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Dynamics and fluctuations of minimally structured glass formers
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The mean-field theory (MFT) of simple structural glasses, which is exact in the limit of infinite spatial
dimensions, d → ∞, offers theoretical insight as well as quantitative predictions about certain features of
d = 3 systems. In order to more systematically relate the behavior of physical systems to MFT, however,
various finite-d effects need to be accounted for. Although some efforts along this direction have already
been undertaken, theoretical and technical challenges hinder progress. A general approach to sidestep many of
these difficulties consists of simulating minimally structured models whose behavior smoothly converges to that
described by the MFT as d increases, so as to permit a controlled dimensional extrapolation. Using this approach,
we here extract the small fluctuations around the dynamical MFT captured by a standard liquid-state observable,
the non-Gaussian parameter α2. The results provide insight into the physical origin of these fluctuations as well
as a quantitative reference with which to compare observations for more realistic glass formers.
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I. INTRODUCTION

Solving the dynamics of structural glass formers remains
a frontier problem in statistical physics. Even hard spheres,
one of the simplest such model, present nontrivial physics
in the densely supercooled regime that cannot be described
by conventional kinetic theory or hydrodynamics. The mode-
coupling theory of glasses (MCT), first developed in the
1980s, provides a microscopic description that does accu-
rately describe certain aspects of the dynamical slowdown
upon supercooling a liquid [1]. That theoretical description,
however, lacks a straightforward limit in which it becomes
exact that could be used to systematically study deviations
from its predictions in physical systems.

Over the past 15 years, an altogether different approach, the
mean-field theory (MFT) of simple structural glasses—hard-
sphere-like and related systems—has been steadily worked
out [2–4]. While the MCT equations were obtained from
uncontrolled approximations, the MFT approach is exact in
the specific limit—albeit far from physical reality—of an in-
finite number of spatial dimensions, d → ∞. Being solvable
numerically, it captures certain aspects of finite-d jamming
physics with remarkable accuracy and predicts a novel type
of (Gardner) transition in amorphous solids that has found
various experimental echoes [5–8]. From a theoretical physics
standpoint, it has also brought descriptions that were based
on loose physical analogies with spin glasses under a single
coherent umbrella. For instance, it has confirmed the validity
of the random first-order transition (and associated scenarios)
in the limit d → ∞ as well as the mean-field–like structure of
the MCT equations, despite their quantitative failings [9,10].
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The MFT of simple structural glasses, however, is no
panacea either. By construction, it neglects fluctuations and
only accounts for minimal pairwise correlations. (Including
higher-body correlations, which vanish as d → ∞, would
require an even richer—and more unwieldy—cluster-based
approach [11].) These simplifications obfuscate the possible
connection between MFT and the structurally and dynami-
cally rich behavior of d = 3 glass formers. Early efforts to
estimate the impact of finite-dimensional pair structure cor-
relations on the MFT-like caging transition have been met
with only limited success [12,13]. More recently, the ex-
tent and nature of small caging fluctuations have been more
successfully considered [14,15]. Large (instantonic) devia-
tions, however, remain out of reach even for single-particle
processes [16].

The dynamical MFT (DMFT) [17,18], which notably pro-
vides equations that describe the time evolution of the mean
squared displacement (MSD), �(t ), also remains challenging
to hammer out. Its analytical formulation is so complex that
only under a limited range of conditions can it be evalu-
ated at this time [19,20]. Out-of-equilibrium conditions are
particularly thorny [21–24]. To tease out some of the out-of-
equilibrium physics, recent efforts have focused on simulating
minimally structured models of glasses in finite d and extrap-
olating the results to the limit d → ∞ [20,25]. An advantage
of these abstract models is that certain aspects of their physics
are by construction closer to the mean-field predictions. In
that sense, that approach is akin to using the Gaussian-core
model as a reference for the standard Kob-Anderson glass
model in three dimensions [26]. In both cases, the refer-
ence model exhibits stronger mean-field physics and therefore
more quantitatively matches the theoretical predictions. Only
in the former, however, is the relationship formally justified,
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thus allowing more systematic studies to be conducted and
stronger conclusions to be reached.

Although computing small dynamical fluctuations around
the equilibrium DMFT also remains out of theoretical reach,
a first-principle understanding of the origin of single-particle
contributions was recently worked out in Ref. [14]. That
work introduced the (single-particle) dynamical susceptibility
χ4(t ), defined as the variance of particle displacements, thus
naturally capturing the fluctuations of the MFT/DMFT natural
order parameter, �(t ). The quantity is physically analogous
to other four-point susceptibilities previously defined, which
typically rely on density correlations [27,28], but its formula-
tion is a bit more versatile. The observable, which naturally
describes small fluctuations in the caging regime, can indeed
be linearly related with the non-Gaussian parameter α2(t ).
The observable was first introduced by Rahman [29] in the
early days of molecular simulation, and then commonly used
to assess the dynamical heterogeneity of supercooled liquids
[30–32], including in MCT [33,34]. (A full consideration
of MCT predictions for this quantity is left as future work
[35].) From a theoretical physics lens, the DMFT describes
the single-particle equilibrium dynamics as a Langevin equa-
tion with a purely Gaussian (albeit colored) noise, which can
be integrated to obtain �(t ) [17,18]. Given that the descrip-
tion is exact when d → ∞, deviations of the self–van Hove
function from Gaussianity are therefore necessarily finite-d
corrections. In order to determine if d = 3 observations of
α2(t ) in simple structural glass formers in any way reflect
fluctuations around the DMFT, however, these fluctuations
first ought to be somehow quantified.

