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Statistics of a granular cluster ensemble at a liquid-solid-like phase transition
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We report on the construction of a granular network of particles to study the formation, evolution, and
statistical properties of clusters of particles developing at the vicinity of a liquid-solid-like phase transition
within a vertically vibrated quasi-two-dimensional granular system. Using the data of particle positions and
local order from Castillo et al. [G. Castillo, N. Mujica, and R. Soto, Phys. Rev. Lett. 109, 095701 (2012)], we
extract granular clusters taken as communities of the granular network via modularity optimization. Each one
of these communities is a patch of particles with a very well defined local orientational order embedded within
an array of other patches forming a complex cluster network. The distributions of cluster sizes and lifespans for
the cluster network depend on the distance to the liquid-solid-like phase transition of the quasi-two-dimensional
granular system. Specifically, the cluster size distribution displays a scale-invariant behavior for at least a decade
in cluster sizes, while cluster lifespans grow monotonically with each cluster size. We believe this systematic
community analysis for clustering in granular systems can help to study and understand the spatiotemporal
evolution of mesoscale structures in systems displaying out-of-equilibrium phase transitions.
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I. INTRODUCTION

Dry granular matter, i.e., a large collection of athermal
macroscopic particles interacting via dissipative collisions,
can be driven into different phases (solidlike, liquidlike, and
gaslike ones, to mention a few) which depend on the energy
injection-dissipation balance occurring within the system
[1–4]. These out-of-equilibrium phases display transitions
featuring distinct attributes which have been studied
using well-known theoretical tools relying on symmetry,
dimensionality, and conservation arguments [5–7]. These
arguments allow a generic and universal way to characterize,
in particular, the granular system’s macroscopic evolution
and properties which are usually linked to the large scale slow
modes that dominate the dynamics of the system. In this re-
gard, the locality of interactions between grains is smeared out
on the large scale dynamics. Thus, the local granular informa-
tion (such as local force or local particle position fluctuations)
is lost within this modeling. Nevertheless, this local informa-
tion is of paramount importance for the mechanical stability
of granular matter when force chains are present [2,8–10],
as well as for the description of defects in vibrated granular
matter [11–14], especially in the case of structured granular
systems (such as the case of nonisometric grains [15–19]).

Recently, network science methodologies and techniques
have been implemented in the study of granular systems
[20–28] in order to understand the effect and importance of
the local information (encoded into a granular network of
forces, positions, or bond orientations) on the overall dynam-
ics of the system. Quasi-two-dimensional granular systems
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have been the main subject of study in this approach due
to the direct accessibility to the position, velocity, and/or
force acting on each grain (i.e., the local granular informa-
tion of the system). It must be noticed that this feature has
already been exploited extensively to track out-of-equilibrium
two-dimensional phase transitions [29–35]. From the local
information, different types of networks can be constructed,
defined solely by the definition of nodes and their connec-
tions. In this paradigm, encoding the complex relations of the
granular system’s particles in rather simple networks can be
extremely useful in the study of the granular system’s static
and/or dynamical properties, particularly the way it creates
mesoscopic structures such as force chains [36,37] or clusters
[38,39].

In this paper, we study the formation, evolution, and
statistics of clusters of particles in a quasi-two-dimensional
granular system at the vicinity of a second-order liquid-solid-
like phase transition where the phases are defined by the value
of a fourfold bond-orientational order parameter. To track
these particle clusters (that is, agglomerations of granular
particles with a large fourfold bond-orientational order param-
eter) we translate the positions and local bond orientation of
the grains into a simple network. Experimental data of particle
orientational and spatial order taken from Ref. [32] are used
to construct a network which encodes within its links the
local orientational order of the granular system, enabling the
use of the tools of network science within the framework of
nonequilibrium phase transitions. To wit, we relate clusters of
bond-oriented ordered particles of the granular system to hard
partitions of its respective network. These partitions are com-
puted using a community detection scheme which optimizes
a quality function called modularity [40] via a physically in-
formed, entropically generated null model for granular matter
displaying phase separation.
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II. BOND-ORIENTATIONAL NETWORK

A set of bond-orientational networks was constructed from
data sets used in Ref. [32], where N = 11 504 stainless steel
spherical particles of diameter d = 1 mm are confined in a box
of lateral dimensions 100d × 100d and a vertical dimension
of 1.94d . The superficial filling fraction for this configuration
is φ = (N × πd2/4)/L2 = 0.904, which is 0.3% below the
filling fraction corresponding to a single close-packed hexag-
onal layer φc � 0.907. The corresponding volumetric filling
fraction is φ3D = 0.311, which is far away from the close
hexagonal filling fraction φ3D

c � 0.741. This means that the
granular system is far from the jamming point [1,2].

