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Self-propulsion of a periodically forced shape-deforming submillimeter gas bubble
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The self-propulsion (translational instability) of a gas bubble in a liquid undergoing parametrically induced
axisymmetric shape distortion due to being forced by a temporally sinusoidal, spatially constant acoustic field is
investigated. Employing a model which accounts for the nonlinear coupling between the spherical oscillations,
the axial translation and shape deformation of the bubble, the parametric excitement of two neighboring shape
modes by the fundamental resonance, at the same driving frequency is studied. It is shown that provided pertinent
driving pressure threshold values are exceeded, the respective shape modes are excited on different timescales.
The growth of the shape mode on the faster timescale saturates giving rise to sustained constant amplitude
oscillations, while the growth of the shape mode on the slower timescale is both modulated and unbounded.
During the growth of the second shape mode, growing, oscillatory bubble translation is also observed.
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I. INTRODUCTION

The spherically symmetric oscillations of a gas bubble in
a liquid being forced by a periodic pressure field are suscep-
tible to parametric instabilities which, for a sufficiently large
driving pressure, will cause this symmetry to break, giving
rise to distinct and possibly complex surface shape oscillation
patterns. To model such patterns the shape distortion is often
expressed as an infinite sum of spherical harmonics, reducing
to Legendre polynomials in axisymmetry, the amplitudes of
which are referred to as shape modes and which have their
own distinctive oscillation frequencies [1]. In experimental
studies of shape deformation, an often encountered difficulty
is due to translational instability. Though the bubble can be
seen deforming in shape, detailed and precise measurement
of the resultant deformation can prove difficult due to this po-
sitional instability which causes the initially stationary bubble
to move, often in a random or chaotic manner. This erratic
motion, first reported by Gaines [2] and often referred to as
bubble “dancing,” is a phenomenon which not only impedes
the experimental observation of the shape deformation but
also the potential for the controlled manipulation and propul-
sion of the gas bubbles [3]. A link between the observed
shape deformation and the resultant motion of the bubble was
first suggested by Strasberg and Benjamin [4] and Benjamin
and Strasberg [5] with more conclusive experimental evidence
being provided by Crum and Eller [6], but an explanation
for how this is achieved was first provided by Benjamin and
Ellis [7]. Building on the previous theoretical work of Ben-
jamin and Strasberg [5] and Saffman [8], a key conclusion
of the work of Ref. [7] is that the interaction between two
neighboring shape modes can result in bubble self-movement.
Benjamin and Ellis [7] considered both axisymmetric and
asymmetric shape deformation deriving an equation for the
resultant bubble velocity. However, this expression requires
the temporal evolution of the shape modes to be already
known and does not explain how the motion can become

chaotic. Clearly, therefore, under this proposed mechanism it
is important to determine under what circumstances neigh-
boring shape modes can become excited, the nature of their
resultant behavior and whether their interaction is sufficiently
strong to yield observable bubble motion, let alone chaotic
motion.

Deriving pertinent amplitude equations for the nonlinear
resonance between two neighboring shape modes and the
volume mode using a multiple timescale method, Mei and
Zhou [9] demonstrated the possibility of chaotic shape mode
oscillations, but their model did not include direct interactions
between the shape modes. Under the assumption that the
driving pressure was in approximately a 2:1 resonance (often
referred to as the fundamental or first harmonic resonance)
with two neighboring shape modes, but the driving frequency
was not near a resonance of the volume mode, Feng and Leal
[10] derived coupled amplitude equations for the evolution
of the volume mode and the two neighboring shape modes.
Doinikov [11] applied perturbation techniques to derive a
system of coupled evolution equations in the volume mode,
the translation mode, and the shape modes in which the bubble
axial speed and the shape oscillations were considered small
but no restriction was placed on the volume mode. The pre-
sented system of equations included all interaction terms to
second order in the shape modes and translation in an axisym-
metric geometry. Both Feng and Leal [10] and Doinikov [11]
confirmed the potential for bubble self-propulsion through
the interaction of parametrically excited, neighboring shape
modes.

