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Capillary condensation between nonparallel walls
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We study the condensation of fluids confined by a pair of nonparallel plates of finite height H . We show
that such a system experiences two types of condensation, termed single and double pinning, which can be
characterized by one (single-pinning) or two (double-pinning) edge contact angles describing the shape of
menisci pinned at the system edges. For both types of capillary condensation, we formulate the Kelvin-like
equation and determine the conditions under which the given type of condensation occurs. We construct the
global phase diagram revealing a reentrant phenomenon pertinent to the change of the capillary condensation
type upon varying the inclination of the walls. Asymptotic properties of the system are discussed and a link
with related phase phenomena in different systems is made. Finally, we show that the change from a single- to
a double-pinned state is a continuous transition, the character of which depends on the wetting properties of the
walls.
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I. INTRODUCTION

Confining fluids exhibiting liquid-gas phase separation be-
low a critical temperature Tc can profoundly change their
phase behavior [1–5]. If the confinement is formed by a pair
of parallel walls whose dimensions are macroscopic (effec-
tively infinite) and that are a distance L apart, the shift in
the liquid-gas phase boundary from the vapor pressure psat to
pCC(L) = psat − δpCC(L), due to the interplay between sur-
face and finite-size effects, can be described by the classical
Kelvin equation, according to which

δpCC(L) = 2γ cos θ

L
. (1)

Here, γ is the liquid-gas surface tension and θ is Young’s
contact angle pertinent to a macroscopic liquid drop sitting
on one of the isolated walls. This phenomenon of capillary
condensation, which persists up to the capillary critical point
at a temperature Tc(L) < Tc, which is itself a subject of a
finite-size change [6,7], has been a subject of numerous theo-
retical studies, simulations, and experiments, which revealed
that the Kelvin equation remains quantitatively reliable even
for slits that are several molecular diameters wide [8–14].

However, the recent advances in nanoscale physics and
the challenges associated with the fabrication of nanodevices
called for further elucidation of the phase phenomena induced
by objects of microscopic dimensions [15]. In particular, a
description of condensation in such systems requires a modifi-
cation of the original Kelvin equation, properly accounting for
the effects at walls boundaries and the system geometry. For
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instance, for plates of finite height H , but still parallel, it turns
out that condensation always appears closer to saturation (i.e.,
at a higher pressure) compared to infinite (H → ∞) walls and
that the condensed state can be macroscopically characterized
by an occurrence of two symmetric menisci that meet the ends
of the walls at the edge contact angle θe, which is always larger
than the corresponding Young contact angle θ [16]. This can
be described using the modified Kelvin-like equation [16,17],

δpCC(L, H ) = 2γ cos θe

L
, (2)

determining the condensation pressure inside the finite slit,
pCC(L, H ) = psat − δpCC(L, H ), at which the edge contact
angle satisfies

cos θe = cos θ − L

2H

[
sin θe + sec θe

(
π

2
− θe

)]
. (3)

In this paper, we show that the phase behavior of confined
fluids is significantly enriched if the confining walls are non-
parallel, forming a truncated wedge geometry. In this case, the
confinement (sketched in Fig. 1) is formed by two identical
plates of length H that are both inclined (relative to the verti-
cal, say) by an angle α. The model capillary is thus of finite
height, with L1 and L2 > L1 denoting the “bottom” and “top”
opening widths. We assume that the depth of the capillary is
macroscopic and that the system is translation invariant along
the walls, implying that only one principal radius of curvature
of the menisci is relevant. Hence, the model can be thought of
either as an extension of that of the finite slit mentioned above
or as a part sliced off from a linear wedge with an opening
angle 2α [18–22]. Owing to the presence of two openings of
different widths, the system allows for condensation in two
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FIG. 1. Schematic two-dimensional (2D) illustration of two possible condensed states in a slit formed of two identical walls of finite length
H , where both make an angle α with the vertical plane. The widths of the slit openings are L1 and L2 > L1 and the walls (with Young’s contact
angle θ ) are macroscopically deep. (a) A single-pinned state which can be characterized by one edge contact angle θe; (b) a double-pinned
state characterized by two contact angles θe and θ ′

e.