The box was mounted on an electromechanical shaker
which is driven sinusoidally by a waveform generator via
a power amplifier. The vertical sinusoidal acceleration mod-
ulation of the box, a(t ) = �gcos (ωt ), was measured with
a piezoelectric accelerometer attached at the bottom of the
cell via a charge amplifier. Here g is gravity, 1 < � < 6, and
ω = 160π rad/s. The voltage signal from the charge amplifier
was then fed to a lock-in amplifier which demodulates a(t ) at
ω/2π = 80 Hz. The demodulated signal was used to compute
the mean value of �, with a standard deviation below 0.02%
[32]. Furthermore, horizontal accelerations of the box were
20–30 times smaller than the vertical modulation accelera-
tions. We acquired 3000 images of the in-plane motion of the
particle ensemble at 10 fps and used them to detect particles
with subpixel accuracy via an optimized particle tracking al-
gorithm [32]. From each image, the position of each particle
in the horizontal plane �rn and the fourfold bond-orientational
order parameter per particle

Q4
n = 1

Mn

∑
m∈Mn

ei4αnm (1)

were calculated. Here Mn is set of nearest neighbors of par-
ticle n computed via a Voronoi partition and αnm is the angle
between the neighbor m of particle n and a given axis. From
this point on, we will set Q4

n ≡ Qn, as we will only consider
fourfold orientational order.

As reported by Castillo et al. [32], the granular system dis-
plays an increasing degree of global bond-orientational order
as � increases. As this occurs, particles arrange themselves
into clusters with a larger and larger number of particles that
adjoin other clusters via shared particles at their edges. This
linear tendency suffers an abrupt change as � becomes larger
than �c = 5.09 ± 0.07, which is used as the critical value.

For a given �, a (simple) network represented by an adja-
cency matrix

A(p)
nm =

{
1 if |Qn|, |Qm| � 〈|Q|〉 and m ∈ Mn

0 otherwise
(2)

is computed for each image using 〈|Q|〉 as a threshold for
every n [32], including the particles at the edges of the box.
As described elsewhere small clusters of particles arrange
themselves along the box edges as a consequence of the
large number of inelastic collisions between particles. These
small clusters are not removed from our data, and do not
affect the results in this paper. It must be noticed that the
results presented here display no change when 〈|Q|〉 is varied

within ±10%. Nondirectionality for the network connections
is enforced by the symmetric nature of A(p)

nm . Tadpoles are
directly removed from the adjacency matrix as no self-links
are available (Ann ≡ 0 for all n) [41].

The binary adjacency matrix computed above encodes the
connections (edges) between particles (nodes) n and m with a
large local orientational order. In Fig. 1(a) a snapshot of parti-
cles at a given � is presented displaying the local value of |Q4|
as a color map over each particle, showing that they arrange
themselves in clusters of similar |Q4| values. Using Eq. (2),
the connections given by the adjacency matrix are shown with
red lines between particles in Fig. 1(b) We relate the particle
clusters displayed in Fig. 1(a) via the array of connections
displayed in Fig. 1(b) to the network’s communities [41],
which are indivisible subgroups within the network (what is
called a hard partition). In a similar fashion one can encode
the strength of the connections between nodes via a weighted
adjacency matrix W (p)

nm between nodes n and m, which in our
case can be readily defined as W (p)

nm = |Qn||Qm|A(p)
nm .

