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Amplification of the anomalous scaling in the Kazantsev-Kraichnan model with finite-time
correlations and spatial parity violation
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By using the field theoretic renormalization group technique together with the operator product expansion,
simultaneous influence of the spatial parity violation and finite-time correlations of an electrically conductive
turbulent environment on the inertial-range scaling behavior of correlation functions of a passively advected
weak magnetic field is investigated within the corresponding generalized Kazantsev-Kraichnan model in the
second order of the perturbation theory (in the two-loop approximation). The explicit dependence of the
anomalous dimensions of the leading composite operators on the fixed point value of the parameter that
controls the presence of finite-time correlations of the turbulent field as well as on the parameter that drives
the amount of the spatial parity violation (helicity) in the system is found even in the case with the presence
of the large-scale anisotropy. In accordance with the Kolmogorov’s local isotropy restoration hypothesis, it is
shown that, regardless of the amount of the spatial parity violation, the scaling properties of the model are
always driven by the anomalous dimensions of the composite operators near the isotropic shell. The asymptotic
(inertial-range) scaling form of all single-time two-point correlation functions of arbitrary order of the passively
advected magnetic field is found. The explicit dependence of the corresponding scaling exponents on the helicity
parameter as well as on the parameter that controls the finite-time velocity correlations is determined. It is shown
that, regardless of the amount of the finite-time correlations of the given Gaussian turbulent environment, the
presence of the spatial parity violation always leads to more negative values of the scaling exponents, i.e., to the
more pronounced anomalous scaling of the magnetic correlation functions. At the same time, it is shown that the
stronger the violation of spatial parity, the larger the anomalous behavior of magnetic correlations.

DOI: 10.1103/PhysRevE.109.055101

I. INTRODUCTION

One of the fundamental characteristics of fully developed
turbulent systems is undoubtedly the existence of the anoma-
lous scaling [1–12], i.e., the existence of deviations from the
simple inertial-range scaling behavior of various correlation
functions predicted by the famous classical phenomenological
Kolmogorov-Obukhov (KO) theory [13]. Let us recall that, in
the framework of the KO theory, it is postulated that the statis-
tical properties of arbitrary fully developed turbulent system
deep inside the inertial interval defined by inequalities l �
r � L are independent of the so-called integral scale L, i.e., of
a typical scale at which the energy is pumped into the system
in order to maintain the steady state (the first Kolmogorov
hypothesis), as well as of the so-called dissipation scale l ,
i.e., of a typical scale at which the energy begins to dissipate
intensively (the second Kolmogorov hypothesis). When one
supposes the validity of these two Kolmogorov hypotheses,
then inertial-range scaling exponents of various correlation
functions are unambiguously given and can be found by using
simple dimensional analysis. Note also that one of the conse-
quences of the full validity of the two Kolmogorov hypotheses
would be the inevitable restoration of the full isotropy of the
system in the statistical sense in the inertial range.

However, it is well known that numerical simulations
and theoretical analyses as well as real experiments show
that, in contradiction with the first Kolmogorov hypothesis,

turbulent systems have the ability to remember at least some
general properties of their origin (the form and properties
of the energy pumping at large scales into the system). This
ability is given by the preservation of the explicit dependence
of the correlation functions of various random quantities on
the integral scale even deep inside the inertial interval. This
dependence of the correlation functions on the integral scale
L in the inertial range is manifested explicitly in the change
of their scaling properties, i.e., in the presence of the afore-
mentioned anomalous scaling (see, e.g. Refs. [1–12,14–18] as
well as references cited therein).

From a physical point of view, the presence of the anoma-
lous scaling in turbulent systems is given by the existence
of strong developed fluctuations of the dissipative rate, i.e.,
by the intermittency [1–4,6,11]. Geometrically it means that
the turbulent flows behave like fractals [more precisely, like
multifractals (see, e.g., Ref. [3])] in the sense that not whole
volume of a given turbulent environment is filled by vortices
(such a situation in fact corresponds to the pure dimensional
scaling in the KO theory) but there always exist dynamically
changing places with pure laminar flows at all scales of the
inertial range.

In this connection it should also be mentioned the well-
known fact that the anomalous scaling is even more strongly
pronounced (more visible) in the behavior of various correla-
tion functions of passively advected scalar or vector quantities
by turbulent environments than in the behavior of turbulent

2470-0045/2024/109(5)/055101(15) 055101-1 ©2024 American Physical Society

https://orcid.org/0000-0002-0793-8662
https://orcid.org/0000-0002-3514-8350
https://orcid.org/0000-0002-6497-7414
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.109.055101&domain=pdf&date_stamp=2024-05-01
https://doi.org/10.1103/PhysRevE.109.055101
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velocity fields themselves (see, e.g., Refs. [4,6,9] and refer-
ences cited therein). The central role in these investigations
has been played by the well-known Kraichnan model [19]
and the Kazantsev-Kraichnan model [20] of the passively
advected scalar and vector fields by simple turbulent environ-
ments described by δ-correlated in time random velocity fields
with the Gaussian spatial statistics. Namely, in the framework
of the Kraichnan model of the passive scalar advection, a sys-
tematic theoretical analysis of anomalous scaling in turbulent
systems was performed for the first time using the so-called
zero-mode technique (see Ref. [6] as well as references cited
therein).

The very existence of the anomalous scaling in turbulent
systems also has nontrivial impact on their inertial-range
properties. For instance, it can lead to the natural persis-
tence of various symmetry breaking, generated by the form
of the energy pumping into the system, even deep inside
the inertial interval. In this respect, one of the most effec-
tive theoretical techniques for the systematic investigation
of the properties of the anomalous scaling in turbulent sys-
tems, especially when symmetry breaking of various types
is present, is the field theoretic renormalization group (RG)
technique. In the framework of this theoretical approach, the
anomalous inertial-range scaling behavior of various corre-
lation functions is described through the existence of the
so-called dangerous operators with the negative critical ex-
ponents in the operator product expansion (OPE) [21–23].
Many interesting fundamental facts about the properties of
the anomalous scaling of various random quantities in the
Gaussian as well as non-Gaussian (driven by the stochastic
Navier-Stokes equation) turbulent environments were ob-
tained using the field theoretic RG approach during the last
25 years (see, e.g., Refs. [9,24–42] as well as references cited
therein).