Here, building on the approach developed to study the
out-of-equilibrium DMFT, we extract the d → ∞ behavior
of α2(t ) by studying and comparing two minimally structured
models, the random Lorentz gas (RLG) and the Mari-Kurchan
(MK) model (see Sec. II for definitions), that separately con-
verge to the MFT of simple structural glasses in the high d
limit [16,36]. Finite d versions of these models can therefore
be viewed as exhibiting perturbative deviations relative to the
exact d → ∞ solution. In other words, these deviations—
at least noninstantonic ones—then scale in 1/d and can be
reasonably controlled through dimensional extrapolation. In
passing, we validate the DMFT description of the MSD in
the limit d → ∞ as well as the associated small caging fluc-
tuations. The plan for the rest of this article is as follows.
Section II describes the models considered and the simulation
approach and Sec. III presents and discusses the numerical
results. A brief conclusion follows in Sec. IV.

II. MODELS AND SIMULATION METHODS

The RLG is a point tracer that evolves within the void
(empty) space left by Poisson distributed spherical obsta-
cles of unit radius and scaled density ϕ̂ = ρVd/d , where ρ

and Vd denote the point intensity (number density) and the
d-dimensional unit radius sphere volume, respectively. It is
here simulated as in Refs. [14,16,37]. Initial configurations
are obtained using a cavity reconstruction scheme [14,16]. In
the caging regime, for densities above the MFT dynamical
transition at which glasslike (and MCT-like) caging emerges,
ϕ̂ � ϕ̂d, the tracer is placed at the origin and surrounded by

a spherical shell of obstacles that precludes overlaps with
the tracer and is of sufficient thickness to prevent its escape
over the simulation time. Each realization thus defines a cage,
whose size is defined as the long-time value of the MSD
plateau of a given tracer. In the diffusive regime, for ϕ̂ � ϕ̂d,
initial configurations are obtained through quiet planting
[16,38]. This approach is implemented by placing the tracer
at the center of a simulation box and then distributing obsta-
cle positions uniformly at random within that box, rejecting
any obstacles that cover the origin. A typical simulation box
consists of 105 obstacles for d = 3 and up to 106 obstacles for
d = 24. Results are averaged over at least 103 independent
realizations of obstacle positions.

The Mari-Kurchan (MK) model [39,40] consists of N hard
spherical particles of unit diameter interacting through shifted
pair interactions. It is simulated as in Ref. [36]. Here again,
initial configurations are obtained by quiet planting [36]. After
placing particles uniformly at random within the simulation
box, pairwise shifts are sampled uniformly at random within
that box, but values that result in the pair overlapping are
rejected. Like for the RLG, a scaled density can be defined
ϕ̂ = 2dρVd/d , where the factor of 2d accounts for the different
obstacle diameter conventions used in the two models. Again,
in the caging regime ϕ̂ � ϕ̂d, most particles are dynamically
trapped by the surrounding particles (except those experienc-
ing hopping events [36]). The long-time value of the MSD
plateau of each caged particle is then used to define the cage
size.

A. Mapping between two models

As described in Refs. [16,20,41], in the d → ∞ limit, the
two models only differ by a trivial scaling factor,

2ϕ̂RLG ↔ ϕ̂MK,

�̂RLG ↔ 2�̂MK,

[〈r̂4(t )〉]RLG ↔ 4[〈r̂4(t )〉]MK, (1)

where �̂(t ) = d�(t ) for the MSD �(t ) = [〈r2(t )〉] and
[〈r̂4(t )〉] = d2[〈r4(t )〉] for the mean quartic displacement, af-
ter thermal 〈. . .〉 averaging (over displacements within a cage)
and disorder [. . .] averaging (over cage realizations). For nota-
tional convenience, in the rest of the text we omit the subscript
(RLG or MK) when the discussion applies to both models or
when the model is clearly specified in the surrounding text.

By contrast, no universal mapping is possible for the
dynamical susceptibility χ4(t ) = [〈r4(t )〉] − �2(t ) (and the
scaled χ̂4 = d ([〈r̂4(t )〉] − �̂2) = d3χ4 [14]). The two models
are nevertheless expected to correspond in certain limits (see
Appendix A),

χ̂4,RLG ↔
{

4χ̂4,MK, short times and long-time diffusion,

8χ̂4,MK, long-time caging.
(2)

Finally, the mean tracer velocity, which controls the scaling
of time of the RLG, can be chosen arbitrarily. For conve-
nience, the scaled time for the RLG is here aligned with that
of the MK model (and with the reference DMFT calculation),

t̂RLG ↔ t̂MK. (3)
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When the tracer mean velocity is set to unity, this choice leads
to t̂ = √

dt and dt/2 for the Newtonian and Brownian RLG,
respectively, and

√
2dt for the Newtonian MK model.

B. Simulation boxes

Simulations are generally run in boxes under checker-
board Dd periodic boundary conditions, as described in
Refs. [13,37]. This setup enables a system size reduction of
a factor of 2(d−2)/2 relative to standard (hyper)cubic boundary
conditions Zd for similar finite-size corrections from the ther-
modynamic limit. For the MK model, in which the number of
pairs of coordinate shifts, O(N2), sets the memory complex-
ity, simulations up to d = 8 are then numerically accessible.
The chosen system size aims to balance computational cost
and finite-size corrections, such that the MSD is not affected
significantly (�1% systematic error). We here find that N =
3000 suffices for all cases except for ϕ̂ > ϕ̂d in d = 8. For
instance, N = 10 000 is needed for ϕ̂ = 20, thus limiting the
computationally accessible range of densities.

