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Elasticity of self-organized frustrated disordered spring networks
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There have been some interesting recent advances in understanding the notion of mechanical disorder in
structural glasses and the statistical mechanics of these systems’ low-energy excitations. Here we contribute to
these advances by studying a minimal model for structural glasses’ elasticity in which the degree of mechanical
disorder—as characterized by recently introduced dimensionless quantifiers—is readily tunable over a very
large range. We comprehensively investigate a number of scaling laws observed for various macro, meso and
microscopic elastic properties, and rationalize them using scaling arguments. Interestingly, we demonstrate
that the model features the universal quartic glassy vibrational density of states as seen in many atomistic
and molecular models of structural glasses formed by cooling a melt. The emergence of this universal glassy
spectrum highlights the role of self-organization (toward mechanical equilibrium) in its formation, and elucidates
why models featuring structural frustration alone do not feature the same universal glassy spectrum. Finally,
we discuss relations to existing work in the context of strain stiffening of elastic networks and of low-energy
excitations in structural glasses, in addition to future research directions.
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I. INTRODUCTION

Many static and dynamic mechanical properties of struc-
tural glasses depend upon their featured degree of mechanical
disorder. Some well-known examples manifesting this de-
pendence include wave attenuation rates [1–6], elastoplastic
responses [7–10], and fracture mechanics [11–13]. Con-
sequently, many efforts attempting to identify useful and
broadly applicable quantifiers of mechanical disorder in struc-
tural glasses were put forward in recent years [14–18]. These
efforts complement a different class of approaches—applied
predominantly to understanding the structure-dynamics re-
lations in supercooled liquids (see e.g. [19,20])—in which
glassy disorder is quantified via positional disorder (of the
relevant constituents) alone, with little or no reference to
mechanics. The role of disorder in the physics of glassy solids
has been incorporated in various theoretical frameworks, e.g.,
the shear transformation zones theory [21] and heterogeneous
elasticity theory [1,2].

One key challenge toward a thorough understanding of
the elasticity of structural glasses involves identifying simple
models or glass-formation protocols (or both) that allow work-
ers to tune the degree of mechanical disorder of the model
systems over a large range. This has been previously accom-
plished in Refs. [22,23] by allowing for additional degrees
of freedom in the Hamiltonian of a generic glass forming
model—in this case, the particles’ effective sizes—, and sub-
sequently freezing those additional degrees of freedom after
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glass formation. Computer glasses formed with this protocol
showed remarkable stress-strain curves with very pronounced
stress overshoots, which are reminiscent of those seen upon
shear deformation of ultrastable glasses [9,10]. They also fea-
ture an enormous variability of the width-to-mean ratio of the
sample-to-sample distribution of the shear modulus—denoted
there, here, and in what follows as χ—, shown to vary by
over a factor of four by tuning the stiffness associated with
the additional degrees of freedom. This approach to tuning
mechanical disorder in computer glasses was also employed
in Ref. [13] where the said variability gives rise to a ductile-
to-brittle transition in glassy samples under uniaxial tension.

Another route toward tuning mechanical disorder in simple
models was put forward in Refs. [5,16,24,27,28]; there, the
internal stresses of a conventional computer glass were artifi-
cially reduced, leading to smaller mechanical fluctuations in
glassy samples. References [5,16] showed that this reduction
of internal stresses can give rise to almost an order of magni-
tude variability of the mechanical-disorder quantifier χ . Using
this approach, in Ref. [5] it was shown that attenuation rates
of shear waves scales as χ2, in agreement with the predictions
of heterogeneous elasticity theory [1,2].