distinct ways: (i) to a single-pinned state [see Fig. 1(a)], which
is characterized by the presence of two menisci, such that one
is pinned at the narrow slit end, while the other is located
inside the slit, or (ii) to a double-pinned state [see Fig. 1(b)],
in which case both menisci are located at the slit ends. It is
then natural to ask under which conditions the given type
of capillary condensation, if any, occurs. Associated with it,
there are further natural questions. What are the analogues of
the Kelvin equation for both types of condensation? When
does the system cease to condense? What is the role of the
walls surface properties? What is the nature of the change
from a single-pinned to a double-pinned state?

The remainder of the paper is organized as follows. In
Sec. II, we present a macroscopic theory of condensation, sep-
arately describing both possible types. Some of these results
are then employed in Sec. III for an analysis of condensa-
tion inside a semi-infinite system [23], where we primarily
focus on the asymptotic behavior of the system in the limit
of α → 0. The main findings of our work are described in
Sec. IV, where we discuss the phenomenology of condensa-
tion in the general case, construct the global phase diagram,
determine the nature of the depinning transition, and present
some analytic predictions that we compare with the numerical
calculations. We conclude in Sec. V with a detailed summary
of the results.

II. TWO TYPES OF CONDENSATION

In this section, we formulate the Kelvin-like equations cor-
responding to both single-pinning and double-pinning con-
densation between nonparallel walls. To this end, we treat
our capillary model as an open system which is in equilib-
rium with a reservoir of the same subcritical temperature T
and the chemical potential μ. Within this grand-canonical
treatment, an equilibrium state corresponds to such a

configuration, which minimizes the grand potential � which
we will approximate using a simple macroscopic description.
Clearly, the condition for condensation requires the value of �

of the “empty” (i.e., a gaslike) configuration and the pertinent
condensed state to be the same. Throughout the paper, we
will assume that the walls are “hydrophilic” with Young’s
contact angle θ < π/2. In the case of “hydrophobic” walls,
θ > π/2, capillary condensation would be replaced by cap-
illary evaporation occurring at a pressure p > psat, with the
role of the gas and liquid phases being swapped. More details
regarding the derivation of the Kelvin-like equations are given
in Appendix A.

A. Single pinning

We start off with a description of condensation to a single-
pinned state. The condensed system is characterized by the
presence of two menisci, with one located at the narrow end
of the walls and the other inside the capillary [see Fig. 1(a)].
Macroscopically, the shape of the menisci is determined by
two characteristics: the Laplace radius of curvature R and the
angle at which the menisci meet the walls. The Laplace radius,
R = γ /δp, is of course the same for both menisci, where
δp = pg − pl is the pressure difference between the ambient
gas and the (metastable) condensed liquid phase. However,
while the meniscus inside the capillary meets the walls with
the equilibrium Young contact angle, θ , the other meniscus
which is pinned connects the walls at the edge contact angle,
θe. It is also clear that while the location of the pinned menis-
cus is fixed, the one inside the capillary is free and its location
X , varying with δp, determines the portion of the capillary
filled with liquid [cf. Fig. 1(a)]. The macroscopic excess grand
potential, per unit length, of the condensed system (relative to
the state where only gas is present) can be written as

�ex
SP = δpS + γ (�1 + �2 − 2X cos θ ). (4)
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Here, the first term is the free-energy cost due to the presence
of the metastable liquid, the next two terms correspond to the
surface free energies due to the presence of the menisci, and
the final term is the interfacial liquid-wall free energy where
Young’s law has been used. Furthermore,

�1 = R(π + 2α − 2θe) (5)

and

�2 = R(π − 2α − 2θ ) (6)

denote the arc lengths of the pinned and the free menisci,
respectively, and

S = Stot − S1 − S2 (7)

is the area corresponding to the region occupied by liquid.
The latter was separated into the part Stot of the trapezoid of
length X ,

