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Extreme statistics and extreme events in dynamical models of turbulence
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We present a study of the intermittent properties of a shell model of turbulence with statistics of ∼107 eddy turn
over time, achieved thanks to an implementation on a large-scale parallel GPU factory. This allows us to quantify
the inertial range anomalous scaling properties of the velocity fluctuations up to the 24th-order moment. Through
a careful assessment of the statistical and systematic uncertainties, we show that none of the phenomenological
and theoretical models previously proposed in the literature to predict the anomalous power-law exponents in the
inertial range are in agreement with our high-precision numerical measurements. We find that at asymptotically
high-order moments, the anomalous exponents tend toward a linear scaling, suggesting that extreme turbulent
events are dominated by one leading singularity. We found that systematic corrections to scaling induced by the
infrared and ultraviolet (viscous) cutoffs are the main limitations to precision for low-order moments, while high
orders are mainly affected by the finite statistical samples.. The high-fidelity numerical results reported in this
work offer an ideal benchmark for the development of future theoretical models of intermittency in dynamical
systems for either extreme events (high-order moments) or typical fluctuations (low-order moments). For the
latter, we show that we achieve a precision in the determination of the inertial range scaling exponents of the order
of one part over ten thousand (fifth significant digit), which may be considered a record for out-of-equilibrium
fluid-mechanics systems and models.
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I. INTRODUCTION

Turbulence, manifested in the vast majority of all natural
and industrial flows around us, has remained among the most
elusive problems in modern-day classical physics. In spite
of centuries of research, we still lack a complete theoretical
description of the dynamics that is encompassed in turbulent
flows. One of the hallmarks of three-dimensional (3D) turbu-
lence is the existence of an inertial range of scales limited in
the infrared region by the forcing mechanism and in the ultra-
violet region by the viscous dissipation. This inertial range is
found to be universal, in the sense that it is largely independent
of the detailed nature of the forcing or the dissipation mecha-
nisms [1,2]. Contrary to the original self-similarity hypothesis
by Kolmogorov [3], the distribution of velocity fluctuations
in the inertial range is observed to be scale dependent, devel-
oping fatter tails at decreasing length scales (increasing wave
numbers). This is a signature of intermittency, the emergence
of rare but anomalously extreme events that develop in the
inertial range [1,2].

The analytical calculation of the intermittent anomalous
scaling exponents is the Holy Grail of turbulence and theoreti-
cians have proposed many different approaches and solutions,

*Corresponding author: f.toschi@tue.nl

with no success so far (see below), due to the exceptional
theoretical difficulties in dealing with scaling properties in
strongly out-of-equilibrium systems. Another factor hindering
further developments is connected to the limited accuracy
with which exponents can be measured from numerical sim-
ulations in Navier-Stokes equations, due to the exceptional
computational needs to manage an extended inertial range
with long temporal integration [4–9]. Experimental data are
also difficult to exploit because of the unavoidable presence
of systematic nonhomogeneous and anisotropic effects, which
limits the achievable accuracy [10–13].

An alternative route to gain insights into turbulent dy-
namics lies in using reduced-order modeling of turbulence.
Historically, a valuable approach has proven to be what is
referred to as shell models. In these systems, instead of re-
solving the full 3D space, one only models the energy that is
contained in shells of logarithmically spaced wave numbers
[14]. With this broad class of models, intermittency with dif-
ferent and, in some cases, even controllable scaling properties
can be studied [15], making it a perfect model to study the
concept of anomalous scaling in the most general terms. In
this work, we focus on a particular instance of the shell model
that most closely matches Navier-Stokes turbulence, conserv-
ing the equivalent energy and helicity [16]. In spite of their
very strong reduction of degrees of freedom, shell models
have been able to reproduce much of the phenomenology of
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full Navier-Stokes turbulence. This includes the presence of
anomalous intermittent fluctuations, the existence of a dissipa-
tive anomaly, and the development of extreme non-Gaussian
events [14]. Although shell models cannot be expected to
fully reproduce the statistics of Navier-Stokes turbulence at
the quantitative level, shell models do offer an optimal test
bed for the development of theories for anomalous scaling
in out-of-equilibrium systems in general, and for turbulence,
based on the Fourier-space approach, in particular.