In our paper, the clusters are found by maximizing a certain
quality function, the network’s modularity Q:

Q =
∑

n,m∈N

(
W (p)

nm − γ Pnm
)
δCn,Cm (3)

where node n resides in community Cn and node m resides
in community Cm, γ is called the resolution parameter, Pnm is
a matrix term stemming from a null model [42] for the edge
distribution within the network, and δx,y is Kronecker’s delta
function. Modularity has been proposed as a direct way to
measure and quantify the community structure within large
networks [40], where communities (or modules) are nodes
that have a larger amount of nonzero connections among
themselves than with the rest of the network’s nodes [43]. One
can understand γ as the ratio between the spatial densities of
two communities in an optimal hard partition following the
null model selection. When γ < 1 the hard partition tends to
favor the selection of larger communities rather than smaller
ones, and vice versa [42]. We have set γ = 1 as we try to find
the cluster dynamics at the solid-liquid-like transition where
the system tends to agglomerate into clusters with a large span
in scales (ideally, in a scale invariant way).

We have tested three different null models to track the
structure of particle clusters: the Newman-Girvan null model
[44], the geographic null model [27], and a modification of
the former one, adapted to the observed data. The Newman-
Girvan null model, which has been extensively used in
community detection [42], is based on edges which are placed
at random on each node. The randomness of this edge config-
uration is quantified by the degree kn of each of the network’s
nodes (i.e., the number of edges connecting it) [41]. To wit,
Pnm = knkm/κ where κ = 2

∑
n kn = 2N 〈k〉 is the total num-

ber of edges of the network and 〈k〉 is the average number
of edges per node on the network. For granular matter, the
hypothesis of random connections for each and every node
does not correspond to the reality of the local granular net-
work connectivity. To correct this hypothesis, Papadopoulos
et al. [27] proposed a geographic null model, where nodes
represent particles and edges represent, for instance, forces
between them, which are encoded into Pnm = 〈 f 〉A(p)

nm with 〈 f 〉
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(a) (b)

FIG. 1. Image of steel particles (1 mm in diameter) used to construct our clusters for � = 4.95. (a) |Q4
n| of each particle. The color bar

shows available values of |Q4
n|. (b) Links between particles used to construct the order network (in red) following Eq. (2).

the mean interparticle force. This null model displays com-
munities which follow the local force chains of the granular
material.

These two null models display very different community
structures when we maximize Q for a given � and γ = 1, as
shown in Fig. 2. Here only connected particles are depicted,
which contribute nonzero terms to the adjacency matrix. Us-
ing the Newman-Girvan null model [see Fig. 2(a)] the cluster
array found from the Q optimization displays clusters with
sizes that are exponentially distributed with several inter-
cluster connections, much more than the ones found using
the geographic null model [see Fig. 2(b)]. A particular char-
acteristic of the cluster array arising from the use of the
geographic model is the appearance of single particle clusters
within clusters of four to ten particles, which develop as a
consequence of the nature of a model constructed to follow
force chains in compacted granular matter [27]. Following
this feature, we propose a modified model to take into account
the quality of the ordering between neighboring particles. We
propose the null model Pnm = β〈|Q|〉2A(p)

nm/2 following the
geographic model approach, where β is the fraction of ordered
particles within the system (see the Appendix A for an en-
tropic justification of this null model). To find algorithmically
these communities we optimize the community partition by
maximizing Q using a local greedy maximization algorithm
[45,46] in such a way that the total edge weight within the
communities is as large as possible with respect to a chosen
null model [42]. The optimally computed community partition

is then recomputed a number of times (chosen heuristically
[47]) in order to assure a certain convergence as the maximiza-
tion process is NP-hard [48]. In our maximization process we
have repeated the calculation at least 20 times per image by
permuting the nodes, finding the same clusters.

III. CLUSTER NETWORK

After the above optimization process, we find a set of
communities (clusters) Cα of particles which are connected
by intracommunal edges (A(p)

nm for n, m ∈ Cα). These clusters
are also connected between them via intercommunal edges
(A(p)

nm for n ∈ Cα , m ∈ Cβ , and α �= β), thus forming a new
coarse-grained network. We construct a new adjacency matrix
for the (much smaller) cluster network

A(C)
αβ =

{
1 if A(p)

nm = 1 for any n ∈ Cα, m ∈ Cβ

0 otherwise
(4)

which is used to describe the cluster evolution as a func-
tion of � near the solid-liquid transition occurring at �c =
5.09 ± 0.07 [32]. This means that the intercommunal edge
between two clusters is nonzero if there is at least one particle
shared at the edges of these clusters. A representation of this
clusterization process is shown in Fig. 3 using a small region
of an image at � = 4.95. The detected clusters of particles,
represented by large nodes with sizes scaling with the number
of particles per cluster, display intercluster connections (black

