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Effects of coordination and stiffness scale separation in disordered elastic networks
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Many fibrous materials are modeled as elastic networks featuring a substantial separation between the stiffness
scales that characterize different microscopic deformation modes of the network’s constituents. This scale
separation has been shown to give rise to emergent complexity in these systems’ linear and nonlinear mechanical
response. Here we study numerically a simple model featuring said stiffness scale separation in two-dimensions
and show that its mechanical response is governed by the competition between the characteristic stiffness of
collective nonphononic soft modes of the stiff subsystem, and the characteristic stiffness of the soft interactions.
We present and rationalize the behavior of the shear modulus of our complex networks across the unjamming
transition at which the stiff subsystem alone loses its macroscopic mechanical rigidity. We further establish
a relation in the soft-interaction-dominated regime between the shear modulus, the characteristic frequency
of nonphononic vibrational modes, and the mesoscopic correlation length that marks the crossover from a
disorder-dominated response to local mechanical perturbations in the near field, to a linear, continuumlike
response in the far field. The effects of spatial dimension on the observed scaling behavior are discussed, in
addition to the interplay between stiffness scales in strain-stiffened networks, which is relevant to understanding
the nonlinear mechanics of non-Brownian fibrous biomatter.
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I. INTRODUCTION

Disordered networks of unit masses connected by Hookean
springs constitute a popular minimal model for studying the
elasticity of disordered solids [1–10]. In this simple model
the key parameter that controls macro and microscopic elas-
ticity is the mean node coordination z. Several scaling laws
have been established for characteristic length scales [10–12],
frequency scales [2,5,7], elastic moduli [2,4] and their fluc-
tuations [13,14] in terms of the difference δz ≡ z − zc, where
zc ≡ 2d̄ is the Maxwell threshold, and d̄ stands for the dimen-
sion of space.

Inspired by observations from rheological experiments on
biomaterials [15,16], the simple disordered spring-network
model in two dimensions (2D) was supplemented by bend-
ing (angular) interactions that penalize changes in the angles
formed between edges connected to the same node [6,17–19].
Particularly relevant to investigating fibrous biomaterials is
the case in which the stiffness associated with these angu-
lar interactions is far smaller than the stiffness associated
with the stretching or compression of the radial, Hookean
springs. In this limit, the phenomenon of strain stiffening
of athermal, floppy (z < zc) elastic networks stabilized by
soft angular interactions was thoroughly investigated in re-
cent years [19–27]. Despite the aforementioned efforts and
progress, the combined effects of changing both coordination
z and the ratio κ of bending-to-stretching stiffnesses of disor-
dered elastic networks, have not been fully resolved.
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In this work we fill this gap and study the mechanics of
disordered spring networks endowed with soft, angular in-
teractions, under variations of both the coordination z of the
underlying stiff network, and of the ratio κ � 1 of bending-
to-stretching stiffness. We trace out the crossover in our
networks’ shear modulus between a regime dominated by the
stiff subnetwork’s nonphononic soft (for z > zc) or zero (for

FIG. 1. Scaling regimes of the shear modulus G in disordered
networks characterized by their coordination z and the bending-
to-stretching stiffness ratio κ . The crossover between the small-
and large-κ scaling occurs when κ ∼ (z − zc )2 (with logarithmic
corrections in two-dimensions), see text for discussion. We note
that the above illustration described the mechanics near z = zc and
κ � 1; different scaling laws are expected away from these regimes,
cf. Refs. [6,8,9].
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z < zc) modes, and a regime dominated by the soft angular
interactions, as illustrated in Fig. 1. Interestingly, we find that,
in both regimes, the shear modulus G scales with the char-
acteristic frequency of soft, nonphononic modes, independent
of whether the latter are dominated by the stiff subnetwork,
or by the soft angular interactions, in states for which the
stiff subnetwork alone has a finite shear modulus. In addition,
we show that the same scaling argument made in Ref. [28]
for the mesoscopic correlation length ξ—that marks the
crossover between a nonaffine, near-field disorder-dominated
response to local perturbations, to an affine, far-field linear-
continuum-elasticlike response—, holds in the unexplored,
angular-interaction-dominated regime. We further show that
scaling laws for shear moduli in 2D feature logarithmic cor-
rections that are absent in 3D. Finally, we investigate the
effects of stiffness scale separation in strain-stiffened net-
works in 2D.

This work is structured as follows. in Sec. II we present
the models and methods employed, and the precise definitions
of the key observables considered in this work. In Sec. III
we present our numerical results for the elastic properties
of isotropic disordered networks and rationalize them us-
ing scaling arguments, building on existing arguments and
results. In Sec. IV we show results and discuss the scal-
ing behavior seen for strain-stiffened elastic networks. We
summarize this work and discuss future research questions in
Sec. V.