The single-particle nature of the RLG model allows for the
dimensional range to stretch to d = 12 under similar condi-
tions. That range, however, can be further expanded by using
periodic boundary conditions with the d = 24 Leech lattice
symmetry, �24 [42,43]. This exceptionally dense arrangement
allows for a reduction in system size by up to a factor of 224

and 213 relative to a system under periodic boundary condi-
tions of Z24 (hypercubic) and D24 symmetry, respectively [13].
Despite this remarkable efficiency gain, we argued in Ref. [13]
that the decoding cost of �24 was nevertheless too onerous to
make it computationally practical. A more efficient decoder
devised by Vardy et al. [44] has since come to our attention.
In contrast to the original algorithm by Conway et al. [42],
it follows from a maximum likelihood decoding approach,
which requires only 3595 operations (versus 55 968 for that
of Ref. [42]) to identify the minimal image of a particle. This
improvement makes the approach computationally tractable
at this time. In this work we use an open-source integer im-
plementation of this algorithm [45] as reference library and
straightforwardly extend it to floating point coordinates.

The resulting implementation provides roughly 1.2×105

queries-per-second (QPS) performance for the minimal image
computation (tested on Intel Xeon E5-2680 v3 CPU single
core). It then takes four hours to run a d = 24 system with
N = 106 up to t̂ = 105. For reference, running the MK model
in d = 8 with N = 3000 up to t̂ = 105 takes three days on that
same architecture.

C. Microscopic dynamics

A standard event-driven implementation of Newtonian dy-
namics is used for both the RLG and the MK model [36,46].
For the RLG, however, a subtle correction also needs to
be taken into account. Earlier numerical simulations used a
unit tracer velocity throughout [14,16,37]. For a one-particle
system, this microcanonical ensemble setup does not recover
the (Gaussian) Maxwell-Boltzmann distribution of velocities
that is expected for an equilibrium multiparticle system. As
a result, the self–van Hove function is then non-Gaussian
at short times [14]. Although such microscopic details of

the dynamics are expected to be irrelevant at long times
upon approaching ϕ̂d and beyond, the resulting short-time
deviations are sufficiently significant to partly obfuscate the
emergence of interesting features at intermediate times. In
order to sidestep this difficulty, we here assign the tracer
an initial velocity taken from a Gaussian distribution, so as
to recover the Maxwell-Boltzmann distribution of velocities.
The tracer velocity (preserving its direction) is also reassigned
with probability p = 1/d at each collision. Because the tracer
collision rate (number of collisions per unit time) scales as
Ẑtracer ∼ dϕ̂ (see Appendix B), this choice results in a d-
independent scaling of the decorrelation time from the initial
velocity rate that matches that of multiparticle models, such
as standard and MK hard spheres. The long-time dynamics of
the system remains unaffected.

For the RLG, Brownian dynamics is also considered, using
de Michele’s event-driven scheme [47,48]. In this scheme, at
the end of every time interval �t̂n = 2n�t̂0 � 1/2 particle ve-
locity is reset to a multivariate Gaussian random variable, v =
g/

√
�tn. As minimal time interval, we choose �t̂0 = t̂min/10,

where t̂min is the smallest sampling time interval of correla-
tions; after sampling t̂min for 210 times (at t̂ = 210t̂min), we set
n = 1, after sampling 2t̂min for 210 times (at t̂ = 211t̂min), we
set n = 2, and so on until �t̂n � 1/2. This strategy recovers
the Brownian statistics at short times, while avoiding the ex-
cessive computational cost of repeatedly regenerating random
velocities and recalculating subsequent collisions over longer
timescales, where this effect plays no notable role.

III. RESULTS AND DISCUSSION

Using the RLG and MK model simulation results,
Sec. III A compares the time evolution of the MSD in fi-
nite d with the exact d → ∞ DMFT results from Ref. [19]
and Sec. III B considers the long-time behavior of the MSD.
Finite-d fluctuations in those two regimes are then examined
in Secs. III C and III D, respectively.

A. MSD time evolution

In order to validate the perturbative nature of these models,
the MSD from numerical simulations is first compared with
the DMFT prediction of Ref. [19] for d → ∞ hard spheres.
Results for the MK model are expected to naturally converge
to that limit as d increases and those for the RLG to do so
after Eq. (1) rescaling. For the RLG, an additional effect must
be taken into account. As carefully discussed in Ref. [16], for
d � 8 the percolation transition (ϕ̂p) takes place at densities
for which MFT predicts that the tracer should diffuse [16].
Because percolation physics is not perturbative relative to the
MFT of simple structural glasses, results in its vicinity do not
smoothly converge to the DMFT prediction [see, e.g., ϕ̂ = 2
lines at long times for d = 3, 6 in Fig 1(b)]. Therefore, for
ϕ̂p < ϕ̂ < ϕ̂d, we only consider the short-time MSD, i.e., for
t̂ 	 D−1, where D is the diffusivity constant.