A powerful interpretation of the intermittency in Navier-
Stokes equations is provided by the multifractal model
(MFM) as put forward by Parisi and Frisch [17], which can be
justified from first principles using the hidden scale invariance
[18]. However, to fully prescribe the turbulent statistics, the
MFM requires knowledge of the codimension, C(h) = 3 −
D(h), of the singularity spectrum D(h). This is an unknown
function that no one has been able to calculate from first
principles so far, highlighting once more the requirement for
precise measurements of the turbulence statistics.

In this work, we use GPU vectorization to capture very-
high-order moment statistics with great precision for a popular
shell model of turbulence. The resulting measurements of the
anomalous inertial range scaling exponents ζp allow us to fully
describe the intermittency statistics of the model and compute
the singularity spectrum D(h) of the underlying multifractal.
Thanks to the extreme precision that is achieved, we present
reliable results up to moments of the order of p = 24 and
higher, never reported before either in Navier-Stokes turbu-
lence or in other shell model studies. Our accuracy is high
enough to exclude all theoretical proposals for the ζp curve
published up to now and opens a clear challenge to find a
proper phenomenological or theoretical model for ζp in agree-
ment with our data in the context of shell model turbulence.

II. NUMERICAL APPROACH

We employ the celebrated Sabra shell model [16]. It is
governed by the dynamical equation for the shell velocity un

as function of time t given by

dun

dt
= i

(
kn+1un+2u∗

n+1 − 1

2
knun+1u∗

n−1

+ 1

2
kn−1un−1un−2

)
− νk2

nun + fn. (1)

This equation conserves energy E = ∑
n |un|2 and helicity

H = ∑
n(−1)nkn|un|2 in the inviscid unforced limit, in anal-

ogy to the full Navier-Stokes equation. Here, log-spaced
wave numbers kn = k0λ

n are indexed by shell number n =
0, 1, . . . , N , where we choose a spacing λ = 2 and k0 =
1. The asterisk denotes complex conjugation. We choose
a fixed large-scale forcing fn = ( f0, f0/

√
2, 0, . . . , 0). We

pick a forcing amplitude f0 = 0.5 and set the kinematic
viscosity to ν = 10−12, yielding a Reynolds number Re �
1012. This sets the dissipative Kolmogorov shell Nη � 30
and the Kolmogorov time τη � 1.8 × 10−6. To accurately
resolve the full dissipative range, we integrate up to shell
N = 40. The dynamical equation (1) is integrated using
a fourth-order Runge-Kutta method with time step �t =
10−8 � 0.006τη.

To be able to efficiently accumulate large statistics, we
perform the shell model integration on a GPU, integrating
many (M = 4096) independent replicas of the shell model in
parallel on every employed GPU with statistically perturbed
initial conditions. Implementation is done using the Google
JAXpackage for efficient CPU and GPU handling [19]. The
shell model is continuously integrated on GPU, accumulating
samples at a rate similar to the Kolmogorov time (sampling
interval tsamp = 10−5 � 6τη). Accumulated samples then fill
up a buffer that is passed in batches to the CPU, where
the relevant summary statistics is computed in parallel asyn-
chronously, clearing the GPU buffer.

To study the intermittency properties, we direct our at-
tention to the structure function Sp(n). In its most simple
form, one can study the structure function of the velocity
directly 〈|un|p〉, but this particular structure function is known
to be subject to significant structural period-3 oscillations,
obfuscating its further analysis [16]. Therefore, we study the
flux-based structure function instead, which combines consec-
utive shells as

Sp(n) = 〈|Fn|p/3〉, (2)

with [16]

Fn = Im
[
λunun+1u∗

n+2 + 1
2 un−1unu∗

n+1

]
. (3)

The angular brackets 〈·〉 represent the ensemble average,
which is taken by averaging over all time in the statistically
steady state and over the different independent realizations.