II. NUMERICAL MODEL, METHODS, AND OBSERVABLES

We employ a well-studied model of athermal biopoly-
mer fibrous materials [6,17–19]. Given a disordered, two-
dimensional (2D) graph of nodes and edges with some
connectivity z (see below how graphs were obtained in this
study), we assign a Hookean spring with stiffness kr (set to
unity in our calculations) at its rest length � on each edge. Ev-
ery two edges emanating from the same node—with no other
edge between them—form angles θ ; we assign an angular
spring at its rest-angle θ (0) to each such angle, with stiffness
kθ that has units of energy. The potential energy of this model
therefore reads

U = 1

2
kr

∑
edges i j

(ri j − �i j )
2 + 1

2
kθ

∑
angles i jk

(
θi jk − θ

(0)
i jk

)2
. (1)

In what follows we express all energies in terms of kr �̄
2 and

elastic moduli in terms of kr �̄
2− d̄ , where �̄ ≡ (V/N )1/d̄ with

V denoting the system’s volume, N denoting the number of
nodes, and d̄ stands for the dimension of space. Lengths are
expressed in terms of �̄. Importantly, we define the ratio of
bending to stretching stiffnesses as κ ≡ kθ /kr �̄

2. For all calcu-
lations presented in what follows, we average the observables
over about 100 independently created configurations. In what
follows, the number of nodes N employed in our networks is
stated in the introduction of each data set.

Our initial graphs were obtained by adopting the contact
network of highly compressed soft-disc packings. To obtain
networks at a target coordination z, we dilute the edges fol-
lowing the algorithm described in Ref. [29]; this algorithm
produces networks with small node-to-node coordination fluc-

FIG. 2. An example of an isostatic (i.e., featuring z = zc),
packing-derived network used in this study. Edges are diluted to
reach the target coordination using the algorithm described in
Ref. [29], see text for discussion.

tuations, and by such avoids the creation of locally rigid
clusters [30,31]. An example of a network generated with this
algorithm, at z = zc, is shown in Fig. 2.

We also carried out calculations in a three-dimensional
complex elastic network model. In this model the disordered
networks considered are also derived from contact networks
of soft-sphere packings; however, in order to dilute the edges
to reach some target coordination z, we employ the algorithm
described in Ref. [32], which—similarly to the algorithm em-
ployed for our 2D networks—suppresses large node-to-node
coordination fluctuations. In our 3D model we do not consider
soft angular interactions; instead, for the sake of simplicity we
follow Refs. [3,24] and connect soft springs of stiffness κkr

to all nearby nodes—at distance r � 1.1�̄ apart—that are not
connected by a stiff (i.e., of stiffness kr) spring, and recall that
κ � 1. For this system, the coordination z reported pertains
to the stiff subnetwork. As we will show below, and as also
demonstrated in [24], these soft interactions give rise to the
same scaling behavior as seen for our 2D networks with soft
angular interactions. In Appendix A we show explicitly that
the scaling properties of networks with additional soft radial
springs, or with soft angular springs, is the same.

Finally, we also investigated the behavior of strain-
stiffened networks in 2D; to this aim, we employed the follow-
ing two-step procedure [27]: isotropic floppy networks with
z < zc were sheared—using the standard athermal, quasistatic
scheme [33]—while setting κ = 0, until the ratio of the typ-
ical net force on nodes to the typical compressive/tensile
spring forces first drops below 10−8. The shear strain γc at
which this happens is resolved up to strain increments of
10−6. Then, we gradually introduce angular interactions of
dimensionless stiffness κ – in the form of the second term
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FIG. 3. (a) The shear modulus G of 2D isotropic, disordered elastic networks with N = 102 400 nodes, for various coordinations z (see
legend, and recall that zc ≡ 2d̄ with d̄ denoting the spatial dimension), plotted against the stiffness ratio κ . (b) Same data as panel (a), plotted
while rescaling the axes as described by the axes labels, see text for discussion.

of Eq. (1) above. Once the soft interactions are introduced, the
system is returned to a mechanically stable state by means of
a potential energy minimization [34]. Importantly, in this step
the rest-angles considered are those defined in the isotropic,
undeformed network. This two-step procedure allows us to
accurately determine the critical stiffening strain γc, which is
important since observables such as the shear modulus vary
rapidly with strain at small κ near γc [27].

We next rationalize the observed scaling behavior using
scaling arguments, and building on previously established
results. In Appendix B we provide easily implementable
microscopic expressions for the angular potential and its
derivatives with respect to coordinates and simple shear strain.

Our prime focus in this work is on the athermal shear
modulus, defined as

G = 1

V

(
∂2U

∂γ 2
− ∂2U

∂γ ∂x
· H−1 · ∂2U

∂γ ∂x

)
, (2)

where V = Ld̄ is the system’s volume, U is the potential en-
ergy, γ is a simple shear strain parameter, x denotes the nodes’
coordinates, and H ≡ ∂2U

∂x∂x is the Hessian matrix. The shear
modulus characterizes the macroscopic elastic response of
the material; a microscopic characterization of the material’s
response is encoded in the typical nonaffine displacements
squared, defined as

u2
na ≡ una · una

N
=

∂2U
∂γ ∂x · H−2 · ∂2U

∂γ ∂x

N
. (3)

Finally, we study the spatial properties of the typical displace-
ment response ud to local force dipoles [10,11,32], defined as

ud = H−1 · d, (4)

where d ≡ ∂r
∂x is a unit force dipole applied to a radial spring

with length r.

III. ELASTICITY OF ISOTROPIC DISORDERED
NETWORKS

A. Shear modulus of isotropic networks

In Fig. 3(a) we present our results concerning the shear
modulus G(z, κ ) and its dependence on coordination z and
the stiffness ratio κ in our isotropic (undeformed) 2D dis-
ordered networks prepared as explained in Sec. II. Here we
employed networks of N = 102 400 nodes at various coordi-
nations z as displayed in the figure legend. In Fig. 3(b) we
show the same data rescaled by y ≡ δzβ/(− log δz)β/2 with
β = 0.75, and plotted against the scaling variable x/y2 with
x ≡ κ/(− log κ )β , to find a convincing data collapse. Our data
suggest the scaling form

G(z, κ ) = |δz|F±(κ/δz2), (5)

where F±(ζ ) stands for a pair of scaling functions correspond-
ing to δz ≷ 0, with the following properties:

F+(ζ ) ∼ const, ζ � 1,

F−(ζ ) ∼ ζ , ζ � 1,

F±(ζ ) ∼ √
ζ , ζ � 1,

(6)

and we deliberately suppress the logarithmic corrections,
shown below to be a 2D effect.