Once these effects are accounted for, the dimensional evo-
lution of the MSD is smooth for both the RLG and the MK
model (Fig. 1). For systems with Newtonian dynamics, the
trend is robust down to d = 3. Low and high density results
exhibit only small deviations from the DMFT predictions.
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FIG. 1. MSD for (a) the MK model at ϕ̂ = 1, 2, 3, 4, 6, 8 (from top to bottom) with Newtonian dynamics and for the RLG at corresponding
ϕ̂ = 0.5, 1, 1.5, 2, 3, 4 (from top to bottom) with (b) Newtonian and (c) Brownian dynamics. Numerical solution of the DMFT equations are
also included (dashed black lines) [19]. (Insets) Rescaled deviation of simulation results from the DMFT prediction for Newtonian dynamics
with (a) ϕ̂ = 1, 2, 3 and (b) ϕ̂ = 0.5, 1, and 1.5 (from bottom to top). Insets have the same x axis as the main panels. In all cases, a scaling
collapse is achieved as d increases, but the correction is smaller for the MK model than for the RLG at corresponding densities. DMFT
predictions for Brownian dynamics deviate too strongly from finite-d results for a similar collapse to be attempted.

As expected from studies of caging susceptibility [14,15],
significantly larger deviations emerge upon approaching ϕ̂d.
In all cases, deviations from the exact d → ∞ MFT results
are consistently perturbative as (Fig. 1 insets)

δ�̂(t̂ ) = |�̂MFT(t̂ ) − �̂(d, t̂ )|
�̂MFT(t̂ )

∼ 1/d. (4)

For ϕ̂ 	 ϕ̂d, the collapse is nearly quantitative, but higher-
order deviations can be detected for d = 3 at the highest
(diffusive) density considered. In all cases, the overall pertur-
bation is about twice as large for the RLG than for the MK
model.

By contrast, Brownian dynamics simulations deviate from
DMFT predictions at all times. They are overestimated at
short times, t̂ � 1, and underestimated at long times, t̂ � 101.
For the former, the analytical expansion of the MSD re-
veals that the associated discrepancy follows from numerical
imprecision in solving the DMFT equations [19] (see Ap-
pendix C). For the latter, Ref. [19] noted already that although
the equations are exact in the d → ∞ limit, a singularity in
the memory function gives rise to severe numerical integration
challenges. In the caging regime, this difficulty was found
to result in the long-time limit of the MSD from the DMFT
differing from the (independent) static MFT analysis [19].
Although no similarly systematic comparison can be made
in the diffusive regime, one can reasonably expect the same
underlying issue to be at play there as well.

B. MSD long-time scaling

As a further validation of the perturbative nature of these
models in finite d , we consider the long-time MSD in the
caging regime (Fig. 2 and [41], Fig. 3). Here again, a smooth
dimensional evolution is observed. An interesting difference
between the finite-d RLG and MK model is nevertheless
noted. While both systems have �̂(d, t̂ ) < �̂MFT(t̂ ) in the
diffusive regime, deviations are of opposite sign in the caging
regime. A previous work by some of us [41] introduced the
modal squared displacement in addition to the conventional
mean squared displacement. Interestingly, the sign of the de-
viation was found to differ between the mean and the modal

squared displacements of the RLG, as a result of a heavy tail
in the probability distribution of cage sizes in that system. The
absence of such a distinction in the MK model suggests a sig-
nificantly smaller cage size anisotropy. To quantify this effect
more carefully, we repeat for the MK model the RLG analysis
in Ref. [41] for the long-time plateau [�̂ = �̂(t̂ → ∞)] of
both mean and modal cage sizes (Fig. 2). We also follow
Ref. [14], Fig. 2(b) in fitting the cage sizes distribution with a
log-normal form, which describes the distribution well even
for d = 3. By contrast, the large tail observed in the RLG
model at corresponding d and ϕ̂ markedly deviates from a
log-normal form. In other words, cages for the MK model
are more narrowly distributed than for the RLG [see Eq. (2)]
and seemingly less affected than the RLG by nonperturbative
(instantonic) hopping effects [16,36].

As expected from an earlier report [36], the cage size—
as determined from both the modal and the mean squared
displacements—closely follows the MFT prediction for all
d considered nearly down to ϕ̂d. Its predicted square-root
singularity at ϕ̂d, however, is expected to be rounded by
hopping in finite d [36]. Here again, these processes are less
prevalent in the MK model than in the RLG. For instance,
for ϕ̂ = 5.5, �̂(t̂ = 104)/�̂(t̂ = 102) = 1.002, which results
in a difference in dδ�̂ of only about 1%, while for the RLG a
comparable convergence is only possible for 2ϕ̂RLG � 6 [41].
A “long-time” plateau can therefore be identified in the MK
model at lower ϕ̂ without resorting to the modal displacement
to screen away the fat tail of large displacements. From this
standpoint, finite d cages in the MK model are clearly better
defined than in the RLG.

A consideration of the perturbative regime more specifi-
cally finds that although higher-order deviations from d → ∞
results are noticeable in d = 3 and 4, the 1/d collapse ap-
pears converged by d = 6–8 at high ϕ̂ (Fig. 2 insets), which
is also consistent with fluctuations being relatively small in
this model. Although the perturbative prefactor grows upon
approaching ϕ̂d in a way consistent with a divergence, the
available d range is insufficient to probe that phenomenon
directly. Results for ϕ̂ = 5 indeed already deviate from the
expected scaling in the higher d attainable. As in Refs. [41],
Fig. 3 and [36], Fig. 2d, we can nevertheless compare the 1/d
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(a) (b) (c)

