore them
to their coiled state [37].

In this study, the topology factor distribution is calculated
for both 2D and 3D cases at two different values of the Weis-
senberg number, Wi = 0.01 < Wicrit and Wi = 20 > Wicrit,
and is shown in Fig. 8. Below the onset of purely elastic
instability, Wi < Wicrit, the flow appears to be mainly shear
dominant, with orderly alternating regions of shear, exten-
sional, and rotational flows. For Wi > Wicrit, the results in
2D and 3D differ. For 2D simulations in a fully developed
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FIG. 7. The pseudocolor plots, in 3D serpentine channel, correspond to instantaneous snapshots of the trace of polymer conformation
tensor, tr(σ), magnitude of the strain-rate tensor, ‖D‖, and z component of vorticity field, ωz = ∂v/∂x − ∂u/∂y, as a function of Weissenberg
number, Wi = 0.01–20.

elastic turbulence regime, the orderly distribution of flow
types suggests that the purely elastic turbulence flow is
isotropic. In contrast, in 3D, these regions are less distinct,
and the flow types are randomly distributed, resulting in spa-
tial inhomogeneity of the flow. The significant contribution
of randomly distributed rotational flow suggested anisotropic
flow in 3D. Further details on the isotropic nature of the flow
will be discussed later. These results, particularly in the 3D
case, align with experimental observations [39].

E. Vortex stretching and polymeric feedback

So far, flow characterization shows some similarities and
differences between 2D and 3D depending on the flow feature
we are looking at. The striking similarity between 2D and 3D
is surprising, as we know in 3D simulations, vortex stretching
is prominent, which is absent in 2D simulations. To uncover
the actual reason behind this, we looked at the vorticity
transport equation:

∂ω

∂t
+ v · ∇ω = ω · ∇v + ∇ ·

(
ηs

ρ
∇ω

)
+ 1

ρ
[∇ × (∇ · τ p)].

(6)

The first, second, and third terms on the right-hand side of
Eq. (6) represents vortex stretching, VS, vorticity diffusion,
VD, and polymeric feedback term, FT, respectively.

In our 3D simulations, we have graphed the values of these
parameters along the central axis of the serpentine channel for
various Wi values, as shown in Fig. 9. As expected, as the
Wi value increases, both the magnitudes of VS and FT also
increase. However, what is particularly noteworthy is that the
order of magnitude of VS is notably smaller than that of FT.
Note that the magnitude of VD is also examined and found to
be several orders smaller than the FT [FT ≈ O(105) × VS],
hence not included in these plots. These observations imply
that, in 3D simulations, the polymeric feedback term pre-
dominates despite the presence of vortex stretching. These
results demonstrate that the elastic instability is primarily
driven by the curvature of the streamlines induced by the
flow geometry rather than the weak secondary flow in the
azimuthal direction. This finding may provide an explanation
for the significant similarities observed between the 2D elastic
turbulence simulations and 3D experimental results.

Additionally, we have depicted spatially averaged values
of FT for both 2D and 3D simulations, as well as VS for 3D
simulations, in Fig. 10. A discernible increasing trend of FT
(in both 2D and 3D simulations) and VS with an increasing
Wi number is evident. Consistent with previous findings, the
absolute value of FT in 2D simulations is notably smaller than
in 3D simulations, particularly in the fully developed elastic
turbulence regime. These discrepancies may be attributed to
the absence of vortex stretching. It is conceivable that in
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FIG. 8. Local distribution of the topology factor, ζ , along the
(a) two-dimensional and (b) three-dimensional serpentine channel
at Wi = 0.01 (top) and Wi = 20 (bottom). The value of ζ = −1.0
indicates a pure rotational flow, ζ = 0.0, a pure shear flow, and
ζ = 1.0, a pure extensional flow.

3D simulations, the interplay between the VS term and the
FT term leads to a more significant extension of polymer
molecules and, consequently, larger values of FT compared
to 2D simulations. Moreover, we performed data fitting using
a a ∗ Wib function and obtained scaling exponents for each
case. In both 2D and 3D cases, we found that FT scales ap-
proximately as Wi1.32 and Wi1.43 respectively and for 3D case
VS scales around Wi1.74. It is worth noting that, to the best of
the authors’ knowledge, these results are being presented for
the first time. To provide more concrete insights, we advocate
for future in-depth investigations that specifically examine the
relationship between vortex stretching and polymer feedback
terms by comparing 2D and 3D simulations.