We next rationalize the observed scaling behavior using the
scaling argument and build on previously established results.

1. G in the hypostatic regime z < zc

It is known that for hypostatic (z < zc), isotropic, disor-
dered spring networks in the absence of bending interactions,
namely κ = 0, the shear modulus is identically zero. In the
limit κ → 0 the only (dimensionless) stiffness scale is κ ,
and therefore G ∼ κ in the κ → 0 limit, as indeed shown
in previous work [6,19,22,23,35]. The same conclusion can
be obtained with more rigor following the framework of
Ref. [24], where the κ → 0+ limit is considered, reducing the
problem to a geometric one. In the same work and also earlier
in Ref. [3] it was shown and rationalized that G ∼ 1/δz for
hypostatic elastic networks stabilized by weak interactions.
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FIG. 4. (a) The typical magnitude squared of nonaffine displacements [see Eq. (3) for precise definition], calculated for 2D isotropic
disordered networks at various coordinations z as specified by the figure legend, and plotted against the stiffness ratio κ. (b) Same data as panel
(a), but cast into a scaling form, see text for details and discussion.

Therefore, in the small-κ limit, we expect that G ∼ κ/δz, as
indeed shown in Fig. 3, neglecting once again logarithmic
corrections.

What would happen at larger κ? Since κ is a stiffness scale,
it is reasonable to compare it to the square of the characteristic
frequency ω� ∼ δz [2,5,7,36,37] of the stiff subnetwork. We
would therefore expect that once κ is of order δz2, the scal-
ing behavior of G should change. In other words, we expect
that κ/ω2

� ∼ κ/δz2 should form the relevant scaling variable
(ignoring logarithmic corrections here and throughout what
follows), as indeed seen in Fig. 3(b) and in the rest of the
datasets presented in this work.

2. G in the hyperstatic regime z > zc

Since ω� ∼ |δz| both above and below the isostatic point
zc [2,7], the same argument for the relevant scaling variable
κ/δz2 should hold in the hyperstatic regime z > zc, as indeed
observed in Fig. 3(b). In addition, in the limit κ � δz2 for
z > zc we expect the known behavior G ∼ δz to prevail, i.e., G
should become independent of κ , as indeed observed in Fig. 3.

3. G in the critical regime κ > δz2

Interestingly, in the critical regime we find F±(ζ ) ∼ √
ζ

(for ζ � 1). How can this scaling be rationalized? We ex-
pect that in the κ � δz2 regime the stiff subnetwork’s floppy
modes of frequency ω� ∼ δz are stiffened by the angular in-
teractions to feature frequencies of order

√
κ . We thus expect

the characteristic frequency 
 of soft, nonphononic modes to
follow


 ∼
{

ω� ∼ |δz| for κ � δz
√

κ for κ � δz2
, (7)

ignoring logarithmic corrections. Since the general relation
between the shear modulus G and the frequency of soft, non-
phononic modes is theoretically predicted to follow G ∼ ω�

for z > zc, and in the absence of bending interactions, one
could expect that, also in the critical κ � δz2 regime, we
would find G ∼ 
 ∼ √

κ . In practice, we find logarithmic

corrections spelled out above—cf. Fig. 3(b). In Sec. III D
below we show that these logarithmic corrections are absent
in 3D.

B. Nonaffine displacements of isotropic networks

We next turn to studying the typical nonaffine displace-
ments squared u2

na [see Eq. (3) above for a precise definition]
in our 2D networks as a function of the coordination z and
the stiffness ratio κ . Figure 4 displays our results; in panel
(a) we show the raw data, while panel (b) presents a scaling
collapse, where, similarly to the analysis and argumentation
provided above for the shear modulus, we consider the scaling
variable κ/δz2 to control the behavior of u2

na for various κ and
z. Different from the shear modulus analysis, here the y axis
is factored by |δz|, rationalized next for the different scaling
regimes.

1. u2
na outside of the critical regime κ � δz2

In Ref. [3] it was argued and demonstrated that u2
na ∼

1/δz in the hypostatic z < zc regime, while in Ref. [38] the
same was argued and demonstrated for the hyperstatic z > zc

regime. Furthermore, a dimensional analysis of the κ → 0
expression for una of Ref. [24] [see Eq. (16) therein] implies
that u2

na becomes independent of κ in the κ → 0+ limit. We
therefore expect that u2

na ∼ 1/δz for all z, κ , as indeed vali-
dated by the scaling collapse of Fig. 4(b).