(a) (b) (c)

FIG. 2. Examples of communities found from optimizing Q using (a) the Newman-Girvan, (b) the geographic, and (c) our modified null
model for γ = 1 and � = 4.95. Patches of particles with the same color represent communities. Particles with no connections (edges) as well
as singleton clusters are not shown as they do not contribute to the adjacency matrix.
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FIG. 3. A given cluster of particles (in the bottom plane) is rep-
resented by a cluster node (in the upper plane) for � = 4.83. The
red lines show the correspondence between the two networks. The
black lines (in the upper plane) show the edges of the cluster network
which represent the amount of particles at the edges between particle
clusters (in the bottom plane).

lines), which represents that there are particles at the edges
between clusters. As the granular system becomes more ori-
entationally ordered by increasing � < �c, particles arrange
themselves into clusters with a larger and larger number of
particles that adjoin other clusters via shared particles at their
edges. Using the normalized acceleration 0.02 < ε = (�c −
�)/�c < 0.2, we compute the distribution of sizes nc and
lifespan τc of the clusters from these network sets as a function
of ε.

Size and lifespan properties of the cluster network

The distribution of cluster sizes ρ(nc) using our modified
null model is shown in Fig. 4 for different values of ε. It

displays a power-law behavior for ρ(nc) as a function of nc,
ρ(nc) ∼ nα

c for at least a decade in cluster sizes between 20
and 200 particles per cluster. The best fit values for α within
the above range are depicted in Fig. 4(a) (inset), showing a
limiting behavior for low ε. This power-law behavior saturates
displaying a cutoff for cluster sizes larger than a given value
n�

c (ε) which is larger and larger as we approach the liquid-
solid-like transition. Using a simple exponential correction
ρ(nc) ∼ nα

c × exp(−nc/n�
c ), we compute n�

c = n�
c (ε) which is

displayed in Fig. 4(b). Similarly, one can compute the largest
cluster distance found for each value of ε, n̄c = 〈n2

c〉 which
is shown in Fig. 4(c). As in the case of n�

c, n̄c decreases
with ε. One can probe a power-law behavior for both n�

c
and n̄c in ε in the range where α converges towards −2.0,
as it is depicted in Fig. 4(a) (inset). Within this range, n�

c ∼
εζ �

with ζ � = 0.23±0.05 and n̄c ∼ εζ̄ with ζ̄ = 0.21±0.05.
One might ascribe the above power-law behavior for cluster
size distribution to percolation-related problems [49–52] as it
displays the predicted exponent for our cluster distribution.
Recently, a couple of different second-order phase transitions
(one of activity and one of orientational order) have been
found to appear in a system of two-dimensional sheared gran-
ular discs at the same critical value of the control parameter
[34], which might be the case of the data from Ref. [32]. We
have checked that for our cluster network, this is not the case,
as neither n�

c nor n̄c displays the critical behavior expected
in percolation-related problems as a function of ε within the
experimental range of the present data.

Using these cluster network sets, we track the temporal
cluster evolution for a given ε to compute the average lifespan
of clusters of size nc. The way we track the cluster temporal
evolution is depicted in Fig. 5. The process starts by tracking
the cluster networks within two consecutive images j and
j + 1 [Fig. 5(a)]. The area of each cluster from image j is
projected onto image j + 1 [Fig. 5(b)] and a link is created
between a cluster C j

n of image j and a cluster C j+1
m of image

j + 1 if nodes from C j+1
m correspond to the projected area of

C j
n [Fig. 5(c)]. This link has a directed weight p( f )

nm equal to

(a) (b)

(c)

FIG. 4. (a) Distribution of cluster sizes ρ(nc ) vs nc for 0.02 < ε < 0.2. Inset: Best fit power-law exponent α as a function of ε for Nc ∈
{50, 500}. The horizontal dashed line shows the limiting value of α as a function of ε. The vertical dashed line shows the largest value of ε

from which α saturates. The color bar shows values of ε. (b) Cluster cutoff n�
c as a function of ε. (c) Largest cluster distance n̄c as a function

of ε.
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(a) (b) (c)

(d) (e) (f)