FIG. 2. (a) Distribution of cage sizes for the MK model in d = 3, 4, 6, 8 (from blue to red solid line) fit with a log-normal distribution
(dotted lines) and compared with the wider distribution obtained in the RLG in d = 4, 8 (dashed lines). (b) Mean and (c) modal cage size
for the MK model in finite d (points) compared with the d → ∞ MFT predictions (black line) above ϕ̂d = 4.81 . . . (gray line). Simulation
results only slightly undershoot the theoretical curve at all densities. (Inset) Perturbative 1/d deviations of the simulation results from the exact
d → ∞ MFT predictions. In (b, inset), the Gaussian ansatz estimate for these corrections is included as reference (dashed line), which does
not diverge but ends at a finite value beyond the plot range (e.g., 2.5 for d = 8).

deviations with those from the Gaussian ansatz. While for the
RLG this ansatz was far off the mark [41], for the MK model
the results are more nuanced. The prediction significantly un-
derestimates deviations at higher ϕ̂, as it does for the RLG, but
it describes reasonably well the regime 5.5 � ϕ̂ � 10, where
a scaling collapse is observed. Because the Gaussian ansatz
does not lead to a divergence at ϕ̂d, however, deviations are
expected to grow more pronounced as ϕ̂ is further decreased
toward the dynamical transition. The agreement of the MSD
cage in Fig. 2(b) (inset) and [36], Fig. 2(d) should therefore
be understood as largely fortuitous. In any event, this overall
analysis confirms the perturbative character of the two mini-
mally structured models considered here relative to the exact
d → ∞ MFT description.

C. Dynamical fluctuations in the diffusive regime

In order to characterize finite-d deviations from the
d → ∞ DMFT results more systematically, we consider the

FIG. 3. Time evolution of α̂2 for the largest attained dimension of
(a) the MK model in d = 8 at ϕ̂ = 1, 3, 4, 4.4, 4.5 and (b) the RLG
with Newtonian (solid line) and Brownian (dotted lines) dynamics
in d = 24 at corresponding ϕ̂ = 0.5, 1.5, 2, 2.2, 2.25 (blue to red
lines). Note that the percolation transition of the d = 24 RLG lies
far above the density range considered. In both cases a single peak
grows and moves to longer times as ϕ̂ → ϕ̂−

d . Peaks are highlighted
with markers.

dynamical fluctuations around the theoretical predictions. Dif-
ferent observables for capturing single-particle fluctuations
are commonly used, depending on whether the caging or
diffusive regime is considered. In the former, one typically
considers the scaled four-point susceptibility, i.e., the kurtosis,(

χ4

�2

)
(t ) = [〈r4(t )〉]

[〈r2(t )〉]2
− 1, (5)

which plateaus at long times. In the latter, because χ4(t )
diverges at long times we instead consider the non-Gaussian
parameter [14],

α2(t ) = d

d + 2

[〈r4(t )〉]
[〈r2(t )〉]2

− 1, (6)

which vanishes at short and long times and peaks in between.
It is well understood that α2 also vanishes with increasing d
[49]. To capture the perturbative behavior of this observable
properly, we here instead study the dimensionally rescaled
α̂2(t̂ ) = dα2(t̂ ). Note that χ̂4 and α̂2 are linearly related at
constant d [see Ref. [14], Eq. (7)],

α̂2 = d

d + 2

(
χ̂4

�̂2
− 2

)
, (7)

which in the limit d → ∞ simplifies to α̂2 = χ̂4/�̂
2 − 2.

Note also that the full time evolution of χ̂4(t̂ ), like that of
χ̂4(t̂ → ∞), does not simply map between the MK model and
RLG, as further discussed in Sec. III D.

The time evolution of α̂2 at various ϕ̂ < ϕ̂d is shown in
Figs. 3 and 4. The results are qualitatively reminiscent of what
has long been reported in supercooled liquids [30–32], and, as
expected [50], both Newtonian and Brownian dynamics give
rise to fairly similar curves as density increases. Recall that
Ref. [14] identified the MFT-like growth of α2 to be associ-
ated with particle displacements along different dimensions
to be correlated. The growth of α2 as ϕ̂ increases is therefore
here consistent with cage escapes then proceeding through
low-dimensional pathways within which motion along many
directions is severely constrained, such as transport through
tunnel-like openings [14].
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FIG. 4. Evolution of α̂2 for (a) the MK model for d = 3, 4, 6, 8
(blue to red lines) at ϕ̂ = 1, 2, 3, 4 and the RLG with (b) Newtonian
and (c) Brownian dynamics for d = 3, 6, 12, 24 (blue to red lines) at
corresponding ϕ̂ = 0.5, 1, 1.5, 2. Both systems exhibit a single peak
that grows and moves to longer times as ϕ̂ → ϕ̂−

d (see also Fig. 3).
(Note that the ordinate axis uses a different scale in the upper and
lower panels.) While α̂2 presents a similar peak compared to the MK
model, percolation physics intervenes in the RLG at long times for
the larger densities. The resulting deviations are particularly marked
at small d (dotted out curves) and result in α̂2 peaking at much longer
times.

Before considering the simulation results in more detail,
however, an important caveat must be made. Because α2

diverges at the nonperturbative percolation transition of the
RLG [16,51], results for ϕ̂ � ϕ̂p must be neglected in order to
assess the perturbative physics associated with small fluctua-
tions around the exact d → ∞ MFT results.