The symmetry breaking in various turbulent systems,
which is recently intensively studied since it plays important
role in many geophysical as well as astrophysical turbulent
processes (see, e.g., Refs. [43–54] as well as references cited
therein), is the spatial parity violation (helicity). Therefore,
from a fundamental point of view, it is undoubtedly impor-
tant to understand also the role of helicity in fully developed
turbulent systems. In this respect, using the field theoretic RG
technique, it was shown in Ref. [55] that the spatial parity vio-
lation of turbulent environments can have a nontrivial impact
on diffusion processes of scalar as well as vector quantities
in such turbulent systems. At the same time, as was shown in
Refs. [56,57], it seems that the presence of the helicity has no
impact on the inertial-range scaling behavior of the correla-
tion functions of passively advected scalar fields by turbulent
environments, regardless whether the turbulent velocity field
is Gaussian or non-Gausian, i.e., driven by the correspond-
ing stochastic Navier-Stokes equation. On the other hand, as
was shown in Refs. [58,59] in the framework of the helical
Kazantsev-Kraichnan model, it seems that the presence of
the spatial parity violation can lead to significant changes in
the scaling properties of the correlation functions of the pas-
sive magnetic field in the kinematic magnetohydrodynamic
(MHD) turbulence. Namely, as calculations have shown, the
anomalous scaling of the passive magnetic field becomes

more pronounced in the helical turbulent environment than in
the absence of the spatial parity violation.

In Refs. [58,59], the influence of the helicity on the
anomalous scaling of the passive vector (magnetic) field was
investigated in the framework of the so-called “rapid-change”
Kazantsev-Kraichnan model of the kinematic MHD turbu-
lence with δ-time correlations of the velocity field. The aim
of the present study is to go beyond this restriction and to
investigate in detail the simultaneous influence of the spa-
tial parity violation and of the finite-time correlations of the
Gaussian turbulent velocity field (in the framework of the cor-
responding generalized Kazantsev-Kraichnan model) on the
inertial-range scaling properties of the correlation functions
of the passively advected magnetic field. As will be shown,
the presence of the helicity amplifies the anomalous scaling
of the magnetic field correlations even when the presence of
the finite-time velocity correlations of an electrically conduc-
tive turbulent environment is assumed. This behavior of the
magnetic correlation functions is again significantly different
in comparison with the behavior of the correlation functions
of the passively advected scalar field in the framework of
the corresponding generalized Kraichnan model [56], where
the presence of the helicity has no impact on the anomalous
scaling even when the finite-time correlations of the turbulent
velocity field is considered.

The paper is organized as follows. In Sec. II the generalized
helical Kazantsev-Kraichnan model of the kinematic MHD
turbulence is described. In Sec. III the field theoretic formula-
tion of the model is given and the basic facts of its ultraviolet
(UV) renormalization are discussed. The explicit dependence
of the critical dimensions of the leading composite operators
on the helicity parameter is found and discussed in Sec. IV.
The inertial-range scaling behavior of the single-time two-
point correlation functions of the magnetic field under the
simultaneous influence of the spatial parity violation and of
the finite-time velocity correlations is investigated in Sec. V.
Obtained results are briefly reviewed and discussed in Sec. VI.

II. THE KAZANTSEV-KRAICHNAN MODEL WITH THE
SPATIAL PARITY VIOLATION AND FINITE-TIME

CORRELATIONS OF THE VELOCITY FIELD

As was already mentioned in Introduction, our aim is to
investigate in detail the influence of the presence of the spatial
parity violation on the scaling properties of correlation func-
tions of the fluctuating part of the magnetic field b ≡ b(t, x)
in the kinematic MHD turbulence driven by the Gaussian
turbulent velocity field with finite-time correlations. Such a
stochastic system is described by the generalized Kazantsev-
Kraichnan model given by the following stochastic equation:

∂t b = ν0�b − (v · ∂ )b + (b · ∂ )v + fb, (1)

where ∂t ≡ ∂/∂t , ∂i ≡ ∂/∂xi, � ≡ ∂2 is the Laplace operator,
ν0 = c2/(4πσ0) is the magnetic diffusivity, c is the speed of
light, σ0 is the conductivity, v ≡ v(t, x) is the fluctuating part
of the velocity field of the electrically conductive turbulent
environment, and fb = fb(t, x) is a random noise (the source
of fluctuations of the magnetic field). Since, in what follows,
we will use the field theoretic RG technique for the analysis of
the model, the subscript 0 will always denote bare parameters
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of the unrenormalized theory. In addition, we will also sup-
pose that the studied turbulent system is incompressible, i.e.,
we postulate that both fields v and b are solenoidal (divergent-
free) vector fields (∂ · v = ∂ · b = 0).

Because of the incompressibility assumption, the random
noise fb is also transverse and maintains the steady state
of the studied dissipative system (it represents the source
of the magnetic energy pumping). It is supposed that its
statistics is Gaussian with zero mean and the correlation
function

Db
i j (t1, x1; t2, x2) ≡ 〈

f b
i (t1, x1) f b

j (t2, x2)
〉

= δ(t1 − t2)Ci j (r/L), (2)

where r = x1 − x2, L represents an integral scale related to
the corresponding stirring, and Ci j are some functions that
are finite in the limit L → ∞. We will not specify their
explicit form here since it is not important in what follows
(they will not enter into any calculation). The only condition
that must be satisfied by the functions Ci j is that they must
decrease rapidly for |r| � L. Note, however, that the large-
scale anisotropy can be introduced into the system through the
correlator (2). For instance, if the system is placed in a con-
stant large-scale (macroscopic) magnetic field B (the source
of the uniaxial large-scale anisotropy), then one possible way
to define the random noise fb is (B · ∂ )v with the explicit
uniaxial anisotropic properties (see, e.g., Ref. [26] for more
details).

In the framework of the Kazantsev-Kraichnan model of the
kinematic MHD turbulence the turbulent velocity field v(t, x)
also has the Gaussian statistics. Moreover, in the case when
the presence of finite-time correlations of the velocity field is
supposed, then the correlation function of the velocity field is
taken in the following form [25,60,61]:

Dv
i j (t, x; t ′, x′)

≡ 〈vi(t, x)v j (t
′, x′)〉

= g0ν
3
0

∫
dω dk

(2π )d+1

k4−d−2ε−ηRi j (k)ei[k·(x−x′ )−ω(t−t ′ )]

ω2 + (u0ν0k2−η )2
, (3)

where d denotes the spatial dimension of the system, k is the
momentum (wave number vector), k = |k|, g0 > 0 is the cou-
pling constant of the model, the parameter u0 represents the
ratio of the turnover time of the vector field and the velocity
correlation time, Ri j (k) is a transverse projector (due to the
incompressibility) explicit form of which will be discussed
below, and the exponents ε and η are RG expansion parame-
ters (see, e.g., Ref. [25] for details).