F. Spectra of velocity fluctuations

By utilizing fixed-point temporal measurements, we calcu-
late power spectra of velocity fluctuations in the frequency
domain, denoted as f . These data are averaged across all
probe locations to ensure statistically robust results. In line
with earlier investigations [5,6,20], we transform the fre-
quency domain into the spatial domain, making an assumption
based on the validity of Taylor’s frozen hypothesis (though the
need for verification remains for future studies). However, it is
essential to exercise caution regarding the assumption of Tay-
lor’s hypothesis’s validity, as discussed in the work of Garg
et al. [20]. For 2D simulations, the resulting spectra, repre-
sented as Ei′ , for both velocity fluctuation components within
the elastic turbulence regime, are presented in Figs. 11(a) and
11(b). Regardless of the specific flow component and Wi value

considered, we identify power-law decaying spectra with a
common exponent of α = 4, expressed as Ei′ ( f ) ∼ f −α .

Furthermore, in the context of 3D simulations, we present
the resulting spectra, denoted as Ei′ , where i = u, v,w, en-
compassing all velocity fluctuation components within the
elastic turbulence regime. These spectra are displayed in
Figs. 12(a)–12(c). Regardless of the specific Wi consid-
ered, we observe power-law decaying spectra for u′ and w′
components, characterized by Ei′ ( f ) ∼ f −α , with a common
exponent α falling in the range of 3.1 to 3.8. The distinct scal-
ing behaviors observed in the velocity fluctuation components
in 3D simulations can also be understood in the context of
the vorticity equation. In the limit of vanishing Re number,
a complex interplay emerges between the vortex stretching
term ∇ · (ω ⊗ v) and the nonlinear contribution of viscoelas-
tic stresses ∇ × (∇ · τ p)/ρ, as demonstrated previously. In
both scenarios, the scaling range extends to slightly less than
two decades for the temporal spectra, a trend consistent with
previous numerical studies [11,20,40]. Furthermore, we ob-
serve that similar steep spectra have been documented in
experiments [5–9], in the frequency domain and theoretically
predicted, assuming homogeneity and isotropy, in the wave-
number domain [17]. Notably, the spectra for 2D simulations
exhibit steeper characteristics when compared to the current
3D simulations and experimental observations.

G. Isotropy

Aiming to assess the isotropy properties of the flow at
different length scales, we consider second-order velocity
structure functions,

S2
i′ (T ) = 〈|i′(x, y, z, t + T ) − i′(x, y, z, t )|2〉y,t , (7)

where i = u, v,w, T is the temporal increment, and 〈. . . 〉y,t

indicates averaging over the set of pointlike probes positioned
at several locations along the centerline of the channel. Once
again, the temporal increments have been converted to length
increments by invoking Taylor’s frozen hypothesis via the
mean flow intensity, X = TU , where X is the increment in
the streamwise direction. The results of our measurements
showed that S2

i′ ∼ X 2 (not shown here), meaning that the
flow is smooth, which is consistent with spatial spectra being
steeper than k−3. To test the degree of isotropy of the flow
and its scale dependence, we examine the ratio, R = S2

u′/S2
v′ ,

for both 2D and 3D flows, reported in Fig. 13 as a function
of the increment TU , and we extract data from several tem-
poral probes and average as discussed above. Garg et al. [20]
showed that in the limit of smooth flow at small increments
(TU → 0), the ratio R tends to 1/3 and 1/2, for 2D and 3D
cases, respectively. While in the opposite, large-scale limit
(TU → ∞), the structure-function should reach a constant
value. This can be attributed to a genuine decorrelation of
velocity fluctuations beyond a given scale.

In the context of 2D simulations, our current results dis-
played in Fig. 13(a) indicate that isotropy is not restored at
small scales. For all Wi values, the computed value of R
significantly exceeds the expected theoretical value of 1/3
(depicted as the dashed black line). As anticipated, we detect
anisotropic fluctuations at larger scales, as the data do not
converge to the limit value of 1 [20]. Irrespective of Wi, the
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FIG. 9. Comparison of vortex stretching term, ω · ∇v and polymeric feedback term, [∇ × (∇ · τ p)]/ρ, as a function of Weissenberg
number, Wi = 0.01–20, for 3D simulations. These results are extracted along the centerline of the channel (solid black line). Vortex lines are
colored with vortex stretching magnitude.

isotropy ratio from our data converges to a limit of approxi-
mately R ≈ 0.65. This limit is achieved for times exceeding
the polymer relaxation time, λ, at which point velocity fluctu-

FIG. 10. Comparison of spatially averaged feedback term, FT
[s−2] and vortex stretching term, VS [s−2] as a function of Wi
number.

ations become uncorrelated (correlations are not shown here).
Qualitatively, our findings align with previous studies that
have documented similar analyses [20]. However, when we
examine the values of R in the 3D case [refer to Fig. 13(b)],
a different narrative emerges. At small scales, there appears
to be a decrease in the degree of anisotropy, while at larger
scales, we still observe strong anisotropic fluctuations. Inter-
estingly, the anisotropy in 2D seems to be more pronounced
at small scales compared to 3D and the reason behind this is
not trivial.