Once that is done, α̂2(t̂ ) presents a single peak at nearly
the same time for all d and at low densities the full curves
collapse reasonably well (Fig. 4). Upon approaching ϕ̂ → ϕ̂d,
however, peaks no longer collapse and instead grow with d
(see, e.g., Fig. 4, bottom panels). What gives rise to these
deviations? Recall that MFT (for d → ∞) finds that this peak
should diverge for ϕ̂ → ϕ̂+

d and that a similar singularity is
expected for ϕ̂ → ϕ̂−

d [14]. In finite d , two phenomena could
be at play: (i) activated events turn any MFT divergences into
a crossover in finite d [3] and (ii) the number of directions
along which particle motion can be correlated is finite, thus
bounding the growth of α2.

Quantifying peak characteristics offers some insight into
which phenomenon dominates in this regime. First, con-
sider the peak time. Peak non-Gaussianity coincides with
cage escape and is therefore expected to follow the growth
of the structural relaxation time. We then expect a scaling
t̂peak ∼ (ϕ̂d − ϕ̂)−γ with a nonuniversal exponent γ , which for

FIG. 5. Peak characteristics for α̂2(t̂ ). Growth of the peak time
for (a) the RLG and (b) the MK model as ϕ̂ approaches ϕ̂d for
different d . In both systems the results are roughly consistent with
the expected critical scaling t̂peak ∼ (ϕ̂d − ϕ̂)−γ with γ = 2.34 . . .

(black dotted line). Evolution of the peak height for (c) the RLG
and (d) the MK model as ϕ̂ approaches ϕ̂d. The growth first follows
the expected critical scaling α̂2(t̂peak ) ∼ (ϕ̂d − ϕ̂)−1 (black dotted
line), but eventually saturates. In (c) results deviate from this trend
around the percolation threshold (ϕ̂p for d = 3, 6 are marked as ver-
tical dashed lines). (Inset) The saturation plateau of α̂2(t̂peak ) grows
roughly linearly with d (dotted line). In (a), (c), Brownian dynamics
results for the RLG at d = 24 are additionally plotted (purple stars).

d → ∞ is γ = 2.34 . . . [52]. Remarkably, over the accessible
dynamical range, both models roughly follow that scaling,
with agreement improving as d increases [Figs. 5(a) and 5(b)].
Note that finite d deviations of γ relative to the d → ∞
result have the opposite sign as what has been reported for
(standard) hard spheres [13], but given the nonuniversality of
the exponent and the absence of any theoretical prediction for
it, little can be concluded from this difference.

Second, consider the peak height. MFT suggests that
[14,53]

α̂2(t̂peak ) ∼ |ϕ̂d − ϕ̂|−1. (8)

Upon approaching ϕ̂d, both models appear to follow a master
curve given by that scaling [Figs. 5(c) and 5(d)]. These pseu-
docritical scalings are therefore consistent with an (avoided)
critical transition at ϕ̂d in finite d . Unfortunately, the relevant
regime is too short to detect systematic deviation of criticality
below the predicted (perturbative) upper critical dimension,
du = 8 [53–55], as has been reported for related exponents
[56].

Deviations in peak height from the expected pseudocriti-
cal scaling are more revealing. For both systems, the effect
gradually decrease as d increases. Remarkably, while for the
MK model deviations steadily drift up, for the RLG deviations
plateau more sharply. The difference likely reflects the com-
plete absence of cooperativity in the latter system, but whether
this effect has to do with perturbative or instantonic processes
is not immediately obvious. To see more clearly, we leverage
the broad d range accessible for the RLG to determine that
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(b) (c)(a)

FIG. 6. (a) Time evolution of χ̂4 for ϕ̂MK = 2ϕ̂RLG = 1, 2, 3, 4, 6, 8 (from blue to red lines) for the MK model in d = 8 (solid lines) and
for the RLG in d = 24 (dashed lines). The peak of α̂2 from Fig. 5 (asterisk) occurs at times intermediate between ballistic and diffusive
transport. (b) In the caging regime, the mean quartic displacement for the MK model in d = 3, 4, 6, 8 (blue to red solid lines) and the RLG
in d = 4, 8, 16 (blue to red dashed lines) approaches the MFT prediction (black) as d increases. (Inset) Both systems show perturbative 1/d
corrections, δ[r̂4(t̂ )] = |([r̂4

MFT(t̂ )] − [r̂4(d, t̂ )])/[r̂4
MFT(t̂ )], but those are markedly larger in the RLG than in the MK model. (c) In the caging

regime, long-time χ̂4/�̂
2 in the MK model (markers) and the RLG (from Ref. [14], dashed lines) converge to the d → ∞ prediction (black

dotted line). (Inset) The relative deviation from the MFT prediction in the form of Eq. (11) is consistent with a perturbative correction deep in
the caging regime.

the plateau then grows roughly linearly with d [Fig. 5(c)
inset]. The peak divergence of α2 is therefore suppressed as
1/d , hence suggesting that the plateau height is perturbatively
controlled, albeit at a higher order in the expansion than α̂2

more generally.

D. Susceptibility time evolution and long-time scaling

Consistent with the 1/d deviations of the MSD from the
d → ∞ DMFT differing between the RLG and the MK model
(see Fig. 1), α̂2 quantitatively differs between the two systems.
This difference cannot be explained by the simple mapping
relations given by Eqs. (2) and (7) (Fig. 4). As expressed by
Eq. (7), α̂2 depends solely on the MSD and χ̂4 for a given d .
Given that the former is fairly close to the DMFT prediction
for both the RLG and the MK model in all d , the main
difference in α2 presented in Sec. III C must therefore come
from the latter of the two quantities.