Experimentally, the possibility of sustained, finite ampli-
tude, stable shape mode oscillations as a consequence of
parametric instability is well established but the link with
nonlinear shape mode interactions has only recently been
elucidated [12–17]. Provided a threshold driving pressure
is exceeded, the exact value being problem dependent, the
parametrically excited shape mode will initially grow expo-
nentially, but this growth can saturate as a consequence of
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FIG. 1. Volume mode and shape mode oscillations for R0 =
210 µm, pa = 10 kPa, and fd = 10 kHz.

energy being passed to other shape modes via nonlinear shape
mode interactions together with viscous damping. Though the
amplitude of the resultant oscillations of the shape modes can
be small relative to the parametrically excited shape mode,
it is sufficient to yield stable shape mode oscillations. In
this context, translation is then possible as a consequence
of the parametrically excited shape mode interacting with a
nonlinearly excited neighboring shape mode, provided the
parametrically excited shape mode is odd, but generally the
predicted movement, though oscillatory, is relatively small
[12,13,15,17]. For example, in Shaw (2017), for a bubble
with an initial radius of 144 µm driven at 10 kHz and with
a driving strength of 13 kPa, the predicted displacement is
oscillatory with an amplitude of approximately 0.5 µm. In
order to observe larger, even chaotic motion, a more likely
scenario is that two neighboring shape modes are both excited
parametrically with sufficiently large amplitudes that their
resultant interaction leads to observable bubble translation.
It is this case that we consider here, extending the work of
Feng and Leal [10] and Doinikov [11]. We restrict attention to
cases where both of the neighboring shape modes are excited
by the same driving frequency and by the fundamental para-
metric resonance, but place no restrictions on any potential
volume resonances. We seek to determine the importance of
sustained, finite amplitude shape mode oscillations, if they
occur, in any resultant bubble self-propulsion. We note that as
the order of the shape mode increases, the natural frequency
values of two neighboring shape modes get closer together
and therefore the potential for two neighboring shape modes
to be parametrically excited by the same driving frequency
increases. Examples of potential overlap regions can be found
in Refs. [10,17–19].

II. PROBLEM SETUP

Consider a single free gas bubble submerged in a liquid
being forced by a temporally sinusoidal pressure field whose
wavelength is much larger than the bubble diameter and there-
fore at any time t is assumed to act uniformly over the bubble.
The evolution of the bubble surface is defined by the equation

S(r, θ, t ) = r − R(t ) −
∞∑

n=2

εan(t )Pn(cos θ ) = 0, (1)

where r and θ are axisymmetric spherical polar coordi-
nates, Pn(cos θ ) denotes the Legendre polynomial of degree
n, and εan(t ) is the nth order shape mode. The parame-
ter ε is assumed both small and dimensionless such that

FIG. 2. Volume mode and n = 4 shape mode oscillations for
R0 = 210 µm, pa = 10 kPa, and fd = 10 kHz on an enhanced
timescale.

εan(t )/R0 << 1, R0 being the initial bubble radius. To model
the resultant dynamics we employ the set of coupled ordinary
differential equations presented by Shaw [15], modified here
to include thermal effects inside the bubble and heat dissipa-
tion across the bubble surface. This system was derived using
a Lagrangian/Hamiltonian energy approach combined with
perturbation analysis in the small parameter ε [20,21], mod-
ified to include (weak) compressibility effects [15]. In Shaw
[15] it was shown that in the initial stages of the volume mode
oscillations compressible effects cause the volume mode to
reach a steady state on a faster timescale while a combination
of viscous damping and nonlinear shape mode interac-
tions result in the saturation of the growth of shape modes
[12,13,15–17].

A condensed form of the dynamical equations governing
the volume mode R(t ), the translation mode εz(t ), and the
shape modes εan(t ), n � 2 is given in the Appendix. This
system is solved numerically [15], subject to the following
initial conditions:

R(0) = R0 µm, εz(0) = εan(0) = 1 nm,

Ṙ(0) = εż(0) = εȧn(0) = 0. (2)