In contrast, in 3D, the fluid motion is not constrained to a
single plane, and the vorticity of the flow can be more complex
and isotropic due to lower degrees of in polymer alignment
and stretching. To study this in more detail, we investigated
the Lumley triangle [41], a graphical representation of the re-
lationship between turbulent stresses, Reynolds stresses, and
viscous stresses. The net anisotropy of the Reynolds stresses
is commonly quantified using the second, IIb, and third, IIIb,
invariants of the normalized anisotropy tensor, bi j , given by

bi j = 〈u′
iu

′
j〉

〈u′
ku′

k〉
− 1

3
δi j . (8)

The state of anisotropy can then be characterized with the two
variables η and ξ defined as

η2 = − 1
3 IIb (9)

and

ξ 3 = − 1
2 IIIb. (10)

All realizable states of the Reynolds stress tensor are
contained within a triangle in the (ξ, η) plane. All special
turbulence cases can be characterized by the two invariants
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(a)

(b)

FIG. 11. Temporal spectra of velocity fluctuations [(a) and (b)]
2D simulations obtained from pointlike probes located at fifteen
different positions in the channel for Wi = 5, 10, and 20. Here
ω = 2π f , f is the frequency, and U is the mean flow intensity. All
spectra are normalized by their maximum values.

of bi j at the theoretical limits of the Lumley triangle. Details
on the different realizable states can be found in Garg et al.
[42]. Lumley triangle plots for 3D viscoelastic flow in the
micro serpentine channel are shown in Fig. 14 as a func-
tion of Wi number. All cell-centered values of ξ and η are
postprocessed using PDF and represented with a colormap
to match the trace of the polymer conformation tensor. In
the limit of infinitely small Wi < Wicrit, we found that, in a
laminar regime, the flow is close to a two-component state
following the upper boundary of the Lumley triangle toward
the one-component state denoted by the upper right corner.
Interestingly, the curve never approaches the state of isotropy,
which is at the bottom summit of the Lumley triangle. On
the other hand, with the onset of elastic instabilities, these
turbulent states are spread throughout the Lumley triangle
with the exception of the plain strain condition indicated by
the dashed line. More specifically, these turbulent states seem
to form a spiral structure (also seen in experiments [9]), which
starts from the two-component state, approaches towards the
one-component state, and then keeps on oscillating between
the oblate-axisymmetric and prolate-axisymmetric states be-
fore approaching the state of full isotropy. The prolate state

(a)

(b)

(c)

FIG. 12. Temporal spectra of velocity fluctuations [(a)–(c)] 3D
simulations obtained form pointlike probes located at fifteen different
positions in the channel for Wi = 5, 10, and 20. Here ω = 2π f , f
is the frequency, and U is the mean flow intensity. All spectra are
normalized by their maximum values.

corresponds to a flow with elongated structures aligned in the
direction of the mean shear, while the oblate state corresponds
to a flow with flattened turbulent structures aligned perpendic-
ularly to the mean shear.

In our opinion, this behavior depends on the complex inter-
play of the serpentine channel geometry, flow conditions, and
polymer relaxation time. However, here, we tried to interpret
this in terms of polymer relaxation time. When the relaxation
time of the polymer is small compared to the characteristic
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(a)

(b)

FIG. 13. Isotropy ratio, R = S2
u′/S2

v′ , versus the spatial increment
obtained via the normalized mean flow intensity, TU/L, for (a) 2D
and (b) 3D, for Wi = 5, 10, and 20. The horizontal dashed black
line corresponds to the values of R = 1/3 and R = 1/2, representing
isotropic conditions in 2D and 3D cases, respectively [20].

timescales of the flow, the polymer molecules relax quickly to
their equilibrium configuration and damp out any fluctuation
in the flow. Therefore, in this case, the flow behaves like a
Newtonian fluid, and the Lumley triangle is in between the
two- and one-component states. This is slightly different from
plane channel flow, and the reason is the presence of strong
curvature. However, when the relaxation time of the polymer
is large compared to the characteristic timescales of the flow,
i.e., Wi > Wicrit ∼ 2, the polymers cannot relax fast enough
to damp out fluctuations in the flow. This leads to a coupling
between the fluid velocity and the polymer dynamics, which
can result in highly complex and intermittent flow behavior.
In summary, we could refer to it as a polymer memory effect,
which refers to the ability of polymers to remember their
previous deformations and to respond to subsequent deforma-
tions in a nonlinear way. This is one of the main reasons why
our results show oscillation between axisymmetric prolate
and axisymmetric oblate states on the Lumley triangle. The
strength of the oscillation may become more pronounced as
the polymer relaxation time increases, which means a stronger
coupling between the fluid velocity and polymer dynamics.