The time evolution of χ̂4 for the RLG and the MK model
is compared in Fig. 6(a) for the highest available d for each
system. As expected from Eq. (2), the trivial (factor of 4)
mapping collapses the two sets of curves at short times. In
the caging regime, the additional multiplicative factor from
Eq. (2) separates the two sets of results at long times. In the
diffusive regime, Eq. (7) gives that α̂2(t̂ → ∞) = 0 and hence
χ̂4 = 2�̂2 at long times. Both curves then again converge. At
intermediate times, where the non-Gaussian parameter peaks,
however, results for the two systems markedly deviate.

To tease out the origin of this difference, we expand the
MSD and the mean quartic displacement perturbatively in
1/d ,

[〈r̂2(t̂ )〉] = �̂MFT(t̂ ) + A1(t̂ )/d + A2(t̂ )/d2 + · · · ,

[〈r̂4(t̂ )〉] = [〈r̂4(t̂ )〉]MFT + B1(t̂ )/d + B2(t̂ )/d2 + · · · . (9)

Because all d dependencies have been extracted for the d →
∞ MF values in Eq. (9), and hence [〈r̂4〉]MFT = �̂2

MFT, we

then have

(χ̂4/�̂
2)(t̂ ) = B1 − 2A1�̂MFT

�̂2
MFT

+ O(1/d ), (10)

where for notational clarity the time dependence is omitted
on the right-hand side. Through Eq. (7), α̂2(t ) can then be
described to leading order by the leading perturbative devi-
ation of the MSD from the d → ∞ DMFT results and the
mean quartic displacement [see Figs. 1, 2, and 6(b) insets],
which are not universal. This correspondence is particularly
interesting because it relates fluctuations in finite-d structural
glasses to the magnitude of the perturbative 1/d deviations
from the d → ∞ results. These perturbative effects therefore
encode some of the physical features of d = 3 systems.

Because quantitative predictions exist for χ4/�
2 in the

limit d → ∞, the dimensional convergence of χ̂4 can also be
evaluated. As shown in Fig. 6(c), a solid quantitative agree-
ment is obtained for small cages (i.e., large ϕ̂) in both models,
with the overall deviations from the d → ∞ scaling as 1/d at
large ϕ̂,

δ

(
χ̂4

�̂2

)
=

[(
χ̂4

�̂2

)
−

(
χ̂4

�̂2

)
MFT

]/(
χ̂4

�̂2

)
MFT

∼ 1/d.

(11)

Upon approaching ϕ̂d, however, the growth of χ̂4/�̂
2 deviates

from the MFT prediction. For the RLG, it was shown in
Ref. [14] that this deviation is due to the presence of weak
cages, as captured in the large tail in the distribution of cages
around ϕ̂d. For the MK model cages are stronger and more
narrowly distributed than for the RLG, as discussed above.
The results therefore more closely trail the d → ∞ prediction.
Results for d = 8, however, are somewhat confounding. We
suspect that deviations around ϕ̂d might be due to finite-d ef-
fects associated with the difference between mean and modal
quantities, but identifying the optimal finite-d estimator for χ4

in this regime is left for future studies.
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IV. CONCLUSION

Using state-of-the-art numerical simulations, we have stud-
ied the fluctuations of two minimally structured glass formers
in finite d , thus identifying the non-Gaussian parameter α2

as a perturbative 1/d deviation from the exact d → ∞ MFT
results. The observable is therefore intimately related to mean-
field–like (i.e., perturbative) cage escapes [14] and not solely
to (nonperturbative) hopping [16,36], as has sometimes been
suggested [32]. Given the physical centrality and dimensional
robustness of the simulation results for α2, a description of
small fluctuations around the DMFT in the diffusive regime
would be a significant enrichment of the theory of simple
structural glasses. The numerical results presented in this
work can serve both as targets for a future such calculation
and, in the meantime, as reference for the study of single-
particle fluctuations in (standard) hard sphere glass formers.
Such fluctuation-based comparison would offer a much more
stringent test of the MFT (and of theories of glasses more gen-
erally) for model glass formers than has thus far been possible.

More generally, the overall success of this work motivates
further pursuing the program of extracting the out-of-
equilibrium DMFT description from finite-d simulations of
minimally structured model glass formers. Insight into the
mean-field–like features that survive in d = 3 system will
then be more readily obtained than has thus far been possible
by solving the associated equations.

Data relevant to this work have been archived and can be
accessed at Duke digital repository [57].
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APPENDIX A: NONUNIVERSAL MAPPING
OF SUSCEPTIBILITY

From Eq. (1), one expects

χ̂4,RLG ↔ 4χ̂4,MK, (A1)

but this expression only holds at short times and in the
long-time diffusive limit (ϕ̂ < ϕ̂d), in which cases the tracer
displacement is Gaussian by construction. In the long-time
caging limit, although Eq. (1) still holds, Eq. (A1) does not.
In that regime, χ̂4 is nonzero as a result of 1/d corrections
from the d → ∞ result to [〈r̂4(t )〉] and �̂ (as discussed in
Sec. III D).