While the aforementioned exercises and protocols are
undoubtedly useful and insightful, they produce glassy struc-
tures that cannot represent well the class of configurations
obtained by cooling a liquid into a glass. In particular,
glasses formed by quenching a liquid have been shown to
feature a universal gapless nonphononic spectra D(ω)∼ω4

[29–31] (here ω is an angular frequency), independent of
glass formation history [32–34], spatial dimension [35], or
any microscopic details [36]. In contrast, glassy structures
formed with the aforementioned protocols—either by adding
degrees of freedom during glass formation [22,23], or by
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FIG. 1. (a) The vibrational density of states (VDoS) calculated for computer glasses in which the interparticle forces were factored by
1−δ, see legend for values of δ. Setting δ>0 results in a gap ∼√

δ in the VDoS [24]. Here and in (b)–(d), ω0 ≡cs/a0 where cs is the speed
of shear waves and a0 an interparticle length. Figure adopted from Ref. [24]. (b) VDoS of computer glasses in which the particles’ effective
sizes are allowed to vary under a potential of characteristic stiffness kλ only during glass formation (and frozen thereafter). A gap ∼1/

√
kλ

opens in the VDoS. Figure adopted from Ref. [23]. These two examples demonstrate that some approaches to tuning mechanical disorder in
computer glasses result in anomalous vibrational spectra compared to those of glasses quenched from a melt–which universally feature ∼ω4

nonphononic spectra, as shown in panel (c) for glasses made with the Swap-Monte Carlo method introduced in Ref. [25]. Figure adopted from
Ref. [26]. In this work we present a model and sample-formation protocol that both allows for a large tunability of mechanical disorder, and
features the universal quartic nonphononic spectrum as shown in panel (d) and discussed in Sec. IV below.

artificially reducing the internal stresses [5,16,24,27,28]—
feature a gapped nonphononic spectra (see examples in
Fig. 1), rendering them less realistic and thus less relevant to
natural or laboratory glasses.

In this work we study a minimal off-lattice model
system and glass-formation protocol that—when employed
together—allow for a very large tunability of mechanical
disorder, while also featuring the universal ∼ω4 nonphononic
spectrum as seen in computer glasses formed by quenching
a melt, see Fig. 1 and associated caption. We study various
micro, meso, and macroscopic observables as a function of
the model’s key parameters, and rationalize the observed
scaling laws using scaling ansatz and arguments. We further
discuss the relation of our work to a recently introduced class
of mean-field models for glassy excitations [37,38], to the
phenomenon of strain stiffening of elastic networks [39–41],
and to other recent relevant work. Finally, future research
directions are proposed.

II. MODEL AND SAMPLE-FORMATION PROTOCOL

We consider a minimal model consisting of a disordered
Hookean-spring network in three dimensions (3D), connected

at each of its N nodes to pointlike unit masses. The net-
works analyzed are constructed by adopting the contact
network between particles of well-compressed packings of
soft (harmonic) spheres. The edges of the adopted network
are pruned to reach some target mean coordination z; in order
to avoid dangling nodes or other unusual structural fluctua-
tions, the pruning is done following the scheme described in
Ref. [42] that reduces node-to-node coordination fluctuations.
In this edge-pruned initial spring network, all of the springs’
restlengths are set to be equal to those springs’ actual lengths,
and so there is initially no energy, stresses, nor frustration in
the network. The springs all share the same stiffness k, set to
unity in what follows. We use a0 ≡ (V/N )1/d as the units of
length (set to unity), such that, in what follows, energies are
expressed in terms of ka2

0, and stresses, pressures, and elastic
moduli in terms of k/a0.

In the next step of constructing glassy samples from our
simple model, we introduce shifts δ�i j in the restlengths �i j

of the springs. The restlength-shifts δ�i j are drawn from a
Gaussian distribution with zero mean and width w; the latter
forms one of the two key parameters of this model system
(along with the coordination z). The introduction of shifts in
the springs’ restlengths leads to mechanical imbalance, which
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is then eliminated by a potential-energy minimization [43],
during which the system self-organizes into a state satisfy-
ing mechanical equilibrium. To avoid finite-size effects, we
used the scheme described above to construct mechanically
frustrated networks with N =62 500 nodes; unless stated oth-
erwise, the data below is reported for this system size. Finally,
the averaging of all the observables of interest was performed
over a set of 500 independently built networks (again, unless
explicitly stated otherwise).

The model and glass-formation protocol described above
are identical to one of the three variants put forward very
recently in [44]; in that work the focus is on the floppy regime
z<zc =2đ with đ denoting the dimension of space. Our model
and protocol also bear similarity to the protocol and glass
former employed in Ref. [6] to create glassy configurations
over a wide range of mechanical disorder, which also features
the universal ∼ω4 nonphononic spectrum. We discuss our
results in the context of these prior works in the discussion
section.