2. u2
na in the critical regime κ � δz2

Let us repeat the same line of argumentation as invoked
for the scaling of the shear modulus in the critical regime
κ � δz2; in the absence of any angular interactions, namely
on the κ = 0 line, one finds u2

na ∼ 1/δz ∼ 1/ω�. Generalizing
this result to a situation where nonphononic modes are stiff-
ened by angular interactions—such that 
 ∼ √

κ [cf. Eq. (7)
above]—, one may then expect u2

na ∼ 1/
 ∼ 1/
√

κ for κ �
δz2. In Fig. 4 this expectation is validated by our numerical
simulations, to find very good agreement.
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FIG. 5. (a) Spatial decay of the displacement response functions C(r) to local force dipoles, see text for definition. (b) Rescaling the axes
allows to extract the κ dependence of the length ξ ∼ κ−0.24 that marks the crossover between a nonaffine, disorder-dominated near field, and
an affine, continuum-linear-elastic-like response in the far field, see text for further details and discussion.

C. The crossover length ξ of isotropic networks

In the absence of bending interactions (i.e., setting κ =
0), disordered elastic networks feature a correlation length
ξ ∼ 1/

√
δz that marks the crossover between a near-field,

nonaffine, disorder-dominated response to local force per-
turbations, to a far-field, affine, continuum-linear-elastic-like
response, as shown in several prior works [11,32,39]. Here
we probe the κ dependence of this correlation length in 2D
networks of N = 409 600 nodes, and at z = zc = 4 such that
ξ ∼ L in the absence of angular interactions.

To extract the length ξ (κ ), we apply a unit dipole force to a
single spring to obtain the displacement field ud , as described
in Eq. (4). We then calculate the average of the displacement
response squared—denoted C(r)—over a shell of radius r
away from the force dipole. Continuum elasticity predict that
the far field should decay as 1/r—hence its squared amplitude
as 1/r2—, as we indeed find for the largest κ’s probed, cf.
Fig. 5(a).

How should ξ scale with the stiffness ratio κ? Here we
invoke the scaling argument put forward in Ref. [28]; a con-
tinuum, linear-elastic response can be seen if the system is
large enough to accommodate elastic waves that are softer
than the characteristic frequency of nonphononic modes. This
means that a crossover between the nonaffine, disordered
response—dominated by nonphononic modes—to an affine,
continuum-linear-elastic like response, dominated by elastic
waves, occurs when

√
G

ξ
∼ 
. (8)

For our networks with z = zc = 4 we always satisfy κ � δz2

and therefore 
 ∼ √
κ [cf. Eq. (7)] and G ∼ 
 ∼ √

κ , re-
sulting in the prediction ξ ∼ κ−1/4. Our numerical results are
shown in Fig. 5(b), where the rescaling of both axes leads to
an alignment and collapse of the peaks. We find ξ ∼ κ−0.24,

very close to the prediction ξ ∼ κ−1/4, supporting the scaling
argument spelled out above. The slight disagreement with the
predicted exponent of −1/4 could stem from the logarithmic
corrections, not accounted for here.

D. Elasticity of disordered networks in 3D

In this final section we show that the scaling behavior seen
in 2D networks endowed with soft angular interactions is also
seen in 3D, using a different, simpler form of soft interactions.
In particular, instead of defining angular interactions in 3D,
we simply connect nearby nodes—that are not already con-
nected by stiff springs—by soft springs, of stiffness κkr , and
see Sec. II for further details. In Appendix A we show that,
in 2D, the scaling properties of networks endowed with weak
angular or weak radial interactions are the same.

We focus here on the shear modulus G(κ, z), similar to
the analysis presented for our 2D networks in Fig. 3. The
results are displayed in Fig. 6; panel (a) shows the raw data
for the shear modulus for a variety of coordinations z and
stiffness ratios κ , while panel (b) employs a rescaling of the
axes to find a data collapse. For our 3D networks, our data
are perfectly consistent with the same scaling form given
by Eqs. (5) and (6) but without the logarithmic corrections,
which appear to be a 2D effect. These results, together with
the results presented in Appendix A, indicate that the precise
functional form of the soft interactions does not change the
scaling behavior observed. We note finally that the exponents
obtained from our scaling analysis of 3D networks agree per-
fectly with effective medium theory calculations in 2D [6,8].

IV. ELASTICITY OF STRAIN-STIFFENED NETWORKS

Strain stiffening refers to the phenomenon in which a
hypostatic (floppy) network with soft (but nonzero) angu-
lar (bending) interactions—with κ � δz2—is deformed such
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FIG. 6. (a) The shear modulus of 3D elastic networks with coordinations various z (see figure legend)–stabilized by additional soft springs
of dimensionless stiffness κ � 1 (see text for precise details)—, is plotted against κ . (b) Same data as panel (a) cast into the predicted scaling
form, see text for discussion.

that, as some critical strain γc is approached, the shear mod-
ulus grows substantially, from G/kr ∼ κ (for κ � δz2) in
the undeformed, isotropic states, to G/kr ∼ O(1) as γ →
γc [25,27,40,41]. Here we study crossover effects between
κ � δz2 and κ � δz2 in strain-stiffened networks in 2D,
similar to our analysis presented in the previous section for
isotropic, disordered networks.

In order to sharply identify the critical strain γc, we em-
ploy the following “two-step” procedure [27]: we first set
κ = 0 in our isotropic networks, and employ the athermal,
quasistatic deformation scheme in which small strain incre-
ments are applied, following each one with a potential-energy
minimization [34]. Under κ = 0 conditions, the shear modu-
lus is identically zero for γ < γc, and jumps discontinuously
to G ∼ δz at γ = γc. Details about the detection of γc are
provided in Sec. II above.