For the bubble sizes considered in this work, Prosperetti
[22], Prosperetti et al [23], Prosperetti [24], Zhou and Pros-
peretti [25], for example, observe that thermal dissipation is
a dominant dissipation mechanism. Therefore, to account for
temperature variations within the bubble and thermal dissi-
pation across the gas/liquid interface, the temporal evolution
of the pressure inside the bubble is calculated using the bi-
quadratic method presented in Zhou and Prosperetti [25]. In
terms of the scaled coordinate y = r/R, the absolute gas tem-
perature T inside the bubble is assumed to have the explicit
form [25]

T (y, t ) = Tc(t ) + A(t )y2 + B(t )y4, (3)

where the coefficients A(t ) and B(t ) are calculated by solving
the ordinary differential equations

γ pb

γ − 1

d

dt
〈T 〉 = −3γ pbṘ

R
〈T 〉 + 6K

R2

{
[2Ts + (γ − 2)〈T 〉]

× (A + 2B) − 4

5
A2 − 16

9
B2 − 16

7
AB

}
,

γ

γ − 1
pbṪc = 3Tc

R2
[2(γ − 1)K (A + 2B) − γ pbRṘ]+ 6KTcA

R2
,

(4)
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FIG. 3. Translation mode and shape mode oscillations for R0 = 210 µm, pa = 11 kPa, and fd = 10 kHz.

with the volume averaged gas temperature given by 〈T 〉 =
Tc + 3A/5 + 3B/7 and the (assumed) constant liquid temper-
ature Ts = Tc + A + B. The temperature at the center of the
bubble is denoted by Tc(t ), the ratio of specific heats by γ and
the gas thermal conductivity by K . In order to calculate the
corresponding gas pressure, mass conservation is applied to
give

pb(t ) = pb0

3T0α

(
R0

R(t )

)3

, where α =
∫ 1

0

y2

T
dy. (5)

The subscript 0 denotes initial values while suitable analytic
expressions for the integral α are given in Ref. [25] depending
on how A, B, and Tc are related.

FIG. 4. Oscillations of the n = 4 and n = 5 shape modes
on an enhanced timescale for R0 = 210 µm, pa = 11 kPa, and
fd = 10 kHz, together with the corresponding amplitude frequency
spectra.

III. RESULTS AND DISCUSSION

Considering an air bubble in water at room temperature,
the following set of parameters is used: Ts = 293.150 K,
γ = 1.4, K = 0.0259 Wm−1K−1, ρ = 998 kg m−3,
μ = 0.001002 kg m−1s−1, p0 = 101325 kg m−1s−2,

FIG. 5. Bubble shapes for R0 = 210 µm, pa = 11 kPa, and fd =
10 kHz. Plots (a)–(f) correspond to the respective times t =
5.97, 8.08, 34.34, 35.03, 35.17, and 35.24 ms.
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FIG. 6. Shape mode and translation evolutions for R0 = 210 µm,
fd = 10 kHz, and pa = 11.5kPa.

c = 1500 m s−1, and σ = 0.00728 kg s−2, noting that ρ

represents the liquid density, μ the liquid dynamic viscosity,
p0 the background ambient pressure in the liquid, c the speed
of sound in the liquid, and σ the surface tension coefficient.
Denoting the natural frequency of the nth axisymmetric shape
mode by fn, we are specifically interested in cases where two
neighboring, axisymmetric shape modes are parametrically
excited by the fundamental resonance for a given driving
frequency, that is, cases where fn and fn+1 are sufficiently
close to the frequency 2 fd that both modes are parametrically
excited. As the order of the shape modes increases, the natural
frequencies of the respective modes get closer together and
therefore driving the system at intermediate frequencies, that
is, 2 fd is near the midpoint of the interval [ fn, fn+1], provided
pertinent threshold values are exceeded, then it becomes
more likely that two neighboring shape modes can both be
excited by the fundamental resonance. To illustrate, the first
set of results are for a bubble of initial radius R0 = 210 µm
and the driving frequency fd = 10 kHz. We note that for
R0 = 189 µm, the predicted natural frequency of the n = 4
mode is f4 = 4.96 kHz while for R0 = 230 µm the predicted
natural frequency of the n = 5 mode is f5 = 5.05 kHz [26].
Therefore, the intermediate value R0 = 210 µm is chosen
as a good candidate for potential overlap, where we note
that the respective estimated natural frequency values are
f4 = 4.24 kHz and f5 = 5.79 kHz.