A mapping is nevertheless still possible in the long-time
caging limit. Recall that in Ref. [36], Eqs. (S11-13), the MFT
estimate of cage size of the MK model was computed from a
Gaussian random variable of variance AMK, which measures
the cage size along one direction with � = 2dAMK. Reference
[16] further noted that the large variance term has the form
�̂ = (�̂tracer + �̂obstacle )/2, where for the MK model �tracer

and �obstacle are equivalent, whereas in the RLG the obstacles

are pinned, i.e., �obstacle = 0. As a result, �RLG and �MK

involve d and 2d independent random variables, respectively,
and, therefore,

�RLG = dARLG,

�MK = d (AMK,tracer + AMK,obstacle ) = 2dAMK. (A2)

Because �RLG ↔ 2�MK, we have ARLG ↔ 4AMK, and the
contribution of the variance of the cage size due to single
random variable is Var(ARLG) ↔ 16Var(AMK ). Equation (A2)
also gives that the expected variance is

Var(�RLG) = dVar(ARLG),

Var(�MK ) = 2dVar(AMK ). (A3)

We then have Var(�RLG) ↔ 8Var(�MK ), i.e.,

χ̂4,RLG ↔ 8χ̂4,MK. (A4)

More physically, the additional factor of 2 relative to Eq. (A1)
comes from the different number of independent terms in
the variance. In the RLG only the tracer is oscillating within
the cage, whereas in the MK model both the tracer and the
surrounding obstacles are random variables that contribute to
caging.

APPENDIX B: COLLISION RATE SCALING

The collision rate of the RLG tracer can be derived using
standard kinetic theory analysis. Suppose a tracer colliding
at the origin and moving freely to r. The probability that the
tracer has a free run up to r is given by the probability that
obstacles are absent within a cylinder with top area of a half
unit sphere and length r. This shell has volume Vshell = Vd−1r.
For Poisson distributed obstacles, the cumulative probability
that the first collision happens at range (0, r), Qcollision(r), then
satisfies the relation

Qcollision(r) = 1 − exp(−ρVd−1r). (B1)

The average free distance available to the tracer is therefore

r̄ =
∫ ∞

0

dQcollision(r)

dr
r dr = 1

ρVd−1
, (B2)

and its collision rate, with the time unit scaled as t̂ = √
dt is

Ẑtracer = 1/(
√

dr̄) = (dϕ̂/
√

πd )
�

(
1 + d

2

)
�

(
1+d

2

) . (B3)

Recall that ρVd = dϕ̂. We then obtain the large d limit scaling
of Ẑtracer as

Ẑtracer ∼ dϕ̂√
2π

. (B4)

Figure 7 presents numerical results for Ẑtracer. The d, ϕ̂

scaling and the large d limit are all consistent with Eq. (B4).
The 1/d correction, however, has the opposite sign as that pre-
dicted by Eq. (B3). Correlations between collisions, which are
neglected in the above treatment and grow with ϕ̂, are likely
at the origin of this discrepancy. Calculation of the associated
1/d correction, however, is left for future consideration.
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FIG. 7. Scaling of the tracer collision rate Ẑtracer . Crosses are
simulation results for various obstacle densities. Black dashed line
denotes the relation of Eq. (B3).

APPENDIX C: SHORT-TIME EXPANSION OF DMFT
EQUATION FOR BROWNIAN DYNAMICS

For Brownian hard spheres, the DMFT equation (Ref. [19],
Eq. (3)) reads

∂�̂

∂ t̂
= 1 −

∫ t̂

0
duMHS(t̂ − u)

∂�̂

∂u
, (C1)

where MHS(t ) is the memory function. We here seek a short-
time analytical expansion form of �̂(t̂ ) from this equation.

Replacing MHS with the first-order approximation of ϕ̂

(Ref. [19], Eq. (24)),

MHS(t̂ ) = ϕ̂M(1)
HS(t̂ ) + O(ϕ̂2)

= ϕ̂

2

[
exp(−t̂/4)√

π t̂
− erfc(

√
t̂/2)

2

]
+ O(ϕ̂2)

= ϕ̂

2

[
1√
π t̂

− 1

2
+ O(t̂

1
2 )

]
+ O(ϕ̂2), (C2)

and assuming

∂�̂

∂ t̂
= 1 − A(ϕ̂)t̂

1
2 + B(ϕ̂)t̂ + O(t2), (C3)

FIG. 8. Brownian dynamics of RLG at short time for ϕ̂ = 0.5,

2, 4 (from top to bottom), compared with the DMFT result of smaller
integration step (δt = 2×10−5) as well as the expansion forms of
Eqs. (C5) and (C6).

we can solve for the integral equation (C1) and evaluate the
coefficients

A = ϕ̂/
√

π,

B = ϕ̂

4
(1 + ϕ̂). (C4)

Note that we only keep linear terms of ϕ̂ in A, B because
Eq. (C2) is expanded to that order. We then have

�̂HS(t ) = t̂ − 2

3

ϕ̂HS√
π

t̂
3
2 + ϕ̂HS

8
t̂2 + O(t̂3). (C5)

For the RLG, the mapping gives

�̂RLG(t ) = t̂ − 2
√

2

3

ϕ̂RLG√
π

t̂
3
2 + ϕ̂RLG

8
t̂2 + O(t̂3). (C6)

The short-time simulation results are fully consistent with
Eq. (C6) (Fig. 8). The expansion results also highlight that no-
ticeable corrections—up to the subdominant correction term
(Bt̂)—become increasingly pronounced at higher densities.
The short-time discrepancy in Fig. 7(b) is therefore clearly
due to numerical accuracy issues with solving Eq. (C1). In
particular, setting a smaller numerical integration step δt̂ =
2×10−5 (instead of δt̂ = 10−2 in Ref. [19]) results in a much
closer agreement with simulation results.
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