Once strain-stiffened networks at γ = γc are at hand, we
then gradually introduce the soft angular interactions, sim-
ilarly to the athermal quasistatic deformation scheme: after
increasing κ to some target value, we restore mechanical equi-
librium by a potential energy minimization. We then analyze
the elastic properties of these networks as a function of κ and
z < zc, and we note that, for these calculations we employed
networks of N = 25 600 nodes.

The results are presented in Fig. 7; as expected, the relevant
scaling variable is again κ/δz2 (neglecting logarithmic cor-
rections), just like we have established for isotropic networks
above. In panel (a) we show the raw data for the shear modulus
G and the typical square of the node-wise nonaffine displace-
ments u2

na. Despite that, here z < zc, the shear modulus data
precisely resembles the shear modulus data of isotropic, z >

zc states, cf. Fig. 3(a), and follows the exact same scaling form
of F+(ζ ) [cf. Eq. (5)], namely G ∼ |δz| (i.e., independent of
κ , and notice that here δz < 0) for κ � δz2, and G ∼ √

κ

(independent of δz) for κ � δz2. These scaling behaviors are
validated by the scaling collapse of Fig. 7(b).

In Fig. 7(b) we show data for the typical nonaffine dis-
placements squared u2

na of strain-stiffened networks. In the

large-κ regime, we find the same behavior as seen for isotropic
networks, namely that u2

na ∼ 1/
√

κ [see Fig. 7(d)], indepen-
dent of δz and consistent with expectations as discussed in
Sec. III B 2 above for isotropic networks. Interestingly, and in
stark contrast with the large-κ regime, the scaling behavior
of u2

na with κ is different compared to that seen for isotropic
networks in the κ � δz2 regime; in particular, in this regime
we find a singular scaling u2

na ∼ κ−2/3 as predicted theoreti-
cally in Ref. [27] for strain-stiffened states, and observed in
previous simulational work [19,26] for networks with various
geometries. This should be compared to the behavior of u2

na
in the small-κ regime of isotropic states, where it is predicted
and observed to become κ independent (for any z), cf. dis-
cussion in Sec. III B 1. The reason for this difference is that
strain-stiffened networks with κ � δz2 feature soft modes of
frequency ωκ ∼ κ1/3 [27], and one can show that u2

na ∼ ω−2
κ .

This situation is very similar to that seen in floppy networks
of rigid struts sheared with overdamped dynamics [20], where
u2

na ∼ ω−2
min, and ωmin (in the notations of [20]) represents

the dimensionless force unbalance the nodes experience under
shear.

V. SUMMARY AND DISCUSSION

In this work we explored the elastic properties of disor-
dered Hookean spring networks featuring angular interactions
whose characteristic stiffness is far smaller than the stiffness
associated with the networks’ radial springs. We traced out the
different scaling regimes in terms of the coordination z and the
ratio κ between the angular- and radial spring stiffnesses. This
was done in 2D both for undeformed, isotropic systems and
for strain-stiffened states; the latter is restricted (by construc-
tion) to hypostatic (z < zc) systems. In 3D we explored similar
questions, but substituted the angular interactions employed in
2D with a simpler form of weak interactions.

We found and rationalized that the scaling variable that
controls the elastic properties of these complex networks is the
ratio κ/δz2. This ratio expresses the competition between the
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FIG. 7. (a) The shear modulus G of 2D hypostatic strain-stiffened networks at various coordinations as indicated by the legend. (b) Same
data as panel (a), cast into the expected scaling form, see text for details. (c) The characteristic magnitude squared of nonaffine displacements,
u2

na, for the same coordinations as indicated in the legend of panel (a). (d) Scaling collapse of u2
na according to the expected form, see text for

detailed discussion.

characteristic stiffness ∼δz2 of nonphononic soft modes of the
stiff subnetwork (i.e., in the absence of angular interactions),
and the stiffness ∼κ of angular interactions.

Interestingly, we found that in the critical κ � δz2 regime,
G scales as

√
κ—with logarithmic corrections in 2D—which

echoes the theoretically predicted dependence of the shear
modulus on the characteristic frequency of nonphononic soft
modes in simple hyperstatic (z > zc) elastic networks, namely
G ∼ ω� ∼ δz. The same behavior, namely that G ∼ √

κ , is
also seen for hypostatic, strain-stiffened networks in the κ �
δz2 regime. Our results for isotropic networks agree—exactly
in 3D, and with logarithmic corrections in 2D—with effective
medium theory calculations in 2D [6,8]. In Ref. [6], it is
observed that G ∼ κχ in the large-κ regime of 2D randomly
diluted triangular lattices, with χ = 0.46 ± 0.07, not far from
the ∼

√
κ/(− log κ )0.75 scaling observed in our 2D disordered

networks.
We additionally investigated how the lengthscale ξ that

marks the crossover between a near-field, disorder dom-
inated response to local force dipoles, and a far-field,
continuum-linear-elastic-like response, depends on κ in iso-

static, isotropic networks. Our scaling arguments predict that
ξ ∼ κ−1/4 in 2D, for which we find satisfying agreement with
our numerical results.