In total, we collect around 3 × 1012 samples for every
shell, which, in terms of the large Eddy turnover time TL =
1/(k0

√
〈u2

0〉), amounts to approximately 4 × 107 TL. To handle
the massive stream of data produced by the raw sampling of
the shell model (∼2 petabytes in total), we retain only the run-
ning moments Sp(n) as well as histograms of the flux Fn itself.
One needs to take caution when accumulating moments for
very large data sets in order to avoid a loss of precision when
the number of samples in the sum approaches the order of
the machine precision. To avoid this problem, we recursively
sum the moments in batches with a batch size O(103) to retain
sufficient precision in the total sum.

III. INERTIAL RANGE SCALING

In the inertial range, the structure function, as in Navier-
Stokes turbulence, follows a power-law scaling with the wave
number kn with a scaling exponent ζp, i.e.,

Sp(n) ∝ k
−ζp
n . (4)

These scaling exponents ζp are universal and their dependence
on the order of the moment p fully describes the statistical
intermittency properties of the inertial range.

To compute the scaling exponents ζp from the numerical
data, we consider first the local slopes ζ̃p(n), wave number by
wave number, obtained as

ζ̃p(n) = ln[Sp(n + 1)] − ln[Sp(n)]

ln[λ]
. (5)

Numerical results for the structure functions and their local
slopes for some selected moments are provided in Fig. 1.

The final estimate of the true scaling exponents ζp is then
provided by the average of these local slopes over the inertial
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FIG. 1. (a),(b) Structure functions Sp(n) and their local slopes ζ̃p(n) (insets) for selected moments p. In the inertial range, the structure
functions exhibit power-law scaling, similar to Navier-Stokes turbulence. (c),(d) Zoom of local slopes of the structure function ζ̃p(n),
normalized by their mean value ζp for p = 6 (left) and p = 21 (right). The vertical axis is strongly cropped to emphasize the fluctuations
in the local slope. Solid lines represent the average over the full data, while the lighter shades represent averages over 1/5th subsamples of the
data to reveal the statistical fluctuations. This shows that the lower moments (left) are dominated by fluctuations from the dissipative range that
are systematic, being consistent across the subsamples, while the high moments (right) are instead dominated by statistical fluctuations. The
selected inertial range is shaded in gray. Results are obtained over a total sample size of approximately 4 × 107 TL .

range nstr � n < nend as

ζp =
∑

nstr�n<nend

1

nend − nstr
ζ̃p(n). (6)

We select the inertial range 6 � n < 15 for moments p � 20.
We gradually decrease the upper limit for moments p > 20
down to 6 � n < 11 for the highest moment p = 24 consid-
ered here due to the finite sampling time, as presented in
Appendix A. The selected range of scales where the inertial
range exponents have been evaluated is highlighted in gray in
Fig. 1.

However, crucially, the selection of the inertial range in-
troduces a degree of arbitrariness and is therefore a source of
systematic error. Due to the multifractal fluctuations, there is
not a unique dissipative wave number, and different moments
will have different ultraviolet dissipative cutoffs [20,21]. Fur-
thermore, statistical fluctuations are also strongly dependent
on the order of the moment and on the wave number, as well
as the systematic fluctuations originating from the forcing and
dissipative ranges. As a result, we have adopted the afore-
mentioned empirical choice of the inertial range as a trade-off
between, on the one hand, retaining a sufficient number of
shells to make a reliable estimate of the overall scaling expo-
nents, while, on the other hand, minimizing the influence of
the different sources of error. As depicted in Figs. 1(c) and
1(d), in particular the fluctuations coming from the ultravio-

let region travel far into the inertial range. The local slopes
display a clear imprint of period-3-like oscillations coming
from the dissipation range. These fluctuations are, for the
lower-order moments, stronger than the statistical fluctuations
and are hence a source of systematic error due to finite Re.
These fluctuations are an intrinsic property of the dynamical
system at hand and have been studied in more detail in [22].