III. RESULTS

A. Notation and formalism

Before presenting our numerical results, we briefly review
some of the formalism used to rationalize our observations.
In particular, we adopt the bra-ket notation of Refs. [45,46]
and make use of the equilibrium matrix ST [47] that takes
the vector sum of pairwise (spring) forces | f 〉 exerted on each
node, and results in a vector |F 〉 of the net force on those
nodes, namely,

|F 〉 = ST | f 〉. (1)

Furthermore, we make use of the known form of the non-
phononic vibrational density of states D(ω) in relaxed spring
networks at some coordination z, namely, that a plateau of
extended anomalous vibrational modes emerges from a fre-
quency ω� ∼z−zc ≡δz [48–51].

Finally, denoting the potential energy by U (x) and coor-
dinates by x, we use that the Hessian matrix H≡ ∂2U

∂x∂x of a
relaxed spring network (of springs of unit stiffness, as in our
model) reads [45]

H = STS. (2)

Furthermore, the eigenvectors |	l〉 of H satisfy [45]

S|	l〉 = ωl |ϕl〉, (3)

where |ϕl〉 is an eigenvector of the matrix SST associated with
the same eigenvalue ω2

l .

B. Displacements toward mechanical equilibrium

The first observable we consider is the mean-squared
displacements u2 between the initial network—before the
restlength shifts are introduced—and the force-balanced con-
figurations obtained after introducing the restlength shifts and
minimizing the energy. Assuming the springs all share the
same unit stiffnesses, the net force |F 〉 on the nodes due to
introducing the restlength shifts |δ�〉 can be written as

|F 〉 = ST |δ�〉 = w ST |η〉, (4)

where we have defined |δ�〉=w|η〉 and η is a vector of Nz/2
uncorrelated, normally distributed random variables with unit
variance and zero mean.

The linear displacement response to introducing the
restlength shifts is therefore

|u〉 = H−1|F 〉 = wH−1ST |η〉, (5)

and therefore its square magnitude follows [28]

u2 = 〈u|u〉 = 〈F |H−2|F 〉 = w2〈η|SH−2ST |η〉

=w2
∑

l

〈η|S|	l〉〈	l |ST |η〉
ω4

l

= w2
∑

l

〈η|S|	l〉2

ω4
l

=w2
∑

l

〈η|ϕl〉2

ω2
l

∼w2
∫
δz

D(ω)dω

ω2
∼ w2

δz
∼ δz

(
w

δz

)2

, (6)

where we have suppressed the trivial ∼N dependence, and
used Eq. (3). The above argument implies that, in the linear
regime, u2/δz should be a quadratic function of the ratio w/δz,
and that the relevant scale for the restlength shifts in our
system is w� ∼δz. Indeed, in the linear-response regime, we
expect a ballistic behavior of displacements (where the role of
time is played by w), consistent with the above arguments.

Given the above result, we make the scaling ansatz

u2 ∼ δz Fu(w/δz), (7)

where the scaling function Fu(y) satisfies Fu(y)∼y2 for y≡
w/δz�1. Furthermore, since one expects that the nonlinear
displacement response should become diffusive, we expect
Fu(y)∼y for y�1.

All the above predictions are validated in Fig. 2; we find
that the scaling form Eq. (7) leads to a convincing data
collapse. Importantly, we further note that, in the nonlinear
(diffusive) regime w�δz, Eq. (7) indicates that u2 ∼w, in-
dependent of the coordination z. We therefore postulate that,
since displacements become coordination independent in the
nonlinear regime, then other observables of interest will also
show z independence for w�δz. In what follows, we will
use this assumption of z independence, together with linear
response arguments, to obtain the scaling exponents of various
observables in the nonlinear, w�δz regime.