Finally, we pointed out some interesting differences in
the elastic properties of strain-stiffened networks compared
to isotropic ones. In particular, we find that the typical
nonaffine displacement squared, u2

na, is regular in κ (for
small κ/δz2) in isotropic networks, but singular ∼κ−2/3 in
strain-stiffened networks, in agreement with earlier theoretical
predictions [3,24,27] and computational work [19,26], and
similar to observations in sheared floppy networks of rigid
struts [20]. Moreover, the scaling collapse of u2

na presented
in Fig. 7(d) suggests that, for κ � δz2, u2

na ∼ δz1/3κ−2/3. This
scaling with δz lacks a theoretical explanation, and is left to
be resolved in future studies.
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FIG. 8. Same as Fig. 3, calculated for networks in which, instead of considering angular interactions, we connect radial springs of stiffness
κkr between closeby pairs of nodes that are not already connected by a stiff spring, as done in 3D above (see Fig. 6). We find the same scaling
behavior observed in systems with angular interactions, supporting that the precise functional form of the weak interactions does not alter the
mechanical scaling properties of these complex networks.

APPENDIX A: EQUIVALENCE OF WEAK ANGULAR
INTERACTIONS AND WEAK RADIAL INTERACTIONS

In this Appendix we show that replacing weak angular
interactions with additional weak radial springs gives rise to
the same scaling behavior of elastic properties. We consider
the same networks as in the main text, but this time, instead
of introducing a soft potential that depends on the angles as
described in Fig. 9 below, we instead connect weak springs of
stiffness κ kr to pairs of nearby nodes that are not already con-
nected by a regular spring. We measured the shear modulus
G of these complex networks, and report the results in Fig. 8.
We find the same scaling behavior as reported in Fig. 3 for
networks endowed with angular interactions.

APPENDIX B: ANGULAR INTERACTIONS

In this Appendix we provide easily implementable expres-
sions for the bending interactions. We consider a potential
energy of the form

Ubend(x) = 1

2

∑
angles i jk

(
θi jk − θ

(0)
i jk

)2
,

FIG. 9. The convention chosen here for angles θi jk in 2D.

where the sum runs over relevant angles θi jk , and θ (0) denote
the rest angles. We employ a convention in which j is the
index of the shared node forming the angle θi jk , see Fig. 9;
with this construction, one has ∂θi jk

∂x j
= − ∂θi jk

∂xi
− ∂θi jk

∂xk
and that

the latter two terms assume the form

∂θi jk

∂xi
= x ji

r2
ji

· (ŷx̂ − x̂ŷ),

∂θi jk

∂xk
= x jk

r2
jk

· (x̂ŷ − ŷx̂),

where x ji ≡ xi − x j , r ji ≡ √
x ji · x ji, and x̂, ŷ denote the

Cartesian unit vectors. The second derivatives of angles with
respect to coordinates reads

∂2θi jk

∂xi∂xi
=

( I
r2

ji

− 2
x jix ji

r4
ji

)
· (ŷx̂ − x̂ŷ),

= 1

r2
ji

(−2(n ji · ŷ)(n ji · x̂) 2(n ji · x̂)2 − 1
1 − 2(n ji · ŷ)2 2(n ji · ŷ)(n ji · x̂)

)
,

∂2θi jk

∂xk∂xk
=

( I
r2

jk

− 2
x jkx jk

r4
jk

)
· (x̂ŷ − ŷx̂)

= 1

r2
jk

(
2(n jk · ŷ)(n jk · x̂) 1 − 2(n jk · x̂)2

2(n jk · ŷ)2 − 1 −2(n jk · ŷ)(n jk · x̂)

)
,

∂2θi jk

∂x j∂xi
= − ∂2θi jk

∂xi∂xi
,

∂2θi jk

∂x j∂xk
= − ∂2θi jk

∂xk∂xk
.

∂2θi jk

∂x j∂x j
= ∂2θi jk

∂xi∂xi
+ ∂2θi jk

∂xk∂xk
,
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where n jk ≡ x jk/r jk , and notice that the off-diagonal terms
∂2θi jk

∂xi∂xk
= 0. For ease of notations we define �(θ ) ≡ 1

2 (θ −
θ (0) )2, �′ ≡ ∂�/∂θ , etc., then

∂Ubend

∂x
=

∑
angles i jk

�′(θi jk )
∂θi jk

∂x
,

and

∂2Ubend

∂x∂x
=

∑
angles i jk

�′′(θi jk )
∂θi jk

∂x
∂θi jk

∂x

+
∑

angles i jk

�′(θi jk )
∂2θi jk

∂x∂x
.

We next spell out derivatives with respect to shear strain;
we consider the transformation of coordinates x → H (γ ) · x
where γ is a shear-strain parameter, and

H (γ ) =
(

1 γ

0 1

)
,

then

∂θi jk

∂γ
= (n ji · ŷ)2 − (n jk · ŷ)2,

∂2θi jk

∂γ 2
= 2(n jk · ŷ)3(n jk · x̂) − 2(n ji · ŷ)3(n ji · x̂).

With these relations, one has

∂Ubend

∂γ
=

∑
angles i jk

�′(θi jk )
∂θi jk

∂γ
,

∂2Ubend

∂γ 2
=

∑
angles i jk

�′′(θi jk )

(
∂θi jk

∂γ

)2

+
∑

angles i jk

�′(θi jk )
∂2θi jk

∂γ 2
.

Finally, the mixed derivatives of the angles read

∂2θi jk

∂γ ∂xi
= n ji · ŷ

r ji

(
2(n ji · x̂)2 − 1

)
ŷ − 2

(n ji · x̂)(n ji · ŷ)2

r ji
x̂,

∂2θi jk

∂γ ∂xk
= 2

(n jk · x̂)(n jk · ŷ)2

r jk
x̂ − n jk · ŷ

r jk

(
2(n jk · x̂)2 − 1

)
ŷ,

∂2θi jk

∂γ ∂x j
= − ∂2θi jk

∂γ ∂xi
− ∂2θi jk

∂γ ∂xk
,

and then

∂2Ubend

∂γ ∂x
=

∑
angles i jk

�′′(θi jk )
∂θi jk

∂γ

∂θi jk

∂x

+
∑

angles i jk

�′(θi jk )
∂2θi jk

∂γ ∂x
.