For a driving strength of pa = 10 kPa, only the n = 4 shape
mode is predicted to undergo parametric excitement and this
mode in turn excites other even shape modes through nonlin-
ear shape mode interactions. In Fig. 1 the temporal evolution
of the volume mode, the parametrically excited n = 4 shape
mode, and the shape mode with the next largest amplitude, the
n = 8 mode, are shown. The growth of the n = 4 shape mode

FIG. 7. Shape mode and translation evolutions for R0 = 210 µm,
fd = 10 kHz, and pa = 12 kPa.

FIG. 8. Shape mode and translation evolutions for R0 = 110 µm,
pa = 5.3 kPa, and fd = 35 kHz.

saturates and subsequently the bubble undergoes sustained,
finite amplitude shape deformation consistent with previous
observations for different parameter sets [12–17]. Plots of
the volume mode and the n = 4 shape mode on an enhanced
timescale are shown in Fig. 2. Clearly the n = 4 shape mode
oscillates with a (dominant) frequency of 5 kHz, indicating the
parametric excitement is due to the fundamental resonance.

Increasing the driving pressure to pa = 11 kPa, it is now
found that both the n = 4 and n = 5 shape modes are para-
metrically excited as shown in Fig. 3, which displays the
axial translation and the seven shape modes with the largest
amplitudes. Enhanced timescale plots of the two paramet-
rically excited shape modes are shown in Fig. 4 together
with amplitude frequency spectra plots. Clearly the paramet-
ric excitement of the two shape modes occurs on different
timescales. The n = 4 shape mode is excited on a faster
timescale with the initial exponential growth saturating and
the shape mode then undergoing sustained, finite amplitude
oscillations, with a dominant frequency of 5 kHz. For the

FIG. 9. Bubble shapes for R0 = 110 µm, pa = 5.3 kPa, and
fd = 35 kHz. Plots (a)–(f) correspond to the respective times t =
9.95, 9.97, 14.77, 14.80, 14.83, and 14.86 ms.
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n = 5 shape mode, the parametrically induced growth occurs
on a slower timescale, but the growth in this case is found
not to saturate. Instead, the n = 5 shape mode continues to
grow in a modulated, exponential fashion. As the n = 5 shape
mode grows, modulations are also observed to develop in the
n = 4 shape mode oscillations. Spectral analysis of the n = 5
shape mode reveals two dominant frequencies around, but not
at, 5 kHz (the respective approximate values are 4.74 kHz
and 5.25 kHz). In tandem with the growth of the n = 5 shape
mode, the bubble is also observed to move, with the resultant
axial bubble displacement εz(t ) displaying growing, periodic
motion. In Fig. 5 sample bubble shapes are shown for the
times indicated in the caption. In the latter stages a transition
from the n = 4 to n = 5 dominated shape is clearly visible
with a developing protrusion into the bubble noted in plot
5(f). This latter protrusion could indicate that subsequently
the bubble splits or fragments, but such a predication goes
beyond the present model. Note, both the translation mode and
remaining shape modes shown in Fig. 3 are excited through
nonlinear shape mode interactions.

In Figs. 6 and 7 plots of εa4(t ), εa5(t ), and εz(t ) are shown
for pa = 11.5 kPa and pa = 12 kPa, respectively. Increasing
the driving pressure results in the dynamics occurring on
faster timescales, but the excitement in the n = 4 shape mode
still becomes observable first, with the resultant sustained,
finite amplitude oscillations displaying distinct modulations.
The resultant bubble translation is also seen to become more
rapid, again with its growth coinciding with the observable,
modulated growth in the n = 5 shape mode.

These results would appear to be consistent with experi-
mental observations. First, it is known that shape deforming
bubbles are sensitive to positional instability and small in-
creases in the driving pressure are sufficient to cause the shape
deforming bubbles to move. Also, it is known that for a given
driving pressure there can be a time delay between the bubble
undergoing shape deformation and bubble self-propulsion be-
ing observed which is consistent with the neighboring shape
modes being parametrically excited on different timescales.
Therefore, for driving pressures just above the threshold for
both shape modes to be parametrically excited, the bubble
could undergo sustained, finite amplitude shape oscillations
for a marked period of time before transitioning into a dif-
ferent shape mode oscillation configuration as the growth in
the second shape mode becomes observable, and this will be
accompanied by observable bubble motion.