C. Potential energy

The potential energy U of our model reads

U (w) =
∑

springs i, j

(ri j − �i j (w))2, (8)

where the restlengths �i j (w)=�
(0)
i j +δ�i j (w) with δ�i j (w)=

wηi j and ηi j are normally distributed, uncorrelated random
variables with unit variance and zero mean. In the harmonic
regime, the potential energy is obtained by approximating
U (w)	 d2U

dw2 |w=0w
2, where the total derivatives d/dw are

taken under the preservation of mechanical equilibrium [52].
In addition, we recall that since U (w=0)=0, together with
that the reflection symmetry w→−w implies that dU/dw=
0, one deduces the quadratic scaling of the energy with w.
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(a) (b)

FIG. 2. Mean squared displacements u2 between the relaxed, initial network, and the network obtain after introducing the mechanical
frustration and minimizing the energy, as described in the text. Panel (a) shows the raw data for various coordinations z and widths w (see text
for definitions). Panel (b) employs the scaling form of Eq. (7) to find a convincing data collapse, validating the predicted crossover between
ballistic and diffusive behavior. This form indicates that, at high w’s, observables becomes z independent, see text for discussion.

The second derivative reads [46,48,53]

d2U

dw2

∣∣∣∣
w=0

= 〈η|η〉 − 〈η|SH−1ST |η〉

= 〈η|(I − SH−1ST )|η〉 ∼ Nδz,

and so we expect that, for small w,

U (w)

N
∼ δz w2 ∼ δz3

(
w

δz

)2

. (9)

The linear response result derived above suggests that the
energy per particle is given by the following scaling form:

U/N = δz3FU (w/δz), (10)

where FU (y)∼y2 for y�1. As discussed above, if we accept
the postulation that observables must become independent of z
at large w, then we expect FU (y)∼y3 for y�1, or U/N ∼w3

for w�δz. These predictions are validated in Fig. 3.

D. Shear modulus

We next analyze the shear modulus G of our glassy config-
urations; microscopic expressions are available, e.g., in [52].
In the unjamming literature it is well-known that, for relaxed
spring networks at coordination z, G∼δz. We thus make the
following scaling ansatz:

G ∼ δz FG(w/δz), (11)

where FG(y)→const for y�1. Demanding once again that
G becomes z independent at large w, we predict G∼w for
w�δz, and thus FG(y)∼y for y�1. These predictions are
validated in Fig. 4.

E. Characteristic mesoscopic elastic stiffness

After having analyzed the macroscopic shear modulus G in
the previous subsection, it is interesting to consider how the
mesoscopic stiffness associated with local perturbations be-
haves in our model systems. Interestingly, in Refs. [33,54,55]

(a) (b)

FIG. 3. (a) Potential energy per particle U/N plotted under variations of the width w and various coordinations z as detailed in the legend.
(b) The scaling form of Eq. (10) leads to a convincing collapse, see text for further details.
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(a) (b)

FIG. 4. (a) Shear modulus G plotted under variations of the width w and various coordinations z as detailed in the legend. (b) The scaling
form of Eq. (11) leads to a convincing collapse, see text for further details.

it was shown that mesoscopic stiffnesses of the type discussed
in what follows are more susceptible to thermal annealing
compared to macroscopic elastic moduli, in simple models
of computer glasses quenched from a melt. Similar ideas and
their implications on supercooled liquids’ vibrational entropy
and fragility were put forward earlier in Ref. [56]. Finally, in
the unjamming literature it has been shown [48,57–59] that
the stiffness ω2

� ∼δz2 associated with anomalous vibrational
modes in disordered, relaxed spring networks vanishes more
quickly upon approaching the unjamming point, compared to
the macroscopic shear modulus—which vanishes as δz. These
previous results indicate that mesoscopic and macroscopic
stiffnesses quite generically feature different dependencies on
glass control parameters in several scenarios.

In order to probe the mesoscopic stiffness in our model, we
choose a random pair of nodes i, j that are positioned close to
each other, but are not connected by a spring. The choice of
the pair to pinch was performed extracting a random node i
from our network and scanning through its neighboring nodes
within a distance smaller than a certain threshold (initially set
to 0.9 times the average distance between connected pairs).
The first neighboring node found to not be connected to i
constitutes the node j of the pair. If no node that fulfils the
requirements is found, the threshold is gradually incremented
until a disconnected node is found. We then apply a unit force
dipole of the form d i j

k = (δ jk −δik )ni j to the selected pair of
nodes (here ni j is the unit vector pointing from node i to node
j), and obtain the displacement response Di j

k =H−1
k� ·d i j

� to the
force dipole. The stiffness κi j associated with this perturbation
is then