FIG. 5. Temporal cluster evolution procedure for two consecutive images. (a) Cluster network detection for both images. (b) Area
projection of one cluster network onto the other. (c) Link creation between clusters. (d) Link trimming by weight. (e) Backward link trimming.
(f) Forward link trimming.

the ratio of the number of nodes of C j
n and C j+1

m . In the same
fashion there is a directed weight p(b)

mn equal to the ratio of
the number of nodes of C j+1

m and C j
n . We keep only the links

with (p(b)
nm, p( f )

nm ) > 0.5, which means that both clusters share
at least half of the nodes [Fig. 5(d)]. As C j+1

m can be linked
with more than one cluster C j

n , we restrict the linkage between
clusters by keeping the one with the largest p(b)

mn [Fig. 5(e)].
The same procedure is done then forwards in time with p( f )

nm ,
to link only one cluster C j

n to only cluster C j+1
m [Fig. 5(f)].

Following this link path for each cluster from image j = 1 to
j = N we can track its lifespan as the number of links it holds
until the cluster is no longer traceable.

From the above procedure, the average lifespan τc = τ (nc)
as a function of nc is shown in Fig. 6 using the experi-
mental sample frequency of 10 Hz. Clusters with sizes in
(nc − �nc, nc + �nc) are binned together using �nc = 20
which is the average size of the small clusters found around
the edges of the images (see Fig. 1). For a fixed ε, τc grows
monotonically with nc ∈ {50, 500} as a power law with expo-
nent η = 0.24 ± 0.05 as a best fit slope. Clusters with larger
nc are sustained with a larger τc, displaying a large dispersion
as nc is of the order of 1000 particles for all values of ε as
shown in Fig. 6(a). Lifespan fluctuations σ (τc) are depicted in
Fig. 6(b) as a function of nc, which grow (on average) mono-
tonically with τc. A power law can be fitted as σ (τc) ∼ τμ

c ,
with μ = 0.55 ± 0.05 as the best fit slope. This shows that as
clusters grow in size and thus τc increases, σ (τc)/τc ∼ τ−1/2

c
decreases, which means that τc can be used as a proper time
scale to describe the slow dynamics of granular cluster evo-
lution. It is important to notice that these findings are also

observed when (p( f )
nm , p(b)

nm) are reduced from 0.5 to 0.1, albeit
larger larger fluctuations in τc are found.

(a)

(b)

FIG. 6. (a) Average lifespan τc as a function of Nc for different
values of ε. (b) Standard deviation of the average lifespan σ (τc ) vs
the average lifespan τc.
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From the above results, the modularity optimization
scheme to find communal structures within the granular net-
work allows us to track and characterize mesoscopic clusters
of particles. These structures present local |Q4| values larger
than 〈|Q|〉 (allowing a proper large-scale characterization via
a dynamic phase transition model [32]) but different local
orientation with respect to a given axis. These types of lo-
cal mesoscopic fluctuations have already been observed (see
Fig. 1 in Ref. [14]), but their dynamical and statistical prop-
erties were not characterized. The typical “grain boundary”
size is given by the cutoff of the cluster distribution, which
comes straightforwardly from the cluster detection scheme.
Thus, this mesoscopic structure detection can shed light on
the local cluster evolution and merging, and thus on the phase
transition dynamics.

IV. CONCLUSIONS

The results presented above display a community de-
tection scheme via a Q optimization which allows the
computation of a cluster ensemble of ordered particles in a
quasi-two-dimensional vibrated granular system close to a
solid-to-liquid-like phase transition. These clusters are con-
structed as hard partitions using an entropic null model in
Q which takes into account both the bond-orientational and
the spatial order of the granular system. From the computed
cluster ensemble as we increase the normalized accelera-
tion ε = (�c − �)/�c, we track the cluster size distribution
ρ(nc) and the cluster mean lifespan τc. The cluster size dis-
tribution displays a power-law dependence on nc with an
exponent close to −2.0 which is independent of ε in the
range nc ∈ {50, 500}, and an exponential cutoff with a slope
equal to 1/n�

c (ε) which increases with ε. The mean lifes-
pan τc of clusters with size nc increases with a power law
as a function nc with an exponent close to 1/4 for nc ∈
{50, 500}. For larger values of nc, large fluctuations of τc are
observed.