This identified behavior type is found to be fairly generic
when two neighboring shape modes are parametrically ex-
cited via the first parametric resonance. To illustrate, Fig. 8
displays the temporal evolution of the parametrically excited
shape modes n = 5 and n = 6 together with the bubble dis-
placement for R0 = 110 µm, pa = 5.3 kPa, and fd = 35 kHz,
where again the development of the shape modes on different
timescales is clear. Note, other shape modes are again excited
nonlinearly through shape mode interactions, this being key,
as already noted, to the shape mode excited on the faster
timescale attaining sustained, finite amplitude oscillations and
therefore in turn to permit the observable development of
the other parametrically excited shape mode. Corresponding
selected bubble shapes are shown in Fig. 9 where a transition
from the n = 5 to the n = 6 dominated shape is seen. In

FIG. 10. Shape mode and translation evolutions for R0 =
295 µm, pa = 1.75 kPa, and fd = 10 kHz.

Fig. 10, plots of the later stages of the temporal development
of the parametrically excited n = 6 and n = 7 shapes modes
together with the bubble displacement for R0 = 295 µm, pa =
1.75 kPa, and fd = 10 kHz are displayed. Finally, in Fig. 11,
plots of the parametrically excited neighboring shape modes
n = 7 and n = 8 and the bubble displacement εz(t ) are shown
for R0 = 134 µm, pa = 13 kPa, and fd = 40 kHz with cor-
responding amplitude spectrum plots for the shape modes
being shown in Fig. 12. We note that all of the presented
parametrically excited shape modes have been excited via the
fundamental resonance and the results are consistent with the
previous observations.

Finally, we note that for the neighboring pairs n = 2, n = 3
and n = 3, n = 4, the natural frequencies of the respective
shape modes are sufficiently far apart that a suitable interme-
diate value is more difficult to find where the two neighboring
shape modes are excited via the fundamental resonance. In-
stead, higher parametric resonances are more likely to occur
at intermediate values.

IV. CONCLUSIONS

In this work we have considered the parametric excite-
ment of two neighboring shape modes at the same driving
frequency via the fundamental resonance mechanism. For a
sufficiently large shape mode number, and provided a per-
tinent driving pressure threshold value is exceeded, the two
shape modes are found to grow on different timescales. The
growth of the shape mode on the faster timescale is found
to saturate and then subsequently undergo sustained, finite
amplitude oscillations as a consequence of the nonlinear ex-
citement of other shape modes. The growth of the shape mode

FIG. 11. Shape mode and translation evolutions for R0 =
134 µm, pa = 13 kPa, and fd = 40 kHz.
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FIG. 12. Amplitude frequency spectra for the n = 7 and n = 8
shapes modes for R0 = 134 µm, pa = 13 kPa, and fd = 40 kHz.

on the slower timescale is found to be both modulated and
unbounded. Concurrent with the growth of this shape mode,
oscillatory, growing bubble translation is also observed. In-
creasing the driving pressure causes events to occur on faster
timescales, but the development of the neighboring shape
modes remains distinct. The presented results would appear

to be consistent with experimental observation in that for a
bubble undergoing shape deformation only a small increase in
the driving pressure is sufficient to cause positional instabil-
ity. This is directly linked to the necessary threshold driving
pressure for parametric excitement being exceeded for both
neighboring shape modes. Also, for a given driving strength
a time delay can occur between the bubble being observed
to deform in shape and the bubble being observed to move.
This can be explained by the development of the respective
parametrically excited shape modes on different timescales.