κi j = Di j · H · Di j

Di j · Di j = d i j · H−1 · d i j

d i j · H−2 · d i j . (12)

In what follows we consider the average κ ≡〈κi j〉i j over a
random selection of 5000 disconnected pairs i, j in our en-
semble of glassy samples. According to Ref. [46], in relaxed
spring networks (i.e., for w=0 in our model) the numera-
tor of Eq. (12) is expected to scale as δz, and according to
Refs. [28,59] the denominator of Eq. (12) should scale as

1/δz, leaving us with the prediction κ ∼δz2 for w→0, in
agreement with the arguments of Ref. [59] for ω2

� ∼δz2.
What happens to the mesoscopic stiffness κ upon introduc-

ing mechanical frustration into the network? As done above,
we make the scaling ansatz

κ ∼ δz2 Fκ (w/δz), (13)

such that Fκ (y)→const for y�1. Requiring that κ becomes z
independent at large w, we predict that Fκ (y)∼y2, and so we
expect that κ ∼w2 at large w. This result should be compared
(in the context of the discussion above) with G∼w in the
same, nonlinear regime, indicating that the relation κ ∼G2

holds both in the linear and nonlinear regimes. A similar
universality was recently pointed out in Ref. [60] for spring
networks endowed with weak bending interactions. Our pre-
dictions are verified in Fig. 5.

F. Mechanical disorder

We end this Section with the behavior of the dimen-
sionless quantifier χ of mechanical disorder, defined as
[5,16,26,61,62]

χ ≡
√

N
std(G)

mean(G)
, (14)

where std(•) stands for the ensemble standard deviation, and
mean(•) refers to the ensemble mean. The

√
N factor ensures

χ is N independent (for large-enough N). In previous work it
has been shown that for relaxed spring networks with coordi-
nation z, χ ∼1/

√
δz [16,62]. We therefore make the scaling

ansatz that

χ ∼ δz−1/2 Fχ (w/δz), (15)

where Fχ (y)→const for small y. Requiring that χ becomes
z independent at large w implies χ ∼1/

√
w at large w, and

so Fχ (y)∼y−1/2 for y�1. All these predictions are validated
in Fig. 6. We note that, for estimating std(G) we employed
that outlier elimination method presented and explained in
Ref. [26].
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(a) (b)

FIG. 5. (a) Mesoscopic elastic stiffness κ plotted under variations of the amplitude of the restlength noise w and various coordinations z as
detailed in the legend. (b) The scaling form of Eq. (13) leads to a convincing collapse, see text for further details.

IV. SUMMARY, DISCUSSION, AND OUTLOOK

In this work we have studied and rationalized the elastic
properties of a minimal model for the elasticity of glassy
solids in which the degree of mechanical disorder can be tuned
over a large range, cf. Fig. 6(a). At the same time, and different
from some other models for glass elasticity, this minimal
model features the universal ∼ω4 nonphononic spectrum (cf.
Fig. 1), which implies that it can better represent more realis-
tic glassy solids compared to other computational models in
which mechanical disorder is tunable [5,16,24,27,28]. Our ap-
proach is the same as one of the recently introduced schemes
of Ref. [44] where the floppy regime and spring-pruning ef-
fects were studied. It also bears similarity to the approach
taken in Ref. [6], however, there the interplay between co-
ordination and mechanical frustration was not considered.
Finally, our work also echoes the approaches of Refs. [27,63],
in which mechanical frustration is incorporated into a theory
for glass elasticity, however these approaches do not predict
the existence of quasilocalized modes nor the quartic non-
phononic spectrum observed in computer glasses.