Stot = 4R2 cos2(α + θ ) − L2
1

4
cot α, (8)

and the parts

S1 = R2(π + 2α − 2θe) − RL1 sin(θe − α)

2
(9)

and

S2 = R2(π − 2α − 2θ )

2
− R2 sin(α + θ ) cos(α + θ ), (10)

corresponding to circular segments formed by the respective
menisci. Finally, the length of the walls at the contact with
liquid is

X = 2R cos(α + θ ) − L1

2 sin α
. (11)

The location of the coexistence between the low-density
state (filled only with gas) and the single-pinned state is de-
termined from the condition �ex

SP = 0. From this, it follows
that the single-pinned condensation occurs at the pressure
pSP = psat − δpSP, where

δpSP(L1, H, α) = 2γ cos(θe − α)

L1
(12)

is the Kelvin-like equation for the condensation partial pres-
sure with the edge contact angle θe given implicitly by the
equation

cot α[cos2(α + θ ) − cos2(α − θe)] + π − θ − θe

+ sin(2α + 2θ ) − sin(2α − 2θe)

2

= 2 cos θ [cos(α + θ ) − cos(α − θe)]

sin α
. (13)

Note that the location of the condensation can also be ex-
pressed in terms of the chemical potential μSP = μsat (T ) −
δμSP, where μsat (T ) is the value of the chemical potential
at saturation and δpSP ≈ δμSP(ρl − ρg), where ρl and ρg are
the number densities of coexisting liquid and gas at the given
temperature [24].

B. Double pinning

Similar considerations lead to the Kelvin-like equation for
double-pinned condensation, where, in contrast to the previ-
ous case, both menisci are pinned at the capillary ends, so that
the walls are at contact with liquid along their whole length
[see Fig. 1(b)]. Now, the excess grand potential per unit length
can be written as

�ex
DP = δpS + γ (�1 + �2 − 2H cos θ ), (14)

where the arc length of the shorter meniscus, �1, is given by
(5), while the arc length of the meniscus pinned with the edge
contact angle θ ′

e(<θe) at the wider end of the capillary is

�2 = R(π − 2θ ′
e − 2α). (15)

The area S = Stot − 
S corresponding to the volume oc-
cupied by liquid is given by the total area between the walls,
Stot = H (L1 + L2) cos α/2, reduced by the area of circular
segments due to the menisci,


S = R2(π − θe − θ ′
e)

− R[L1 sin(θe − α) + L2 sin(θ ′
e + α)]

2
. (16)

The edge contact angles are related to the Laplace radius of
the menisci according to

R = L1

2 cos(θe − α)
(17)

and

R = L2

2 cos(θ ′
e + α)

, (18)

which simply follows from the system geometry.
The phase boundary between low-density and double-

pinned states occurs at the pressure pDP = psat − δpDP, where

δpDP(L1, H, α) = γ

RDP
. (19)

Here, the Laplace radius RDP must, besides the geometric
relations (17) and (18), satisfy the thermodynamic condition,
�ex

DP = 0, which yields

L2
2 − L2

1

4
cot α + R2

DP(π − θe − θ ′
e) − (L2 − L1)RDP cos θ

sin α

+ RDP

2
[L1 sin(θe − α) + L2 sin(θ ′

e + α)] = 0. (20)

The phase boundary is thus determined by simultaneously
solving Eqs. (17), (18), and (20) for θe, θ ′

e, and RDP; it is
straightforward to verify that for α = 0, Eqs. (19) and (20)
reduce to (2) and (3), respectively.