The energy spectrum E (k) of the system is controlled by
the coupling constant g0 and by the exponent ε in Eq. (3)
through the relation E (k) 
 (g0ν

2
0/u0)k1−2ε. On the other

hand, the finite-time correlations of the velocity field are de-
scribed by the parameter u0 and by the exponent η through
the dispersion relation ω 
 u0ν0k2−η between the frequency
ω and the momentum k [25,62–65]. Note that the physical
values of the parameters ε and η are ε = η = 4/3 since the
value ε = 4/3 leads to the Kolmogorov “two-thirds law” for
the spatial statistics of the velocity field (or to the “five-thirds
law” for the energy spectrum) and η = 4/3 corresponds to the
Kolmogorov frequency.

Using the dimensional analysis one can also find that
the coupling constant g0 and the parameter u0 are related
to the characteristic ultraviolet (UV) momentum scale �

(� ∼ 1/l , where l is the characteristic inner length) by the
relations

g0 
 �2ε+η, u0 
 �η. (4)

The geometric properties of the velocity fluctuations in
Eq. (3) are described by the form of the transverse projector
Ri j (k). In the case without the presence of any symmetry
breaking, the transverse projector Ri j (k) is reduced to the
ordinary isotropic transverse projector Pi j (k) = δi j − kik j/k2.
On the other hand, our aim is to investigate the influence of the
spatial parity violation (helicity) on the statistical properties
of the magnetic correlations. The simplest way to introduce
the spatial parity violation into the studied system is to extend
the ordinary transverse projector Pi j (k) by a part proportional
to the tensor εi jl kl/|k|, where εi jl is Levi-Civita’s completely
antisymmetric tensor of rank 3. The presence of such a tensor
in the transverse projector Ri j (k) in the velocity correlator
(3) explicitly violates the spatial parity of the turbulent sys-
tem. Thus, in what follows, the transverse projector Ri j (k) in
Eq. (3) is taken in the following form:

Ri j (k) = δi j − kik j/k2 + iρεi jl kl/|k|, (5)

where the real parameter 0 � |ρ| � 1 describes the amount of
the helicity in the studied turbulent environment. The value
ρ = 0 means the absence of the spatial parity violation in
the system and, on the other hand, the maximal spatial parity
violation is obtained for |ρ| = 1.

For completeness, let us also note that the Gaussian statis-
tics of the velocity field described by the correlator (3) has two
important special limit cases (see, e.g., Refs. [25,61]). The
first of them is obtained in the limit u0 → ∞ together with
the assumption that the ratio g′

0 ≡ g0/u2
0 remains constant.

This represents the so-called rapid-change model limit, in
the framework of which the correlator (3) has the following
form:

Dv
i j (t, x; t ′, x′)

= δ(t − t ′)g′
0ν0

∫
dk

(2π )d
Ri j (k)k−d−2ε+ηeik·(x−x′ ), (6)

with the δ-time correlations. Thus, in this case, the studied
stochastic model is reduced into the genuine Kazantsev-
Kraichnan model [20] with the presence of the spatial parity
violation [58].

The second nontrivial limit of the studied model is ob-
tained when u0 → 0 and, at the same time, the ratio g′′

0 ≡
g0/u0 is held constant. This is the so-called quenched (time-
independent or frozen) velocity field limit with the velocity
correlator in the form

Dv
i j (t, x; t ′, x′)

= g′′
0ν

2
0

2

∫
dk

(2π )d
Ri j (k)k2−d−2εeik·(x−x′ ). (7)

In this case, the model is similar to models of random walks in
a random environment with long-range correlations (see, e.g.,
Refs. [66,67]).
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Note also that the necessary infrared (IR) regularization of
the integral in Eq. (3), as well as in Eqs. (6) and (7), is realized
by the cutoff from below k = kmin ≡ 1/L, where L represents
the integral turbulent scale. It is, in general, different from the
stirring scale L introduced in Eq. (2), but, in what follows, this
difference is unimportant.

Finally, it is worth mentioning that the stochastic model
given in Eqs. (1)–(3) represents a simplification of real MHD
turbulence problem at least in two points. First of all, the
properties of the velocity field in the stochastic model (1)–
(3) are given by the correlator (3), i.e., all nonlinearities in
the statistics of the velocity field are neglected. The second
significant simplification is given by the fact that the influence
of the magnetic field on the conductive turbulent environment
is also completely neglected. Therefore, the random magnetic
field b in the studied model behaves like a passive vector
admixture.

III. FIELD THEORETIC FORMULATION OF THE MODEL
AND ITS UV RENORMALIZATION

Since the field theoretic formulation of the model as well
as its two-loop RG analysis with the determination of all
possible stable scaling regimes were already given in detail
in Ref. [68], it is not necessary to repeat all the technical
details of such an analysis. Instead, here we give only the basic
facts of the RG analysis as well as the results with the explicit
presence of the spatial parity violation that will be important
in what follows.

A. Field theoretic formulation of the model

Using the well-known formalism [69], the stochastic model
defined by Eqs. (1)–(3) can be rewritten into the field theoretic
model with the action functional (see, e.g., Ref. [61])

S(�) = −1

2

∫
dt1 dd x1 dt2 dd x2

{
vi(t1, x1)

[
Dv

i j (t1, x1; t2, x2)
]−1

v j (t2, x2) − b′
i(t1, x1)Db

i jt1, x1; t2, x2)b′
j (t2, x2)

}
+

∫
dt dd x b′ · [−∂t b + ν0�b − (v · ∂ )b + (b · ∂ )v], (8)

where b′ = b′(t, x) is a solenoidal auxiliary field, � =
{v, b, b′}, Db

i j and Dv
i j are correlators (2) and (3), respec-

tively, and the required summation over all dummy indices
is assumed. The second term in the first line together with
the second line in the action functional (8) represent the De
Dominicis-Janssen action at fixed v of the studied stochastic
problem and the first term in the first line represents the
Gaussian averaging over the velocity field v.

The field theoretic model defined by the action functional
(8) can be investigated using the perturbation theory that can
be realized through the standard diagrammatic technique with
two necessary propagators and one interaction vertex, graph-
ical representations of which are shown explicitly in Fig. 1.
The analytical form of the propagators is (in the frequency-
momentum representation)

〈bib
′
j〉0 = Pi j (k)

−iω + ν0k2
, 〈b′

ib j〉0 = 〈bib
′
j〉∗0 (9)

and

〈viv j〉0 = g0ν
3
0 k4−d−2ε−ηRi j (k)

ω2 + (u0ν0k2−η )2
. (10)

FIG. 1. Graphical representation of the used propagators and
interaction vertex of the model.