[1] S. Alexander, Amorphous solids: Their structure, lattice dy-
namics and elasticity, Phys. Rep. 296, 65 (1998).

[2] M. Wyart, On the rigidity of amorphous solids, Ann. Phys. Fr.
30, 1 (2005).

[3] M. Wyart, H. Liang, A. Kabla, and L. Mahadevan, Elasticity of
floppy and stiff random networks, Phys. Rev. Lett. 101, 215501
(2008).

[4] W. G. Ellenbroek, Z. Zeravcic, W. van Saarloos, and M.
van Hecke, Non-affine response: Jammed packings vs. spring
networks, Europhys. Lett. 87, 34004 (2009).

[5] M. Wyart, Scaling of phononic transport with connectivity in
amorphous solids, Europhys. Lett. 89, 64001 (2010).

[6] C. P. Broedersz, X. Mao, T. C. Lubensky, and F. C. MacKintosh,
Criticality and isostaticity in fibre networks, Nat. Phys. 7, 983
(2011).

[7] G. Düring, E. Lerner, and M. Wyart, Phonon gap and lo-
calization lengths in floppy materials, Soft Matter 9, 146
(2013).

[8] X. Mao, O. Stenull, and T. C. Lubensky, Effective-medium the-
ory of a filamentous triangular lattice, Phys. Rev. E 87, 042601
(2013).

[9] X. Mao, O. Stenull, and T. C. Lubensky, Elasticity of a filamen-
tous kagome lattice, Phys. Rev. E 87, 042602 (2013).

[10] E. Lerner, Quasilocalized states of self stress in packing-derived
networks, Eur. Phys. J. E 41, 93 (2018).

[11] E. Lerner, E. DeGiuli, G. During, and M. Wyart, Breakdown of
continuum elasticity in amorphous solids, Soft Matter 10, 5085
(2014).

[12] K. Baumgarten, D. Vågberg, and B. P. Tighe, Nonlocal elasticity
near jamming in frictionless soft spheres, Phys. Rev. Lett. 118,
098001 (2017).

[13] K. González-López, E. Bouchbinder, and E. Lerner, Variability
of mesoscopic mechanical disorder in disordered solids, J. Non-
Cryst. Solids 604, 122137 (2023).

[14] J. A. Giannini, E. Lerner, F. Zamponi, and M. L. Manning,
Scaling regimes and fluctuations of observables in computer
glasses approaching the unjamming transition, J. Chem. Phys.
160, 034502 (2024).

[15] F. C. MacKintosh, J. Käs, and P. A. Janmey, Elasticity of semi-
flexible biopolymer networks, Phys. Rev. Lett. 75, 4425 (1995).

[16] S. B. Lindström, D. A. Vader, A. Kulachenko, and D. A. Weitz,
Biopolymer network geometries: Characterization, regenera-
tion, and elastic properties, Phys. Rev. E 82, 051905 (2010).

[17] D. A. Head, A. J. Levine, and F. C. MacKintosh, Deformation
of cross-linked semiflexible polymer networks, Phys. Rev. Lett.
91, 108102 (2003).

[18] C. P. Broedersz and F. C. MacKintosh, Modeling semiflexible
polymer networks, Rev. Mod. Phys. 86, 995 (2014).

[19] J. L. Shivers, S. Arzash, A. Sharma, and F. C. MacKintosh,
Scaling theory for mechanical critical behavior in fiber net-
works, Phys. Rev. Lett. 122, 188003 (2019).

[20] G. Düring, E. Lerner, and M. Wyart, Length scales and self-
organization in dense suspension flows, Phys. Rev. E 89,
022305 (2014).

[21] J. Feng, H. Levine, X. Mao, and L. M. Sander, Nonlinear elas-
ticity of disordered fiber networks, Soft Matter 12, 1419 (2016).

054904-9

https://doi.org/10.1016/S0370-1573(97)00069-0
https://doi.org/10.1051/anphys:2006003
https://doi.org/10.1103/PhysRevLett.101.215501
https://doi.org/10.1209/0295-5075/87/34004
https://doi.org/10.1209/0295-5075/89/64001
https://doi.org/10.1038/nphys2127
https://doi.org/10.1039/C2SM25878A
https://doi.org/10.1103/PhysRevE.87.042601
https://doi.org/10.1103/PhysRevE.87.042602
https://doi.org/10.1140/epje/i2018-11705-9
https://doi.org/10.1039/c4sm00311j
https://doi.org/10.1103/PhysRevLett.118.098001
https://doi.org/10.1016/j.jnoncrysol.2023.122137
https://doi.org/10.1063/5.0176713
https://doi.org/10.1103/PhysRevLett.75.4425
https://doi.org/10.1103/PhysRevE.82.051905
https://doi.org/10.1103/PhysRevLett.91.108102
https://doi.org/10.1103/RevModPhys.86.995
https://doi.org/10.1103/PhysRevLett.122.188003
https://doi.org/10.1103/PhysRevE.89.022305
https://doi.org/10.1039/C5SM01856K


EDAN LERNER PHYSICAL REVIEW E 109, 054904 (2024)

[22] A. Sharma, A. J. Licup, K. A. Jansen, R. Rens, M. Sheinman,
G. H. Koenderink, and F. C. MacKintosh, Strain-controlled
criticality governs the nonlinear mechanics of fibre networks,
Nat. Phys. 12, 584 (2016).