It is thus important that we distinguish and quantify both
sources of uncertainty: the uncertainty due to statistical fluc-
tuations from the finite sampling and the systematic error due
to finite-Re dissipative oscillations. This uncertainty quantifi-
cation is treated in Appendix B. Note that since the systematic
error quantifies the spread over the local slopes in the inertial
range, this then also accounts for the degree of arbitrariness
introduced by the selection of the inertial range.

The resulting estimates of the inertial range scaling expo-
nents ζp, and the systematic and statistical uncertainty therein,
are provided in Fig. 2.

As shown in Fig. 2(a), indeed, the lower-order moments
p � 14 are dominated by the systematic error from finite-Re
oscillations, while the higher-order moments p � 14 are dom-
inated by the statistical error due to finite sampling, as they are
governed by increasingly rare events. The resulting values of
the scaling exponents ζp and their total uncertainty (combined
systematic and statistical uncertainty) are also provided in
Table I.
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FIG. 2. The obtained inertial range scaling exponents ζp as a function of the moment order p. (a) Relative uncertainty of ζp. Dashed
olive-green error bars represent the systematic error, while solid red error bars depict the statistical uncertainty. Lines plotted in lighter shade
represent realizations of 1/5th subsamples of the total data. (b),(c) Comparison of the inertial range scaling exponents ζp with various models:
Kolmogorov (K41) [3], Lognormal (K62) [23], fitted as (μ � 0.20), She-Leveque (SL94) [24] with fixed (C0 = 2, X = 2/3) and variable
(C0, X ), fitted as (C0 � 1.46, X � 0.36), and Eling-Oz (EO15) [25], and fitted as (γ 2 � 0.25). While the models capture certain qualitative
aspects of the scaling exponents as seen in (b), a quantitative compensated comparison (c) reveals that all models are far outside error bars of
the numerical results obtained in this work. (d) Comparison of the inertial range scaling exponents ζp with a linear asymptotic scaling. The
linear fit is carried out on moments 16 (inclusive) to 24 (exclusive), yielding a slope α = 0.151 ± 0.004 and intersection β = 1.04 ± 0.06. It
captures the asymptotic scaling of the numerical data and remains within error bars from moment p � 15 onwards (inset).

TABLE I. Obtained numerical values of the inertial range scaling
exponents ζp and their total uncertainties.

ζp

ζ1 0.3932 ± 0.0003
ζ2 0.7197 ± 0.0002
ζ3 1.0001 ± 0.0002
ζ4 1.2504 ± 0.0005
ζ5 1.4805 ± 0.0009
ζ6 1.696 ± 0.002
ζ7 1.900 ± 0.003
ζ8 2.095 ± 0.003
ζ9 2.282 ± 0.004
ζ10 2.463 ± 0.005
ζ11 2.638 ± 0.006
ζ12 2.807 ± 0.007
ζ13 2.973 ± 0.008
ζ14 3.134 ± 0.008
ζ15 3.293 ± 0.009
ζ16 3.45 ± 0.01
ζ17 3.60 ± 0.02
ζ18 3.75 ± 0.02
ζ19 3.90 ± 0.02
ζ20 4.05 ± 0.03
ζ21 4.20 ± 0.03
ζ22 4.36 ± 0.05
ζ23 4.50 ± 0.06
ζ24 4.62 ± 0.08

Note that the scaling exponent of the third moment is in
agreement with the Kolmogorov 4/5 law that proves ζ3 = 1
[1,3] within the fifth significant digit, giving us confidence
that the true values of other low-order exponents are estimated
with the same accuracy and provide a clear and accurate
benchmark for any new theory aiming to rigorously calculate
scaling properties in turbulence and in turbulence models.

We confirm, furthermore, that when increasing the extent
of the considered inertial range by one shell on both ends to
5 � n < 16, we obtain ζ3 = 1.0001 ± 0.0003, while decreas-
ing the considered inertial range by one shell on both ends to
7 � n < 14, we find ζ3 = 1.0001 ± 0.0002, underpinning the
validity of our results.

The robustness of our results with respect to the resolution,
finite Re, and the forcing scheme is validated in Appendix C.

IV. COMPARISON WITH INTERMITTENCY MODELS

With this very precise measurement of the scaling expo-
nents, it is now insightful to compare our numerical results
with various intermittency models that have been proposed in
the literature.