On the other hand, the only interaction (triple) vertex of the
model, which follows from the action (8), is given as

b′
i[−v j∂ jbi + b j∂ jvi] = b′

iVi jl b jvl , (11)

with the following analytic form of the vertex factor Vi jl (again
in the frequency-momentum representation):

Vi jl = i(klδi j − k jδil ). (12)

Note that the momentum k is flowing into the vertex via the
auxiliary field b′.

In what follows, we will use the field theoretic functional
formulation (8) of the stochastic problem (1)–(3) for the inves-
tigation of some of its statistical properties. In this respect, the
main advantage of the functional formulation is the possibility
to apply the well-defined field theoretic means, such as the
RG technique and the OPE expansion, to analyze the prob-
lem. Here the statistical averages of random quantities in the
stochastic problem are replaced with the corresponding func-
tional averages with weight exp S(�) (see, e.g., Ref. [23]).

B. Basic facts of the two-loop RG analysis of the model

The standard canonical dimensional analysis [40,61,68]
shows that the field theoretic model described by the action
functional (8) (i) belongs to the so-called two-scale models
[23], in the framework of which the total canonical dimen-
sion of any quantity is given as a linear combination of
its momentum dimension and frequency dimension, (ii) is
multiplicatively renormalizable (the only superficially UV di-
vergent function of the model is the 1-irreducible Green’s
function 〈b′

ib j〉1−ir and the corresponding divergences can
be removed multiplicatively by the counterterm of the form
b′

i�b j), and (iii) is logarithmic for ε = η = 0 (the coupling
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constants g0 and u0 of the model are dimensionless at this
point). Therefore, in the so-called minimal subtraction (MS)
scheme [22], which is always used in what follows, all UV
divergences in the correlation functions have, in general, the
form of poles in parameters ε and η as well as in their linear
combinations.

Using the two-loop RG results obtained in
Refs. [40,61,68], one can conclude that, depending on
the value of parameters ε and η, the model exhibits five
IR stable fixed points that drive all possible asymptotic
inertial-range scaling regimes of the model. Two of them are
related to the rapid-change limit of the model [the velocity
correlations given by Eq. (6)]: one trivial with zero fixed
point value of the coupling constant g′ and the second one

nontrivial with g′
∗ > 0 (the asterisk index “*” will always

denote the fixed point value of arbitrary quantity), and two of
them are related to the frozen limit of the model [the velocity
correlations given by Eq. (7)]: again, one trivial with zero
fixed point value of the coupling constant g′′ and the second
one nontrivial with g′′

∗ > 0.
Finally, the most general scaling regime with the presence

of the finite-time correlations of the turbulent velocity field is
described by the fixed point with arbitrary finite fixed point
value of the parameter u and with the fixed point value of the
coupling constant g as the explicit function of u∗ as well as
of the parameter of the spatial parity violation ρ. In the two-
loop approximation it can be written in the following integral
form:

g∗
Sd

(2π )d
= 2du∗(1 + u∗)

d − 1
ε − 4d2u∗(1 + u∗)

(d − 1)3

Sd−1

Sd
ε2

∫ 1

0
dx(1 − x2)

d−1
2

×

⎡
⎢⎣ (d + u∗)x

(1 + u∗)

arctan
( u∗−x+1√

u2∗+2u∗−x2+1

) − arctan
( u∗+x+1√

u2∗+2u∗−x2+1

)
√

u2∗ + 2u∗ − x2 + 1

+ ρ2δ3d
(d − 2)(d − 5)

d − 1

π − arctan
( u∗−x+1√

u2∗+2u∗−x2+1

) − arctan
( u∗+x+1√

u2∗+2u∗−x2+1

)
√

u2∗ + 2u∗ − x2 + 1

⎤
⎥⎦, (13)

where Sd denotes the surface area of the d-dimensional unit
sphere

Sd ≡ 2πd/2

�(d/2)
, (14)

�(x) is the Euler’s gamma function, and the Konecker symbol
δ3d is used to show explicitly that the helical term has meaning
only for d = 3. This fixed point is realized for ε = η and is
always stable for the physically most interesting case ε = η =
4/3, regardless of the value of the helicity parameter ρ.

The existence of stable fixed point means that, for given
values of the model parameters, various correlation functions
of the model exhibit IR scaling behavior with corresponding
critical dimensions. From a phenomenological point of view,
the most interesting are the multiplicatively renormalizable
equal-time two-point quantities G(r) (see, e.g., Refs. [40,61]
for the general scaling analysis of such quantities).

In what follows, we will be interested in the scaling behav-
ior of the equal-time two-point correlation functions of the
magnetic field

BN−m,m(r) ≡ 〈
bN−m

r (t, x)bm
r (t, x′)

〉
, r = |x − x′|, (15)

where br denotes the component of the magnetic field directed
along the vector r = x − x′ (see, e.g., Refs. [26,61]). The IR
scaling behavior of these correlation functions (driven by the
corresponding IR stable fixed point) can be written as follows
(see Ref. [40] for details):

BN−m,m(r) 
 ν
−N/2
0 (r/l )−γ ∗

N−m−γ ∗
m RN,m(r/L), (16)

where γ ∗
N−m and γ ∗

m are the anomalous dimensions of the
composite operators bN−m

r and bm
r , taken at the correspond-

ing fixed point values g∗ and u∗, and the scaling functions
RN,m(r/L) remain unknown in the framework of the standard
RG analysis.

On the other hand, the inertial range (r/L → 0) asymptotic
behavior of the scaling functions RN,m(r/L) can be studied
using the OPE technique [22], in the framework of which the
scaling functions can be written as follows:

RN,m(r/L) =
∑

i

CFi (r/L)(r/L)�Fi , r/L → 0, (17)

where the sum runs through all possible renormalized com-
posite operators Fi allowed by the symmetry of the problem
with their critical dimensions �Fi . CFi (r/L) are the corre-
sponding coefficient functions, which are regular in r/L. It
is clear that the nontrivial contribution to the inertial-range
behavior of the scaling functions [and therefore also to the
inertial-range behavior of the correlation functions (15)] is
given by operators with negative critical dimensions, which
give singular contributions to the OPE (17) in the limit
r/L → 0 (see, e.g., Ref. [26] for details). At the same time,
if more than one such “dangerous” operators exist, then the
leading contribution to the expansion (17) is given by the
composite operators with the smallest critical dimensions This
behavior is commonly known as the anomalous scaling and is
typical for fully developed turbulent systems.