[23] A. J. Licup, A. Sharma, and F. C. MacKintosh, Elastic regimes
of subisostatic athermal fiber networks, Phys. Rev. E 93, 012407
(2016).

[24] R. Rens, C. Villarroel, G. Düring, and E. Lerner, Micromechan-
ical theory of strain stiffening of biopolymer networks, Phys.
Rev. E 98, 062411 (2018).

[25] M. Merkel, K. Baumgarten, B. P. Tighe, and M. L. Manning,
A minimal-length approach unifies rigidity in undercon-
strained materials, Proc. Natl. Acad. Sci. USA 116, 6560
(2019).

[26] J. L. Shivers, A. Sharma, and F. C. MacKintosh, Strain-
controlled critical slowing down in the rheology of disordered
networks, Phys. Rev. Lett. 131, 178201 (2023).

[27] E. Lerner and E. Bouchbinder, Scaling theory of critical strain-
stiffening in disordered elastic networks, Extreme Mech. Lett.
65, 102104 (2023).

[28] R. Rens and E. Lerner, Rigidity and auxeticity transitions in
networks with strong bond-bending interactions, Eur. Phys. J. E
42, 114 (2019).

[29] G. Kapteijns, E. Bouchbinder, and E. Lerner, Unified quantifier
of mechanical disorder in solids, Phys. Rev. E 104, 035001
(2021).

[30] D. J. Jacobs and M. F. Thorpe, Generic rigidity percolation in
two dimensions, Phys. Rev. E 53, 3682 (1996).

[31] W. G. Ellenbroek, V. F. Hagh, A. Kumar, M. F. Thorpe, and M.
van Hecke, Rigidity loss in disordered systems: Three scenar-
ios, Phys. Rev. Lett. 114, 135501 (2015).

[32] E. Lerner and E. Bouchbinder, Anomalous linear elasticity of
disordered networks, Soft Matter 19, 1076 (2023).

[33] C. Maloney and A. Lemaître, Subextensive scaling in the ather-
mal, quasistatic limit of amorphous matter in plastic shear flow,
Phys. Rev. Lett. 93, 016001 (2004).

[34] E. Bitzek, P. Koskinen, F. Gähler, M. Moseler, and P. Gumbsch,
Structural relaxation made simple, Phys. Rev. Lett. 97, 170201
(2006).

[35] R. Rens, M. Vahabi, A. J. Licup, F. C. MacKintosh, and A.
Sharma, Nonlinear mechanics of athermal branched biopolymer
networks, J. Phys. Chem. B 120, 5831 (2016).

[36] M. Wyart, L. E. Silbert, S. R. Nagel, and T. A. Witten, Effects
of compression on the vibrational modes of marginally jammed
solids, Phys. Rev. E 72, 051306 (2005).

[37] L. Yan, E. DeGiuli, and M. Wyart, On variational arguments for
vibrational modes near jamming, Europhys. Lett. 114, 26003
(2016).

[38] W. G. Ellenbroek, E. Somfai, M. van Hecke, and W. van
Saarloos, Critical scaling in linear response of frictionless
granular packings near jamming, Phys. Rev. Lett. 97, 258001
(2006).

[39] L. E. Silbert, A. J. Liu, and S. R. Nagel, Vibrations and diverg-
ing length scales near the unjamming transition, Phys. Rev. Lett.
95, 098301 (2005).

[40] R. Rens, Theory of rigidity transitions in disordered ma-
terials, Ph.D. thesis, Univeristy of Amsterdam, Nether-
lands, 2019, https://dare.uva.nl/search?identifier=6ae60739-
28c6-4318-aab9-939a0dacc4bc.

[41] M. F. J. Vermeulen, A. Bose, C. Storm, and W. G. Ellenbroek,
Geometry and the onset of rigidity in a disordered network,
Phys. Rev. E 96, 053003 (2017).

054904-10

https://doi.org/10.1038/nphys3628
https://doi.org/10.1103/PhysRevE.93.012407
https://doi.org/10.1103/PhysRevE.98.062411
https://doi.org/10.1073/pnas.1815436116
https://doi.org/10.1103/PhysRevLett.131.178201
https://doi.org/10.1016/j.eml.2023.102104
https://doi.org/10.1140/epje/i2019-11888-5
https://doi.org/10.1103/PhysRevE.104.035001
https://doi.org/10.1103/PhysRevE.53.3682
https://doi.org/10.1103/PhysRevLett.114.135501
https://doi.org/10.1039/D2SM01253G
https://doi.org/10.1103/PhysRevLett.93.016001
https://doi.org/10.1103/PhysRevLett.97.170201
https://doi.org/10.1021/acs.jpcb.6b00259
https://doi.org/10.1103/PhysRevE.72.051306
https://doi.org/10.1209/0295-5075/114/26003
https://doi.org/10.1103/PhysRevLett.97.258001
https://doi.org/10.1103/PhysRevLett.95.098301
https://dare.uva.nl/search?identifier=6ae60739-28c6-4318-aab9-939a0dacc4bc
https://doi.org/10.1103/PhysRevE.96.053003