For completeness, we start by considering the fully self-
similar solution predicted by Kolmogorov (K41) [3],

ζ (K41)
p = p

3
. (7)

Historically, the Lognormal model has also been considered,
referred to as Kolmogorov ‘62 [23], which yields a parabolic
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dependence on p as

ζ (K62)
p = p

3
+ μ

18
(3p − p2). (8)

Arguably, the most widely celebrated model that incorpo-
rates intermittency is the She-Leveque model [24], predicting
anomalous scaling exponents given by

ζ (SL94)
p =

(
1 − C0

3

)
p

3
+ C0

3

1

1 − X
(1 − X

p
3 ), (9)

where the parameter C0 can be interpreted as the codimension
of the most strongly fluctuating structures, which, in 3D turbu-
lence, are assumed to be 1D vortex filaments, such that C0 = 2
and X = 2/3 [24]. However, for shell models, these need not
be the same, so we consider C0 and X as a free parameters.

An alternative intermittency model was recently proposed
by Eling and Oz [25], predicting

ζ (EO15)
p =

√
(1 + γ 2)2 + 4γ 2

( p
3 − 1

) + γ 2 − 1

2γ 2
, (10)

with a single free parameter γ 2.
These models are compared and fitted to the numerical

data, weighting with the respective uncertainties to produce
a maximum likelihood estimate fit. This comparison is pre-
sented in Figs. 2(b) and 2(c). While capturing certain aspects
of the qualitative shape of ζp, the figure shows that the models
considered here, at a quantitative level, all fall far outside error
bars and are thus not in agreement with our numerical results.
For completeness, we also considered the model by Yakhot
[26], the p-model by Meneveau and Sreenivasan [27], and the
random β-model [28], but their agreement (not shown) is less
than the models considered above.

Concerning the large-p asymptotics, governing the statis-
tics of extreme events, we find that the scaling exponents tend
to increase linearly,

lim
p→∞ ζp = αp + β︸ ︷︷ ︸

ζ
(linear)
p

. (11)

Indeed, as shown in Fig. 2(d), the numerically obtained
exponents follow this linear behavior within error bars from
p � 15 onwards. From linear fitting, we obtain a slope
α = 0.151 ± 0.004 and intersection β = 1.04 ± 0.06. This
suggests that asymptotically, the high-order moments are
dominated by one singularity h � 0.15, in agreement with
what was measured with lower precision in [22,29]. We point
out, however, that since the linear behavior develops in the re-
gion of increasing error bars, irrefutably proving the existence
of the asymptotic Eq. (11) warrants further investigation.

V. SINGULARITY SPECTRUM

Finally, we can interpret our findings in the context of
the multifractal model of turbulence [17]. In this language,
velocity structures scale with variable singularity exponents h
as

un(t ) ∼ k−h
n ∀ t ∈ Sh, (12)

with each h between some hmin and hmax residing in a set Sh of
fractal dimension D(h), with codimension C(h) = 3 − D(h),

FIG. 3. Singularity spectrum D(h) = 3 − C(h) of the multifrac-
tal description of the shell model intermittency obtained through a
Legendre transform of the inertial range scaling exponents ζp. The
light-blue shaded region represents the uncertainty interval, obtained
by considering the spread between the minimum and maximum
envelope of the uncertainty interval of ζp.

which is referred to as the singularity spectrum. The singular-
ity spectrum can then be obtained from the scaling exponents
of the structure function ζp through a steepest descent compu-
tation, yielding [1,17]

C(h) = sup
p

[ζp − ph], (13)

which shows that the singularity spectrum is connected to
the structure function scaling exponents through a Legendre
transform.

By computing the Legendre transform on the numerically
obtained scaling exponents, we find the singularity spectrum
provided in Fig. 3. The strongest singularity hmin is thus in-
deed provided by the slope of the obtained asymptotic linear
scaling hmin � 0.15, while the intercept can be interpreted as
its corresponding codimension C(hmin) � 1.