Dimensional analysis shows (see, e.g., Ref. [40]) that, in
the studied model even with the presence of the spatial parity
violation, the most singular contributions in the OPE are given
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by the operators constructed solely from the magnetic field
b(x) in the following form (see, e.g., Refs. [26,34,36]):

FN,p = (n · b)p(b · b)l , N = 2l + p. (18)

Note that the from of the operators (18) is also suitable for
investigation of the model with the presence of the uniaxial
anisotropy represented by the unit vector n. It can be defined,
e.g., as n = B/|B|, if the studied system is placed in a constant
large-scale magnetic field B (see Sec. II).

Since our aim is to investigate the influence of the spatial
parity violation on the scaling properties of the single-time
two-point correlation functions (15) of the magnetic field, it
is necessary first to determine the dependence of the critical
exponents of the composite operators (18) on the helicity
parameter ρ. This dependence is determined and discussed in
the next section.

IV. INFLUENCE OF HELICITY ON THE CRITICAL
DIMENSIONS OF THE LEADING COMPOSITE

OPERATORS

Thus, our first aim is to determine the dependence of the
critical dimensions �N,p of the composite operators (18) on
the helicity parameter ρ. For this purpose it is necessary to
perform the corresponding UV renormalization procedure of
these operators, a general description of which can be found
elsewhere (see, e.g., Refs. [26,34,36,61]). Therefore, in what
follows, we will discuss only some of its basic results.

One of the most important feature of the renormalization
procedure of the system of composite operators (18) is the
fact that not only the operators with different values of N do
not mix during the renormalization but also the corresponding
matrices of renormalization constants Z[N,p][N,p′] for all values
of N are triangular. As a result, the anomalous dimensions γN,p

of the basic composite operators (18) are determined directly
by the diagonal elements of the matrix Z[N,p][N,p′], i.e., by the
elements ZN,p ≡ Z[N,p][N,p], by the following relation:

γN,p = μ∂μ ln ZN,p. (19)

At the same time, using the general relation between the
critical dimensions �N,p and the anomalous dimensions γN,p

[26,34,36,40,61], one can come to the conclusion that, in our
case,

�N,p = γ ∗
N,p, (20)

i.e., the critical dimensions of the composite operators (18) are
equal to their anomalous dimensions taken at the correspond-
ing fixed point of the studied scaling regime (see the previous
section).

At the two-loop level of approximation, the anomalous
dimensions γN,p are given by the corresponding UV renormal-
ization analysis of the one- and two-loop Feynman diagrams
shown in Fig. 2. After the corresponding calculations, the
anomalous dimensions γN,p taken at the fixed point can be

FIG. 2. Relevant one- and two-loop Feynamn diagrams for the
UV renormalization of the composite operators (18). The black circle
in each diagram represents vertex related to the composite operator
FN,p (see, e.g., Ref. [40] for details), and the graphical representation
of all other Feynman rules is given in Fig. 1.

written in the following form with the explicit dependence on
the helicity parameter ρ:

γ ∗
N,p = γ

∗(1)
N,p ε + [

γ
∗(2)
N,p + γ

∗(2)ρ
N,p

]
ε2 + O(ε3), (21)

where the explicit expression for the one-loop contribution

γ
∗(1)
N,p = 2N (N − 1) − (N − p)(d + N + p − 2)(d + 1)

2(d + 2)(d − 1)
(22)

is known for a long time (see, e.g., Ref. [61]) and the non-
helical two-loop contribution γ

∗(2)
N,p to the total anomalous

dimensions γ ∗
N,p was calculated recently in Ref. [40]. Since

its explicit expression is enormous we will not present it here
(it can be found in Ref. [40]). On the other hand, the main aim
of this paper is to determine the two-loop helical contribution
γ

∗(2)ρ
N,p , which is present only in the system with the breaking of

the spatial parity. Our calculations show that this contribution
has the following explicit form:

γ
∗(2)ρ
N,p = ρ2δ3d (d − 2)d[(d + 1)k1 − 2k2]

(d + 2)(d − 1)3(1 + u∗)

�
(

d
2

)
√

π�
(

d−1
2

)
×

∫ 1

0
dx(1 − x2)

d−1
2

{
(d − 5)(1 + u∗)K1

d − 1

+ A1K1 + A2K2 + A3K3

u∗(1 − u∗)[1 + u2∗ + 2u∗(2x2 − 1)]

}
, (23)

055101-6



AMPLIFICATION OF THE ANOMALOUS SCALING IN THE … PHYSICAL REVIEW E 109, 055101 (2024)

where

k1 = (N − p)(d + N + p − 2), (24)

k2 = N (N − 1), (25)

A1 = [(u∗ + 1)2(u∗ + 2) − 4u∗x2]

× [4u∗x2 + (u∗ − 1)2], (26)

A2 = 2(u∗ − 1)(u∗ + 1)2[4u∗x2 + (u∗ − 1)2]

× [u∗(u∗ + 4x2 − 1) + 1], (27)

A3 = −2u2
∗{u∗[u2

∗ + (3u∗ + 8)x2 + u∗ − 4x4 − 1] + x2 − 1},
(28)

and

K1 = 1√
u2∗ + 2u∗ − x2 + 1

×
[
π − arctan

(
u∗ − x + 1√

u2∗ + 2u∗ − x2 + 1

)

− arctan

(
u∗ + x + 1√

u2∗ + 2u∗ − x2 + 1

)]
, (29)

K2 =
π − arctan

(
1−x√
1−x2

) − arctan
(

x+1√
1−x2

)
√

1 − x2[1 + u2∗ + 2u∗(2x2 − 1)]
, (30)

K3 = Y1 + Y2√
2u∗ − x2 + 2

, (31)

where

Y1 = π − arctan

(
2 − x√

2u∗ − x2 + 2

)

− arctan

(
x + 2√

2u∗ − x2 + 2

)
, (32)

Y2 = π − arctan

(
u∗ − x + 1√
2u∗ − x2 + 2

)

− arctan

(
u∗ + x + 1√
2u∗ − x2 + 2

)
. (33)

Before we analyze the behavior of the anomalous dimen-
sions γ ∗

N,p, which directly define the critical dimensions of the
composite operators (18) through the relation (20), let us note
that in the rapid-change limit (u∗ → ∞), i.e., in the frame-
work of the Kazantsev-Kraichnan model with the presence of
the helicity at d = 3, one comes to the expression for γ