The model studied here—a mechanically frustrated bead-
spring network—features a transition from a coordination-
dependent regime, to a coordination-independent regime, at a
characteristic mechanical frustration scale w� ∼δz. This tran-
sition can be understood by considering the displacements of
the nodes upon introducing mechanical frustration into the
network. Then, combining the expected diffusive behavior of
the networks’ nodes for high frustration w—with the ballis-
tic behavior seen in the linear response analysis at low w

gives rise to the characteristic scale w� ∼δz for the transition
between the two regimes, cf. Sec. III B. The connectivity
independence found for the mean squared displacement above
the characteristic scale w� was postulated to hold for any
observable O, and allowed us to obtain a family of scaling
functions FO(w/δz) and their associated scaling exponents,
which completely describe the behavior of the observables in
both regimes, and were all convincingly validated by numeri-
cal simulations.

In Refs. [37,38] a mean-field model of coupled anhar-
monic oscillators was formulated and analyzed; that model’s

(a) (b)

2

1

FIG. 6. (a) Dimensionless mechanical disorder quantifier χ plotted under variations of the amplitude of the restlength noise w and various
coordinations z as detailed in the legend. (b) The scaling form of Eq. (15) leads to a convincing collapse, see text for further details.
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(a) (b)

FIG. 7. (a) The shear modulus G of hypostatic networks with z < zc ≡ 2d and N = 16 000, shown here for various degrees of mechanical
frustration w. In this case, each datapoint is obtained by averaging over 2500 independently built networks. (b) The same scaling form Eq. (11)
for the shear modulus of hyperstatic networks with z > zc–also collapses the shear modulus of frustrated hypostatic networks, and reveals the
characteristic frustration scale w� ∼ |δz| above which G becomes finite, reminiscent of the characteristic stiffening strain scale γ� above which
deformed floppy networks acquire a finite shear modulus, see text for further discussion.

vibrational spectrum reproduces two features also seen in
the nonphononic spectra of computer glasses: (i) it follows
D(ω)=Agω

4 in many regions of the model’s parameter space,
and (ii) the prefactor Ag is exponentially suppressed as a func-
tion of the relevant combination of the model’s parameters,
akin to the Boltzmann-like reduction seen in Ag of deeply su-
percooled computer glasses [33,64]—with the (equilibrium)
parent temperature Tp from which glassy samples were (in-
stantaneously) quenched playing the role of the equilibrium
temperature in the Boltzmann-like relation. In future work
we plan to investigate how the prefactor Ag(z,w) behaves
as a function of the coordination z and the mechanical frus-
tration w in our minimal model—to the aim of constructing
a mapping between the parameters of the aforementioned
mean-field model, and the degree of frustration or proximity
to unjamming in finite-dimensional computer glass models.
Such a mapping might help shed light on the origin of the
universal quartic nonphononic spectra seen in many computer
glass models.

Finally, we note that the characteristic mechanical-
frustration scale w� ∼δz (cf. discussion in Sec. III B) is
reminiscent of the scaling γ� ∼|δz| of the stiffening strain
γ� at which floppy, disordered spring networks—featuring
z<zc—acquire a finite shear modulus upon subjection to
spatial deformations [40,41,65,66]. Indeed, and as shown in
Ref. [44], a floppy network with a vanishing shear modulus
G=0 can be made rigid and acquire a finite shear modulus
by introducing mechanical frustration—in the form of noise

in the network’s springs’ restlengths, as done here. Similarly,
in Ref. [67] it was shown how motor-generated stresses can
rigidify floppy elastic networks.

We demonstrate this effect in Fig. 7, where the shear modu-
lus of floppy networks with z < zc is plotted vs w for a variety
of coordinations as detailed by the figure legend. Different
from strain stiffening, in this case our frustrated floppy net-
works with w < |δz| can carry a finite (though small) elastic
energy U/N > 0, but—at the same time—also have a van-
ishing shear modulus G = 0, while strained floppy networks
below the stiffening strain—i.e., with γ < γ� ∼ |δz|—have
a vanishing shear modulus G = 0 but also carry no elastic
energy, i.e., U/N = 0. Interestingly, the same scaling variable
w/|δz|—put forward and motivated for systems above the
jamming point with z > zc—collapses the z < zc data as well,
as shown in Fig. 7(b), in which we also included the hyper-
static (z > zc) data set. In future work we plan to investigate
how the vibrational density of states of hypostatic samples
that were rigidified (i.e., acquire a finite shear modulus G > 0)
by frustration—behaves as compared to hyperstatic frustrated
networks.
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