The results presented in this paper, i.e., the cluster detection
via modularity optimization, can be directly generalized to
other two-dimensional vibrofluidized granular systems where
mesoscopic structures develop, particularly near phase transi-
tions. The (simple) network construction and the null model
are informed by the physics of the system under study
which sets both the structure of the adjacency matrix and
the particular constraints of the network ensemble. Work in
this direction is currently being done using the data from
Ref. [53].

We believe that this community analysis via Q optimiza-
tion for cluster detection in granular systems can be of
use to study and understand the spatiotemporal evolution of
mesoscale structures in systems, especially ones displaying
out-of-equilibrium phase transitions. Furthermore, the appli-
cation of an entropic null model in the Q optimization scheme
enables a systematic computation of mesoscale structures in
out-of-equilibrium granular systems and their dynamics with-
out the necessity of defining ad hoc parameter values [27]. It
is our hope that this scheme will be used on other quasi-two-
dimensional granular systems to study, compare, and contrast
the dynamics of their mesoscale structures as phase transitions
develop in such systems.
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APPENDIX A: NULL MODEL FOR ORDERED
PHASES IN GRANULAR MATTER

The null model presented in the present paper to find
communities was found by an entropic maximization scheme.
We start by considering a multiplex network [54–56], which
means that two nodes within one network can belong also to a
different one at the same time. In our case we will consider a
multiplex formed by N labeled nodes from n = 1, . . . , N and
M layers represented by �G = (G(1), . . . , G(M ) ), where G(α) in-
dicates the set of all possible networks at layer α = 1, . . . , M
of the multiplex. Nodes can be connected by specifying an
adjacency matrix Aα

n,m (as defined in the text) which can be
weighted, depending on the type of network under study.

With this in mind, we task ourselves to find the ensemble
properties of the multiplex by specifying the probability P( �G)
for every possible multiplex. For a given set of multiplex prob-
abilities P( �G) we can compute the entropy of the multiplex
ensemble:

S = −
∑

�G
P( �G) log [P( �G)], (A1)

which is proportional to the logarithm of the number of pos-
sible multiplexes of the ensemble. As in statistical mechanics,
we can find an ensemble of multiplexes that maximize S ,
subjected to a given set of restrictions (a Gibbs probability
ensemble). If we assume that the layers of the multiplex
are uncorrelated, the probability of the multiplex can be
written as

P( �G) =
M∏

α=1

P(Gα ) (A2)

which simplifies greatly our task.
We now specify our problem within this framework. First

we will set M = 2 and α = o, s. One layer, called the ori-
entational layer (o), connects pairs of nodes (n, m) with
intralayer weights w(o)

n,m = |Qn||Qm| as long as |Qn|, |Qm| >

〈|Q|〉. A second layer, called the spatial layer (s), connects
pairs of nodes (k, l ) with intralayer weights w

(s)
k,l = f (dk,l )

where dk,l = |�rn − �rm| is the spatial distance (measured in
number of diameters d) between nodes and f (x) is a scalar
function that goes to zero with increasing x. Note that in the
orientational layer any pair of nodes (n, m) that satisfy the
thresholding scheme for |Qn| and |Qm| is connected. In this ap-
proximation, local orientational order does not couple directly
with spatial order [32], and we will assume for simplicity
that 〈w(o)

n,mw(s)
n,m〉 = 〈w(o)

n,m〉〈w(s)
n,m〉, i.e., we neglect the overlap

between layers [56]. This means that the probability of finding
a link between nodes (n, m) in both layers of the multiplex is
simply the multiplication of the intralayer link probabilities
for these nodes, following Eq. (A2).
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In a canonical multiplex ensemble for our data, the set of
multiplexes �G = (G(o), G(s) ) satisfies constraints on average,
informed by the dynamics of the granular layer both in the
orientational layer and in the spatial one. In this case, for the
orientational layer we set the global constraint

L(o) =
∑

�G
P( �G)

N∑
n<m

w(o)
n,m

= β
N (N − 1)

2
〈|Q�|〉2 (A3)

which can be understood as setting on average a fraction
β of nodes (particles) within the system with a fourfold
bond-orientational order parameter per particle 〈|Q�|〉. For the
spatial layer the constraint