III. CONDENSATION IN SEMI-INFINITE SLITS

Prior to describing the phase transitions in the systems
shown in Fig. 1, we begin with an analysis of semi-infinite
systems that correspond to the limit of H → ∞. In this case,
which serves as a prerequisite to our main analysis, the situa-
tion is rather simple owing to the fact that only single-pinned
condensation is possible. The condition under which the con-
densation may occur is determined by an interplay between
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FIG. 2. Illustration of a nonmonotonic behavior of the meniscus
height X at capillary condensation in a semi-infinite system as a
function of the capillary opening angle α, for θ = 0 and θ = 45◦.

the thermodynamic angle θ and the geometric angle α (and
does not depend on L1, which is now the only macroscopic
length scale). For α = 0, the condensation is possible for any
value of the contact angle θ � π/2, as in the case of a standard
infinite slit and the location of the meniscus, which forms at
condensation, is arbitrary [25]. However, as soon as α > 0,
the free-energy balance between the volume and interfacial
contributions stabilizes the distance X between the (lower)
meniscus pinned at the narrow end and the other one inside
the capillary. This separation depends on α in a nonmonotonic
fashion, which is illustrated in Fig. 2 and which has further
repercussions for finite capillaries, as will be discussed later.
Now, for the given value of θ , the maximum opening angle
αmax still allowing for condensation is the one for which the
condensation occurs at the highest possible pressure below
the bulk coexistence, δpSP = 0, corresponding to flat menisci,
implying that

αmax = π

2
− θ. (21)

Alternatively, the maximum contact angle θmax allowing for
condensation in the semi-infinite capillary with the fixed
opening angle α is

θmax = π

2
− α. (22)

The latter condition interpolates between that for capillary
condensation in an infinite narrow slit (θmax = π/2) and that
for a wetting transition on a planar wall (θmax = 0). Also, note
that it is just in the marginal case, α = αmax, when θe = θ and
when both menisci can freely move along the walls without
any free-energy change.

Next, we want to make a link between capillary condensa-
tion in our system and that in an infinite narrow slit. To this
end, let us write 
pSP(L1,∞, α) = pSP(L1,∞, α) − pCC(L1)
for the pressure difference between the respective condensa-
tion pressures. The difference is positive for any α > 0 and
we wish to know how it vanishes in the limit of narrowing the
capillary. Here, we have to distinguish between partially and
completely wet walls. For partially wet walls, θ > 0, we find

FIG. 3. The behavior of θe for small values of the opening angle
α in semi-infinite slits for partially wet walls with θ = 45◦ and
completely wet walls (θ = 0). The dotted lines refer to the numerical
solution of Eq. (13), while the solid lines represent the asymptotic
results given by Eqs. (23) and (25), respectively.

that to lowest order in α, the edge contact angle approaches
Young’s contact angle according to

θe = θ + c(θ )
√

α as α → 0, (23)

with the amplitude c(θ ) = √
(π − 2θ + sin(2θ )/ sin θ and

which implies that


pSP(L1,∞, α) = 2γ c(θ ) sin θ
√

α

L1
+ O(α). (24)

This contrasts with the complete wetting regime, θ = 0, for
which we obtain

θe = θ + (4πα)
1
4 as α → 0, (25)

and


pSP(L1,∞, α) = 2γ sin θ (4πα)
1
4

L1
+ O(

√
α). (26)

The test of the asymptotic relations (23) and (25) against the
numerical results obtained from Eq. (12) for both partial and
complete wetting is shown in Fig. 3.

IV. CONDENSATION IN FINITE SLITS

A. Phase diagrams

We now turn to nonparallel slits formed of walls of finite
length H . In contrast to the semi-infinite case, there are now
two types of condensation and we wish to specify conditions
determining their realization. These will be expressed in the
parameter space of H , α, and θ , with L2 = L1 + 2H sin α and
L1 taken as a unit of length. Prior to it, however, we start again
with a formulation of requirements that the system must obey
to experience capillary condensation at all, expressed in terms
of the geometrical parameters α and H , for a given value of θ .
The marginal conditions allowing for capillary condensation
follow from the condition 
�ex