APPENDIX: DYNAMICAL EQUATIONS

The equations employed to model the volume mode R(t ),
translation mode εz(t ), and the shape modes εan(t ), n � 2 in
condensed form are the following: for the volume mode,

RR̈

(
1 − 2Ṙ

c

)
+ 3

2
Ṙ2

(
1 − 4Ṙ

3c

)
= G + R

c
Ġ + ε2 u2

4
+ ε2

∞∑
n=2

1

(2n + 1)(n + 1)

[
(n − 3)

(
R̈a2

n

R
+ Ṙ2a2

n

2R2
+ 2Ṙanȧn

R

)

−
(

n + 3

2

)
ȧ2

n − (n + 3)anän

]
+ ε2 μ

ρ

∞∑
n=2

2

(2n + 1)(n + 1)

[
4n2Ṙ

R3
a2

n − (n2 + 5n + 2)
anȧn

R2

]

+ ε2 (pb − p∞)

ρ

∞∑
n=2

a2
n

(2n + 1)R2
+ ε3 f0(t ), (A1)

where

G(t ) = (pb − p∞)

ρ
− 4μṘ

ρR
− 2σ

ρR
, (A2)

while for the axial bubble translation

ε

[
Rz̈ + 3Ṙż + 18μ

ρR
ż

]
= ε2 9

5
a2z̈ + ε2

(
9

5
ȧ2 + 18Ṙ

5R
a2

)
ż

+ ε2
∞∑

n=2

9

(2n + 1)(n + 1)

[
2nanan+1

(
Ṙ2

R2
+ R̈

R

)
− (n + 1)än+1an − ȧn+1ȧn + nänan+1

− 2Ṙ

R
(ȧn+1an − 2nȧnan+1)

]
+ ε2 36μa2

ρR2
ż

+ ε2 μ

ρ

{ ∞∑
n=2

18n(n + 1)

(2n + 1)(2n + 3)

[
9Ṙ

R3
anan+1 + 2(n + 2)

ȧnan+1

R2

]
−

∞∑
n=3

18n(2n2 + 1)

(4n2 − 1)

ȧnan−1

R2

}
,

+ ε3 f1(t ), (A3)

and for the amplitude of the nth shape mode

ε

{
Rän + 3Ṙȧn + (n2 − 1)(n + 2)

σ

ρR2
an − (n − 1)R̈an + 2μ

ρ

[
(n − 1)(n + 2)

Ṙ

R2
an + (n + 2)(2n + 1)

ȧn

R

]}

= −ε2 9

4
δ2nu2 + ε2

[
3n(n + 1)

2(2n + 3)
z̈an+1 + 3(n + 1)(2n + 1)

2(2n + 3)
żȧn+1

]

− ε2(1 − δ2n)

[
3n(n + 1)

2(2n − 1)
z̈an−1 + 3(n + 1)Ṙ

R
żan−1 + 3

2
(n + 1)żȧn−1

]

− ε2
∞∑

i=2

∞∑
j=2

(2n + 1)(n + 1)

4

[
R̈

R
aia j Gdijn + Ṙ2

R2
aia j Manij + Ṙ

R
ȧ jai Mbnij + aiä j Mcnij + ȧiȧ j Mdnij

]
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+ ε2 μ

ρ

[
6n(n + 1)2(n + 2)

(2n + 3)

żan+1

R2
− (1 − δ2n)

3n(n + 1)(2n2 + 1)

(2n − 1)

żan−1

R2

]

+ ε2 μ

ρ

∞∑
i=2

∞∑
j=2

(2n + 1)(n + 1)

4

[
ȧ jai

R2

(
Qbnij + Qbjin

) + Ṙ

R3
aia jQcjin

]

+ (pb − p∞)

2ρ
ε2

∞∑
i=2

∞∑
j=2

(2n + 1)(n + 1)Ianij

aia j

R2
+ ε3 fn(t ). (A4)

Within this system p∞ = p0 + pa sin (2π fdt ), pa denotes the driving pressure, fd the driving frequency, p0 the background
ambient pressure in the surrounding liquid, ρ the density of the liquid, μ the liquid dynamic viscosity, σ the surface tension
coefficient, and δi j the Kronecker delta. The coefficients Gdijn , Manij , Mbnij , Mcnij , Mdnij , and Ianij are defined in the Appendix of
Shaw [20] while the viscous coefficients Qbnij and Qcjin are defined in the Appendix of Shaw [21]. These coefficients all involve
different combinations of integrated Legendre polynomial products. For brevity of presentation, the terms at cubic order in ε are
not repeated here but are instead denoted by the set of terms ε3 fi(t ), i � 0. Their full form can be found in Refs. [20,21].
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