It is important to note that the degree of anisotropy in both
2D and 3D also depends on a range of factors, including the
specific flow geometry, flow conditions, etc. Therefore, more
studies are required to verify our interpretation of turbulent
states in elastic turbulent flows.

V. CONCLUSIONS

This study aims to provide a direct comparison between
2D and 3D simulations of elastic turbulence. It is the first
to systematically investigate the statistical properties of a
smooth random flow of a dilute polymer solution in 2D and
3D microserpentine channels, using numerical simulations at
very low Reynolds (Re) and high Weissenberg (Wi) numbers,
finding differences and similarities between the two for the
first time. When looked on spatial flow statistics such as
tr(σ), ωz, and ‖D‖, only subtle differences between the 2D
and 3D simulations are observed. Still, we do observe a differ-
ence in the critical Weissenberg number, with Wi3D

crit < Wi2D
crit.

Below the onset of purely elastic instability, three distin-
guished regions of shear, extensional, and rotational behavior
are visible, alternating orderly between successive half-bends.
This suggests that polymers remain mainly in their coiled
configuration, and thus, the flow is predominantly laminar.
In the case of 3D simulations, these well-defined regions are
no longer distinguishable for Wi > Wicrit, and the flow types
are rather randomly distributed. This random distribution of
flow types, combined with their impact on polymer behavior,
results in spatial nonhomogeneity of the flow. However, this
phenomenon is not observed for 2D.

For Wi > Wicrit, the onset of the time-dependent elastic
instability leads to irregular flow patterns that result in the
elastic turbulence regime. In this regime, the power spectra
decay according to a power law, with the power law exponent
α being 4 for 2D flows and 3.1–3.4 for 3D flows. We find
that the results for 3D flows are closer to the experimental
results than the results for 2D simulations. In addition, the
geometry-induced mixed flow type and the strong rotation and
weak extension of the flow in the turbulent state further reduce
the extent of polymer stretching and, thus, reduce the range of
excited scales in the turbulent flow.

Our results indicate that the 2D flow is highly anisotropic
at all scales, while the 3D flow tends to approach an isotropic
state at small scales but remains highly anisotropic at large
scales. Interestingly, we use the Lumley triangle to explore
the possibility of different elastic turbulence states in 3D
serpentine channels, even in the presence of weaker elastic in-
stabilities. We find that a coexistence of axisymmetric-prolate
and -oblate states occurs due to the polymer memory effect
for Wi � Wi3D

crit .The emergence of a spiral vortical pattern
becomes readily apparent once elastic instabilities begin to
manifest, in alignment with the findings observed in the ex-
perimental study conducted by Soulies et al. [9].

When examining the vorticity transport equation, a direct
comparison between vortex stretching and the polymeric feed-
back term reveals intriguing findings, notably highlighting
the predominance of the polymeric feedback term over vor-
tex stretching. Through data fitting, we discovered that the
feedback term scales with Wib in both 2D and 3D cases, albeit
with different scaling exponent, i.e., b = 1.32 for 2D and
b = 1.43 for 3D, respectively. This comparison emphasizes
that the primary driver of elastic instability is the curva-
ture of streamlines induced by the flow geometry, rather
than the relatively weaker secondary flow in the azimuthal
direction.
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(a) (b)

(d)(c)

(e) (f)

FIG. 14. Anisotropy-invariant mapping of 3D turbulence in microserpentine channel viscoelastic flow compiled from the present DNS data
at different Wi numbers. The data points for each case are based on all cells in the domain and colored with tr(σ ) values. Color map varies
from blue (minimum) to red (maximum).

In conclusion, as shown by the results, while 2D sim-
ulations can qualitatively replicate certain aspects observed
in 3D simulations, there are notable quantitative dispari-
ties. The absence of vortex stretching in 2D simulations

leads to an underestimation of various flow parameters
such as the topology factor, velocity fluctuation magni-
tude, polymeric energy, and polymeric feedback magnitude.
These parameters are crucial for optimizing heat exchanger
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designs, industrial mixing processes, thermal management
systems, and processes involving heat transfer in viscoelas-
tic fluids. Therefore, despite their extensive use in studying
elastic turbulence, 2D simulations should be approached with
caution.

The data that support the findings of this study are available
from the corresponding author on reasonable request.
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