∗(2)
N,p

found and present in Ref. [58].
To proceed with the investigation of the simultaneous in-

fluence of the finite-time correlations of the velocity field
and of the spatial parity violation of the conductive turbulent
environment on the anomalous scaling in the framework of the
studied model with the presence of the large-scale anisotropy,
it is necessary first to identify which of various anisotropic
contributions γ ∗

N,p with a given value of N and various values
of p is the smallest and therefore plays the leading role for

the determination of the scaling properties of various phe-
nomenologically interesting quantities, e.g., of the single-time
two-point correlation functions of the magnetic field shown
in Eq. (15). In this respect, the validity of various hierarchy
relations among anomalous dimensions γ ∗

N,p can help, and it is
known that the following relations are valid in the framework
of the nonhelical Kazantsev-Kraichnan model with the finite-
time correlations of the velocity field [40]:

γ ∗
N,p < γ ∗

N,p′ , p < p′, (34)

γ ∗
N,0 < γ ∗

N ′,0, N > N ′, (35)

γ ∗
N,1 < γ ∗

N ′,1, N > N ′, (36)

where relation (35) holds for even values of N and N ′ and
relation (36) is valid for odd values of N and N ′, respectively.
Direct calculations show that, at least at the studied two-loop
level of approximation, all these relations remain valid when
the spatial parity violation of the turbulent environment is
considered. It means that, at least up to the two-loop approx-
imation, the scaling behavior of various statistical quantities
deep inside the inertial interval is driven by the anomalous di-
mensions γ ∗

N,0 (for even values of N) and γ ∗
N,1 (for odd values

of N), respectively, even in the helical Kazantsev-Kraichnan
model with finite-time correlations of the velocity field. Note
that this behavior is in accordance with the Kolmogorov’s
local isotropy restoration hypothesis.

The explicit simultaneous dependence of the anomalous di-
mensions γ ∗

N,0 for N = 2, 4, 6, and 8 and γ ∗
N,1 for N = 3, 5, 7,

and 9 on the parameter u∗, which controls the presence of
finite-time correlations of the turbulent velocity field, and on
the absolute value of the parameter ρ, which controls the
amount of the spatial parity violation, is shown in Figs. 3–10.
As follows from all these figures, regardless of the value of u∗
(i.e., regardless of the strength of the finite-time correlations
of the velocity field), the presence of the spatial parity viola-
tion in the conductive turbulent environment always decreases
the fixed point values of the leading anomalous dimensions
γ ∗

N,0 and γ ∗
N,1, respectively. Therefore, one can also expect

that the anomalous scaling of various correlation functions
of the fluctuating part of the magnetic field will be more
pronounced in the helical environments than in the system
without the presence of spatial parity violation. At the same
time, the most anomalous behavior of the model is expected
in the systems with the maximal spatial parity violation. The
fact that such behavior really takes place is demonstrated in
the next section.

V. SIMULTANEOUS INFLUENCE OF HELICITY AND
FINITE-TIME VELOCITY FIELD CORRELATIONS ON

THE SCALING BEHAVIOR OF MAGNETIC FIELD
CORRELATION FUNCTIONS

The existence of strict hierarchy relations (34)–(36), which
are valid in the one-loop as well as in the two-loop approxima-
tion of the studied model, leads to the definite prediction of the
asymptotic inertial-range behavior of the correlation functions
(15) in the presence of the large-scale uniaxial anisotropy.
Its final form depends on the values of N and m [26,34,36],
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FIG. 3. The explicit dependence of the total two-loop anomalous
dimensions γ ∗

2,0 on the helicity parameter ρ as well as on the parame-
ter u∗ ∈ [0, 1] (the lower surface) and w∗ ≡ 1/u∗ ∈ [0, 1] (the upper
surface) for d = 3 and ε = 4/3.

namely,

BN−m,m(r) ∼ rγ ∗
N,0−γ ∗

N−m,0−γ ∗
m,0 , (37)

FIG. 4. Explicit dependence of the total two-loop anomalous di-
mensions γ ∗

3,1 on the helicity parameter ρ as well as on the parameter
u∗ ∈ [0, 1] (the lower surface) and w∗ ≡ 1/u∗ ∈ [0, 1] (the upper
surface) for d = 3 and ε = 4/3.

FIG. 5. Explicit dependence of the total two-loop anomalous di-
mensions γ ∗

4,0 on the helicity parameter ρ as well as on the parameter
u∗ ∈ [0, 1] (the lower surface) and w∗ ≡ 1/u∗ ∈ [0, 1] (the upper
surface) for d = 3 and ε = 4/3.

for even values of N and m,

BN−m,m(r) ∼ rγ ∗
N,0−γ ∗

N−m,1−γ ∗
m,1 , (38)

FIG. 6. Explicit dependence of the total two-loop anomalous di-
mensions γ ∗

5,1 on the helicity parameter ρ as well as on the parameter
u∗ ∈ [0, 1] (the lower surface) and w∗ ≡ 1/u∗ ∈ [0, 1] (the upper
surface) for d = 3 and ε = 4/3.
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FIG. 7. Explicit dependence of the total two-loop anomalous di-
mensions γ ∗

6,0 on the helicity parameter ρ as well as on the parameter
u∗ ∈ [0, 1] (the lower surface) and w∗ ≡ 1/u∗ ∈ [0, 1] (the upper
surface) for d = 3 and ε = 4/3.

for even value of N and odd value of m, and

BN−m,m(r) ∼ rγ ∗
N,1−γ ∗

N−m,0−γ ∗
m,1 , (39)

FIG. 8. Explicit dependence of the total two-loop anomalous di-
mensions γ ∗

7,1 on the helicity parameter ρ as well as on the parameter
u∗ ∈ [0, 1] (the lower surface) and w∗ ≡ 1/u∗ ∈ [0, 1] (the upper
surface) for d = 3 and ε = 4/3.

FIG. 9. Explicit dependence of the total two-loop anomalous di-
mensions γ ∗

8,0 on the helicity parameter ρ as well as on the parameter
u∗ ∈ [0, 1] (the lower surface) and w∗ ≡ 1/u∗ ∈ [0, 1] (the upper
surface) for d = 3 and ε = 4/3.

for odd values of N and m. The fourth possibility with odd
value of N and even value of m is in fact contained in the last
case.