0 =
∑

�G
P( �G)

N∑
n<m

�
(
w(s)

n,m

)
[�(dnm − d )] (A4)

sets on average the spatial interaction of particles with only
the nearest neighbors for each particle. Here �(x) is the Heav-
iside function [57]. Thus, maximizing S from the Eq. (A1)
constraint to Eq. (A4) gives

P( �G) = e
∑N

n<m −�w(o)
n,m−��(w(s)

n,m )[�(dnm−d )]

Z (A5)

where Z is the partition function of our system and (�,�) are
Lagrange multipliers enforcing the orientational (�) and spa-
tial (�) constraints of the system, respectively. As the layers
are assumed to be uncorrelated, we calculate Z = Z (o) × Z (s)

with

Z (o) =
∑
G(o)

e−�
∑N

n<m w(o)
n,m

=
∏
n<m

∑
{w(o)

n,m}
e−�w(o)

n,m

=
∏
n<m

(1 − e−�)−1 (A6)

and

Z (s) =
∑
G(s)

e−�
∑N

n<m �(w(s)
n,m )[�(dnm−d )]

=
∏
n<m

∑
{�(w(s)

n,m )}=0,1

e−��(w(s)
n,m )[�(dnm−d )]

=
∏
n<m

(1 + e−�[�(dnm−d )] ). (A7)

It is now straightforward to compute the link probability
(i.e., the null model) for our multiplex between nodes (n, m)
from the product partition function Pnm. The link probability
between two nodes P(o)

nm for the orientational layer can be
computed from the weight probability πnm(w) of the link for
a given weight w(s)

nm = w,

πnm(w) =
∑

�G
P( �G)δ

(
w(o)

nm = w
)

= e−�w × (1 − e−�), (A8)

FIG. 7. S(ε) vs � for the granular network. Inset: Double loga-
rithmic plot of S(ε) vs ε for the granular network, which shows an
almost flat slope for lower values of ε.

as P(o)
nm = 1 − πnm(w = 0) = e−�. Using Eqs. (A4) and (A6),

we link � and the restriction via

L(o) = −∂ log (Z (o) )

∂�
=

∑
n<m

e−�

1 − e−�

= N (N − 1)

2

e−�

1 − e−�

= β
N (N − 1)

2
〈|Q�|〉2, (A9)

which sets e−� = β〈|Q�|〉2/(1 + β〈|Q�|〉2) = P(o)
nm . The link

probability between two nodes p(s)
nm in the spatial layer can

be computed similarly imposing that the weight of the link t
is larger than zero, i.e.,

P(s)
nm =

∑
�G

P( �G)δ
(
w(s)

nm > 0
) = e−�[�(dnm−d )]

1 + e−�[�(dnm−d )]
. (A10)

Similarly as before, we link � with the restriction via

0 = −∂ log (Z (s) )

∂�

=
∑
n<m

e−�[�(dnm−d )]

1 + e−�[�(dnm−d )]
[�(dnm − d )], (A11)

which is fulfilled only if � → ∞ as it is required that the sum
over all non-neighbors yields zero. In that case, P(s)

nm = 1
2 [1 −

�(dnm − d )] for every neighboring pair (nm) in the layer and
P(s)

nm = 0 otherwise. Following Eq. (A2), the link probability
for our multiplex (and thus our null model for the granular
network) is

P(p)
nm = P(s)

nm × P(o)
nm

= β〈|Q�|〉2

1 + β〈|Q�|〉2

[1 − �(dnm − d )]

2
, (A12)

which can be approximated to β〈|Q�|〉2[1 − �(dnm − d )]/2
for β � 1. In this expression the term [1 − �(dnm − d )] can
be understood as the spatial adjacency matrix A(s)

nm for par-
ticles that are in contact (nearest neighbors). An important
consequence of this approach is the entropic justification for
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FIG. 8. Cluster size distribution ρ(nc ) vs cluster size nc for ε =
0.03 for γ = 0.01( ), 0.1( ), 1( ), 10( ), and 100 (—).

the use of a geographic model proposed in Ref. [27] to find
community structure in a granular system subjected to simple
local and global restrictions.