VI. CONCLUSIONS AND OUTLOOK

By employing modern-day GPU acceleration, we have ob-
tained statistics of the intermittency in the Sabra shell model
for 3D turbulence at extreme precision, allowing us to capture
moments of the structure function up to p = 24. Through
careful assessment of the different sources of uncertainty in
our numerical results, we performed a quantitative compari-
son with different models for the anomalous scaling exponents
describing the turbulence intermittency. This reveals that none
of the considered intermittency models [3,23–28] are consis-
tent with our numerical results of the shell model turbulence.
This need not imply that those models are also falsified in
the context of Navier-Stokes turbulence, because there is no
proof that Navier-Stokes and shell model scaling must have
the same functional shape. Nevertheless, our numerical results
define a benchmark for the precision with which analytical
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calculations for anomalous scaling in shell models of turbu-
lence must agree with data.

We find that the asymptotic behavior of the inertial range
scaling exponents at high-order moments p is consistent with
a linear scaling. This indicates that the most extreme turbulent
events are dominated by one leading singularity that we find
to be hmin � 0.15.

To further improve the fidelity of the current measurement,
one would need to consider both sources of uncertainty. To
improve the precision at high moments, which are dominated
by the statistical uncertainty, even longer time statistics are
needed, which will allow one to explore moments even be-
yond p = 24. For improvement of the low moments, which
are dominated by the systematic error due to structural fluc-
tuations coming from the dissipative range, one needs to
consider yet higher Re, requiring more shells and a finer
time step (scaling with the Kolmogorov time τη ∝ Re−1/2).
A promising alternative route to circumvent this systematic
error without resorting to prohibitively larger Re is to com-
pute the scaling exponents over the full range of scales in
the inertial and dissipative range by using the collapse of
the structure functions at two different Re, as put forward
in [22], which requires a modified dissipative closure of the
shell model that is at least of quadratic order. We also mention
the existence of a different class of shell models [15], which
rigorously produce an arbitrary dependence for ζp with linear
large-p asymptotics, at the expense of relaxing the energy
conservation.

To facilitate and encourage further model development and
numerical benchmarking, we make all raw data underlying
this work publicly available in Ref. [30], which also includes
the relevant postprocessing routines as well as a notebook that
reproduces all figures presented here.
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APPENDIX A: COMPENSATED HISTOGRAMS

To assess whether we are accurately sampling all consid-
ered moments of the structure function, we not only keep
track of the accumulated moments, but also tally histograms
of each shell in the production code. This gives us access to
the probability density P(|Fn|1/3) of the flux structures, from

which the structure functions follow as

Sp(n) = 〈|Fn|p/3〉 =
∫ ∞

0
|Fn|p/3P(|Fn|1/3)d|Fn|1/3. (A1)

The integrand in the last expression is coined the compensated
histogram and, from it, we can assess whether the moment is
sufficiently well sampled.

(Compensated) histograms of selected shells and mo-
ments are provided in Fig. 4. If the compensated histogram
is smooth, this indicates that the moment is well sampled
by many significant independent contributions, while a very
roughly peaked compensated histogram indicates that the
measured moment is dominated by a small number of individ-
ual samples and is thus not reliable. We consider the sample
of a moment unreliable when spikes of individual bins due to
singular events are larger than the smooth maximum of the
compensated histogram.

Since higher shells are more intermittent, the higher shells
are more difficult to sample (they require increasingly more
statistics), which outweighs the fact that their decorrelation
time is lower. We have selected the inertial range for the
calculation of the anomalous scaling exponents in the main
text to be 6 � n < 15. We find that moderate moments (we
show p = 10) are well resolved over the full inertial range. At
moment p = 20, the last shell in the inertial range n = 15 is
considered to be just acceptably well sampled. For moments
between 20 < p � 24, we gradually decrement the selected
upper bound of the inertial range because the higher shells
are not well enough sampled. We show the highest considered
moment p = 24, for which we consider the inertial range up
to shell n = 11, which is still acceptably well sampled, but
higher shells (e.g., n = 15 as shown) are not reliably sampled
as their compensated histogram is dominated by individual
contributions.