Now, using the explicit expressions (21)–(33) for the
anomalous dimensions taken at the general fixed point (13)

FIG. 10. Explicit dependence of the total two-loop anomalous
dimensions γ ∗

9,1 on the helicity parameter ρ as well as on the pa-
rameter u∗ ∈ [0, 1] (the lower surface) and w∗ ≡ 1/u∗ ∈ [0, 1] (the
upper surface) for d = 3 and ε = 4/3.
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of the model, the final scaling asymptotic behavior of the cor-
relation functions BN−m,m(r) in the two-loop approximation
can be written in the following general form:

BN−m,m(r) ∼ rζN,m = rζ
(1)
N,mε+[ζ (2)

N,m+ζ
(2)ρ
N,m ]ε2

, (40)

where the well-known one-loop result ζ
(1)
N,m has the form

[26,36]

ζ
(1)
N,m = −m(N − m)

d + 2
, (41)

when N and m are simultaneously even or odd and

ζ
(1)
N,m = −m(N − m) + d + 1

d + 2
, (42)

for even values of N and odd values of m. At the same time,
the nonhelical two-loop corrections ζ

(2)
N,m to the exponents ζN,m

in Eq. (40) can be found in Ref. [41]. On the other hand, the
determination of the two-loop helical corrections ζ

(2)ρ
N,m to the

exponents ζN,m in Eq. (40) represent one of the main results of
this paper and have the following explicit form:

ζ
(2)ρ
N,m = ρ2δ3d (d − 2)dD1

(d + 2)(d − 1)2(1 + u∗)

�
(

d
2

)
√

π�
(

d−1
2

)
×

∫ 1

0
dx(1 − x2)

d−1
2

{
(d − 5)(1 + u∗)K1

d − 1

+ A1K1 + A2K2 + A3K3

u∗(1 − u∗)[1 + u2∗ + 2u∗(2x2 − 1)]

}
, (43)

where the functions Ai and Ki for i = 1, 2, 3 are given in
Eqs. (26)–(31) and

D1 = 2m(N − m), (44)

when both N and m are simultaneously even or odd and

D1 = 2[m(N − m) + d + 1], (45)

for even N and odd m.
As follows from the explicit two-loop expressions for the

exponents ζN,m, the presence of the two-loop corrections leads
to their explicit dependence on the spatial parity violation
of the turbulent environment through the parameter ρ. Note
once more that this nontrivial fact is completely invisible at
the one-loop level of approximation sice the corresponding
coefficients ζ

(1)
N,m in Eqs. (41) and (42) are independent of ρ.

Moreover, the same is true for the finite-time correlations of
the turbulent velocity field. Again, the scaling exponents of the
single-time two-point correlation functions of the passively
advected magnetic field are independent of the parameter u∗
at the one-loop level of approximation. Thus, at least the two-
loop approximation (studied in the present paper) is needed
to be able to investigate the simultaneous influence of the
finite-time correlations and the spatial parity violation of the
turbulent velocity field on the scaling properties of the corre-
lations of the studied magnetic field.

At the same time, note that the existence of a nontrivial
dependence of the scaling exponents ζN,m of the correlation
functions of the magnetic field (15) on the helicity parameter
ρ in the two-loop approximation in the framework of the

FIG. 11. Dependence of the scaling exponents ζ2,1 on the abso-
lute value of the helicity parameter ρ as well as on the parameter
u∗ ∈ [0, 1] (the lower surface) and w∗ ≡ 1/u∗ ∈ [0, 1] (the upper
surface) for d = 3 and ε = 4/3.

studied generalized Kazantsev-Kraichnan model also demon-
strates a fundamental difference between passive advection
processes of scalar and vector fields in turbulent environ-
ments. This conclusion follows from the fact that, in contrast
to the magnetic field advection studied in this paper, the
two-loop field theoretic RG calculations show that the scaling
properties of single-time two-point correlation or structure
functions of a passively advected scalar field are indepen-
dent of the presence of the spatial parity violation of the
turbulent environment even when the presence of finite-time
correlations of the turbulent velocity field is assumed, i.e.,
in the framework of the generalized Kraichnan model [56].
Moreover, as was shown in Ref. [57], it seems that the scaling
properties of various correlation or structure functions of the
passively advected scalar field are independent of the spatial
parity violation of the turbulent environment not only when
the Gaussian statistic of the velocity field is assumed but even
in the case when the turbulent velocity field is driven by the
stochastic Navier-Stokes equation.

The explicit dependence of all scaling exponents ζN,m for
N = 2, . . . , 7 of the single-time two-point correlation func-
tions of the passively advected magnetic field given in Eq. (15)
on the absolute value of the helicity parameter ρ and on the
parameter u∗, which controls the presence of the finite-time
velocity correlations, in the studied two-loop approximation
is shown in Figs. 11–22 for the spatial dimension d = 3 (the
only spatial dimension for which the helical contribution can
be considered) and for the physically most important value
of the exponent ε, i.e., for ε = 4/3. As follows from all
these figures, regardless of the value of the parameter u∗,
the presence of helicity always leads to more negative values
of the scaling exponents ζN,m, i.e., to the amplification of
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FIG. 12. Dependence of the scaling exponents ζ3,1 on the abso-
lute value of the helicity parameter ρ as well as on the parameter
u∗ ∈ [0, 1] (the lower surface) and w∗ ≡ 1/u∗ ∈ [0, 1] (the upper
surface) for d = 3 and ε = 4/3.

the anomalous scaling of the studied correlation functions
of the magnetic field. At the same time, regardless of the
absolute value of the helicity parameter ρ, the scaling ex-
ponents ζN,m always decrease when the parameter u∗ ∈ [0, 1]

FIG. 13. Dependence of the scaling exponents ζ4,1 on the abso-
lute value of the helicity parameter ρ as well as on the parameter
u∗ ∈ [0, 1] (the lower surface) and w∗ ≡ 1/u∗ ∈ [0, 1] (the upper
surface) for d = 3 and ε = 4/3.