Furthermore, using these techniques, one can compute
directly the entropy of the granular network via the appli-
cation Eq. (A1) to the problem at hand. As the partition
function for the problem in the limit of negligible over-
lap is Z = Z (o) × Z (s), S = S (ε) = S (o) + S (e) = −�L(o) +
log (Z (o) ) + log (Z (e) ), which can be used to compute the
entropy for the ensemble of granular networks as a function
of ε, which is depicted in Fig. 7. As ε = (�c − �)/�c is the
normalized acceleration of the entire granular system, which
serves as a mechanism of energy injection, one could use the
calculation of the granular network entropy S (�) to compute
a rough approximation to an out-of-equilibrium specific heat
dS
d�

� CV (�). � can then be viewed as a measure of mean
kinetic-energy injection per particle (and thus a proxy to tem-
perature) in vibrofluidized granular systems [58–60], at least
at low frequencies compared to the internal collision rate. In
our case, S (�) shows no divergence as � → �c (see Fig. 7),
i.e., as the system approaches the solid-liquid-type transition.
Furthermore, in double logarithmic scale, S (ε) is almost con-
stant as a function of the normalized acceleration. Although
this is consistent with the α = 0 exponent (in the language of

dynamical phase transitions [6]) within the C model used to
describe this granular system [32], it must be stated that the
granular network entropy computed in this paper cannot be
viewed as an approximation to an out-of-equilibrium granular
entropy.

APPENDIX B: SENSITIVITY OF Q TO THE
RESOLUTION PARAMETER

It has been noticed in the literature of modularity maxi-
mization that the resolution parameter γ plays an important
role as it weighs large or small communities differently: small
values of γ yield larger communities from Q maximization,
and vice versa (see Ref. [42] and references therein), as it
can be seen in Eq. (3). This feature is also observed in the
detection of communities from granular systems’ data (see
for instance Ref. [37]), as the size of communities changes
drastically when γ varies one order of magnitude. In our case,
we have tested the sensitivity of our community detection
structure by changing γ from 0.01 to 100 for ε = 0.03. To
wit, we have computed the cluster size distribution ρ(nc) as
a function of the cluster size nc for different values of γ ,
as shown in Fig. 8. For γ � 0.1 the size distributions are
almost equal while for γ � 1 the size distribution shrink to-
wards small sizes (even arriving at a singular distribution for
γ = 100). Notice that for γ � 1 the power-law behavior of
ρ(nc) does not seem to be affected by γ which indicates that
the γ -related detection scheme bias towards larger commu-
nities only affects clusters equal to or larger than n�

c (which
continues to increase with ε). Thus, following this numerical
observation, based on the fact that γ sets a preferred filter
towards larger communities and on the extensive literature
dealing with sensitivity tests of Q on γ , we choose to use
γ = 1.

APPENDIX C: CLUSTER NETWORK PROPERTIES

In this Appendix, we will focus on the statistical properties
of the cluster network constructed above. We characterize
these networks as a function of the normalized acceleration
ε = (�c − �)/�c. We will first deal with the statistics of the
edges within the network. In Fig. 9(a) we depict the distribu-
tion of the number of connections κ as a function of ε. The
mean number of connections 〈κ〉 decreases linearly with ε,

(a) (b) (c)

FIG. 9. Cluster network connection statistics. (a) Distribution of the number of connections for the entire network ρ(κ ) vs κ as a function
of ε. (b) Distribution of connections per node ρ(k) vs k as a function of ε. (c) Mean value of the number of connections per node 〈k(nc )〉 vs nc

as a function of epsilon. Same colorbar as in previous figures.
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which is expected as smaller clusters merge into larger ones,
and thus fewer connections are formed within the network.
The distribution can be reasonable fitted by a chi-squared
distribution where the number of degrees of freedom χ in-
creases with decreasing ε. For the case of connections per
node k [see Fig. 9(b)], the distribution can be reasonably fitted
with an exponential function for k > 4, with a slope which

decreases with ε, allowing larger values for k as we approach
the solid-liquid transition. We also computed the amount of
connections as a function of nc; k = k(nc) grows as a power
law with nc as nζk

c with ζk = 0.55 ± 0.05 and is independent
of ε. This scaling, shown in Fig. 9(c), is to be expected as
the connection between clusters depends on the number of
particles at the edges of the clusters, and thus k ∼ n1/2

c .
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