APPENDIX B: UNCERTAINTY ANALYSIS

To quantify the statistical uncertainty in our measurement,
we compute the scaling exponents ζp over N equally divided
subsamples of the data. With ζp, the scaling exponent over the
full data and ζ̂p,i the scaling exponents over the ith subsample,
we then obtain the statistical uncertainty σstat as the standard
error,

σstat =
√√√√ 1

N (N − 1)

N∑
i=1

(ζ̂p,i − ζp)2. (B1)

We have verified that this definition of the statistical un-
certainty becomes independent of the choice of number of
subsamples, N , for any N < 100 that we have tested, follow-
ing the central limit theorem. We arbitrarily choose N = 5
in this work. In the main text, we report 95% (or 2σstat)
confidence intervals.

To quantify the systematic error owing to the structural
fluctuations from the dissipative range (the finite-Re effect;
see main text), we consider the spread of the local scaling
exponent over the different shells in the inertial range from
shell nstr to nend. This component of the error also accounts
for the somewhat arbitrary selection of the inertial range.
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FIG. 4. Histograms P(|Fn|1/3) (first column) and compensated histograms |Fn|p/3P(|Fn|1/3) (second, third, and fourth column) of flux
structures |Fn|1/3. The compensated histograms depict the integrand of the pth moment, such that the area under the compensated histogram
gives the pth moment of the structure function. Columns show the 10th, 20th, and 24th moment, respectively. Rows consider different shells
at the start of the selected inertial range (n = 6), inside the inertial range (n = 11), and at the end of the selected inertial range (n = 15),
respectively.

We must note, however, that the spread of the local scaling
exponents is also convoluted by the statistical fluctuations. To
isolate the contributions of systematic errors from the statisti-
cal fluctuations, we therefore compensate the spread over the
local scaling exponents by the expected statistical fluctuation
at the single shell level. This leads to the definition of the
systematic error as

σsyst =
√

1

(nend − nstr − 1)

∑
nstr�n<nend

[ζ̃p(n) − ζp]2

− σstat

√
(nend − nstr )/2, (B2)

where we have tacitly assumed that every second shell fluctu-
ates statistically independently.

For the total uncertainty, we use a sum of the variance,

σtot =
√

σ 2
stat + σ 2

syst. (B3)

APPENDIX C: VALIDATION OF RESOLUTION, FINITE
RE, AND FORCING

To validate the robustness of the obtained results with
respect to the temporal and shell-spatial resolution, as well as
the finite-Re and forcing scheme, we perform a quantitative
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comparison over a limited set of runs where we individually
vary the resolutions, Re, and change the forcing scheme.

We consider

�t = 2 × 10−9 = 0.2 �tref,

N = 50 = Nref + 10,

Re = 1010 = 10−2 Reref, (C1)

where we use subscript “ref” to denote the reference values
used in the main text. We also consider an alternative deter-
ministic forcing scheme that ensures a fixed energy flux as

fn =
(

ε0

u∗
0 + 2−1/3u∗

1

,
2−1/3ε0

u∗
0 + 2−1/3u∗

1

, 0, . . . , 0

)
, (C2)

with ε0 = 0.5.
The statistics obtained for these validation runs is limited

to approximately 9 × 105 large Eddy turnover time (compared
to 4 × 107 for the reference production runs in the main
text). Therefore, we can only compare up to around moment
p � 20.

The comparison of the obtained inertial range scaling ex-
ponents ζp is shown in Fig. 5, showing that all validation runs
remain within error bars of the reference case considered in
the main text, substantiating the robustness of our results. We
note that one should consider the systematic errors at finite
Re with some caution because the law of convergence as
Re → ∞ is not known.

FIG. 5. Comparison of the inertial range scaling exponents ζp

obtained from validation runs at varying time step �t , number of
resolved shells, N , forcing scheme f , and Reynolds number Re, to
the reference case treated in the main text. The obtained scaling
exponents ζp are shown in (a), while they are plotted compensated
by the reference case ζ (reference)

p in (b) to highlight their difference
with respect to the error bars.
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