FIG. 14. Dependence of the scaling exponents ζ4,2 on the abso-
lute value of the helicity parameter ρ as well as on the parameter
u∗ ∈ [0, 1] (the lower surface) and w∗ ≡ 1/u∗ ∈ [0, 1] (the upper
surface) for d = 3 and ε = 4/3.

decreases. On the other hand, a similar behavior of the scal-
ing exponents ζN,m is observed when the parameter w∗ =
1/u∗ ∈ [0, 1] increases but only for small enough values of
the parameter ρ, i.e., for |ρ| � 1. When the absolute value

FIG. 15. Dependence of the scaling exponents ζ5,1 on the abso-
lute value of the helicity parameter ρ as well as on the parameter
u∗ ∈ [0, 1] (the lower surface) and w∗ ≡ 1/u∗ ∈ [0, 1] (the upper
surface) for d = 3 and ε = 4/3.
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FIG. 16. Dependence of the scaling exponents ζ5,3 on the abso-
lute value of the helicity parameter ρ as well as on the parameter
u∗ ∈ [0, 1] (the lower surface) and w∗ ≡ 1/u∗ ∈ [0, 1] (the upper
surface) for d = 3 and ε = 4/3.

of the helicity parameter ρ is large enough, the anomalous
scaling of the studied correlation functions of the magnetic
field becomes more pronounced for the rapid-change limit
of the model (w∗ = 0) than for the model with the pres-
ence of small but nonzero time-correlated turbulent velocity

FIG. 17. Dependence of the scaling exponents ζ6,1 on the abso-
lute value of the helicity parameter ρ as well as on the parameter
u∗ ∈ [0, 1] (the lower surface) and w∗ ≡ 1/u∗ ∈ [0, 1] (the upper
surface) for d = 3 and ε = 4/3.

FIG. 18. Dependence of the scaling exponents ζ6,2 on the abso-
lute value of the helicity parameter ρ as well as on the parameter
u∗ ∈ [0, 1] (the lower surface) and w∗ ≡ 1/u∗ ∈ [0, 1] (the upper
surface) for d = 3 and ε = 4/3.

field. However, this behavior is valid only for very small
values of the parameter w∗ � 1 (see Figs. 11–22) and in
fact may just be an artifact of the studied two-loop approx-
imation. Therefore, despite this fact, a general conclusion
that follows from our analysis is that the electrically conduc-

FIG. 19. Dependence of the scaling exponents ζ6,3 on the abso-
lute value of the helicity parameter ρ as well as on the parameter
u∗ ∈ [0, 1] (the lower surface) and w∗ ≡ 1/u∗ ∈ [0, 1] (the upper
surface) for d = 3 and ε = 4/3.
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FIG. 20. Dependence of the scaling exponents ζ7,1 on the abso-
lute value of the helicity parameter ρ as well as on the parameter
u∗ ∈ [0, 1] (the lower surface) and w∗ ≡ 1/u∗ ∈ [0, 1] (the upper
surface) for d = 3 and ε = 4/3.

tive turbulent environment with the spatial parity violation
leads to significant amplification of the anomalous scaling
behavior of the correlation functions of the magnetic field
even when this turbulent environment is time correlated, i.e.,

FIG. 21. Dependence of the scaling exponents ζ7,3 on the abso-
lute value of the helicity parameter ρ as well as on the parameter
u∗ ∈ [0, 1] (the lower surface) and w∗ ≡ 1/u∗ ∈ [0, 1] (the upper
surface) for d = 3 and ε = 4/3.

FIG. 22. Dependence of the scaling exponents ζ7,5 on the abso-
lute value of the helicity parameter ρ as well as on the parameter
u∗ ∈ [0, 1] (the lower surface) and w∗ ≡ 1/u∗ ∈ [0, 1] (the upper
surface) for d = 3 and ε = 4/3.

with the presence of finite-time correlations of the velocity
field.

VI. CONCLUSION

To conclude, let us summarize briefly the main results
obtained in the present study. In this paper, the simultaneous
influence of the spatial parity violation and the finite-time
correlations of the electrically conductive turbulent environ-
ment on the inertial-range scaling properties of the correlation
functions of the weak magnetic field is investigated in the
framework of the kinematic MHD turbulence described by the
corresponding generalized Kazantsev-Kraichnan model. This
influence is investigated using the field theoretic RG technique
together with the OPE in the two-loop approximation. The
two-loop anomalous dimensions of the leading composite
operators in the OPE, which drive the scaling behavior of
the correlation functions of passively advected magnetic field,
are calculated as the explicit functions of the parameters that
control the amount of the spatial parity violation as well as of
the form of the finite-time correlations in the studied turbulent
system. It is shown that, in accordance with the Kolmogorov’s
hypothesis about the local isotropy restoration, the anoma-
lous dimensions of the relevant composite operators of the
model always obey the well-defined anisotropy hierarchies
with the most negative values of the anomalous dimensions
given by the composite operators from the vicinity of the
isotropic shell, regardless of the amount of the spatial parity
violation in the system. It means that, namely, the anomalous
dimensions of the composite operators near the isotropy shell
will drive the asymptotic inertial-range scaling behavior of
the correlation functions of the passive magnetic field. In this
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respect, the properties of the two-loop anomalous dimensions
γ ∗

N,0 (for even values of N) and γ ∗
N,1 (for odd values of N)

of the composite operators (18) are investigated in detail for
various values of N up to N = 9. Their explicit dependence on
the parameters that control the presence of the spatial parity
violation and of the finite-time correlations in the studied
turbulent system is shown in Figs. 3–10. The obtained results
show that, regardless of the form of the finite-time correlations
of the velocity field in the conductive turbulent environment,
the presence of the spatial parity violation always leads to
the more negative values of the leading anomalous dimen-
sions γ ∗

N,0 and γ ∗
N,1. Therefore, it is also natural to expect

that the anomalous scaling of various correlation functions
of the fluctuating part of the magnetic field have to be more
pronounced in the helical environments than in the system
without the presence of the spatial parity violation with the
most anomalous behavior of the model in the system with the
maximal spatial parity violation.

This expectation is confirmed in Sec. V, where the asymp-
totic inertial-range behavior of the single-time two-point
correlation functions of the magnetic field is investigated in
detail. The explicit dependence of the corresponding two-loop
scaling exponents ζN,m [see Eq. (40)] on the parameter that
control the presence of the spatial parity violation in the
system is found and discussed in detail for all correlation

functions up to N = 7 (see Figs. 11–22). As follows from all
these figures, the scaling properties of the correlation func-
tions of passively advected weak magnetic field in the studied
Gaussian turbulent environment strongly depend on the
amount of the spatial parity violation in the system, regardless
of the form of the finite-time correlations of the velocity field.

Although the results of the present paper are obtained
in the framework of a Gaussian model of the kinematic
MHD turbulence, nevertheless we suppose that a similar be-
havior of the correlation functions of the magnetic field in
the helical turbulent environment will also be valid in the
framework of the real kinematic MHD turbulence, i.e., in the
case when the weak magnetic field is advected by the turbu-
lent velocity field described by the stochastic Navier-Stokes
equation. This problem is, however, much more complicated
from the mathematical point of view and will be studied
elsewhere.
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