DP = 0 at the maximal pressure,
p = psat, i.e., when the menisci are flat. This implies that the
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FIG. 4. (a) Global phase diagram specifying phase boundaries displayed in the α-θ projection for several values of H . The areas bounded
by the solid curves referring to a given value of H correspond to a set of parameters for which the system condenses to single-pinned states.
The area outside the given solid curve and below the pertinent dashed line corresponds to a set of parameters for which the system condenses
to a double-pinned state. Above the dashed lines, representing the curves given by Eq. (27), the opening angle is too large for the system to
condense; these curves tend in the limit of H → ∞ to the solid black line π/2 − θ [cf. Eq. (27)]. (b) Same as (a), except that in place of the
lines showing the condensation limit, the line connecting the “turning points” corresponding to Xmin(θ ), shown in Fig. 6, is displayed.

maximal value αmax of the opening angle is (cf. Appendix B)

sin αmax = cos θ − L1

H
, (27)

with H � L1 sec θ . For H < L1 sec θ , no condensation is pos-
sible for any value of α.

Note that Eq. (27) is a generalization of the condition (21)
for the semi-infinite case and is more stringent. The presence
of the last term in Eq. (27) implies that along the saturation
path p = psat (T ), the system will no longer condense at the
wedge-filling phase boundary, but at a temperature Tf (α) <

T (α, H ) < Tw.
Alternatively, Eq. (27) can be recast to the form determin-

ing the minimal length of the walls, Hmin, required for the
presence of capillary condensation for the given value of the
opening angle α < αmax,

Hmin = L1

cos θ − sin α
. (28)

We recall that these conditions were obtained by assum-
ing that condensation at p = psat is of a double-pinned
type. This must be the case since condensation to a single-
pinned state at psat would require that sin α < cos θ (in order
�ex

SP < �ex
DP), in which case, however, �ex

SP > 0 precluding the
condensation.

The main results summarizing the macroscopic predictions
from Sec. II are shown in Fig. 4. Here, the global phase
diagram in the α-θ plane is presented for several represen-
tative values of H . Figure 4(a) specifies, for each ratio of
H/L1, the values of α and θ corresponding (same color) to
the given type of capillary condensation. The regions bounded
by the solid lines correspond to the parameters for which

the system condenses to single-pinned states. The area out-
side these regions, but below the corresponding dashed line,
refers to double pinning; the dashed lines show the maximal
opening angle αmax(θ ) above which no condensation is pos-
sible. Note that these lines straighten up and shift to higher
and higher values of θ as H increases, approaching the line
α = π − θ pertinent to the semi-infinite case, which is also
displayed.

These results reveal the following two noteworthy features
which we want to point out:

First, the condensation exhibits a reentrant phenomenon
along the path of constant θ on varying the opening angle α.
This follows from the very fact that the boundaries of this path
always correspond to double-pinned states: the case α = αmax

was discussed above, while for α = 0, only double-pinned
states are accessible [16]. Hence, within the interval of θ (H )
allowing for single-pinned states, the increase of α will first
switch from double to single pinning before turning back to
double-pinning condensation.

The change in condensation type occurs for the values of
α, solving the equation

c2 cot α(1 − q2) + π − θ − cos−1(qc) − α

+ c
√

1 − c2 + qc
√

1 − q2c2 = 2c(1 − q) cos θ

sin α
, (29)

where we used the abbreviations q = L1/L2 and c = cos(θ +
α) (see Appendix C for more details). Equation (29) deter-
mines the parameters for which both types of condensation
coincide, i.e., when θ ′

e = θ or, equivalently, X = H . This can
be illustrated in Fig. 5 where a typical dependence of X (α)
is shown. As for the semi-infinite case, the dependence is
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FIG. 5. The meniscus height X at capillary condensation as
a function of the opening angle α for H/L1 = 10 and θ = 45◦.
For α < α1 and α > α2, X = H , meaning that the system is in a
double-pinned state. For α1 < α < α2, the system condenses to a
single-pinned state and X (α) is nonmonotonic with a minimum at
α = αmin ≈ 9.7◦, at which X = Xmin ≈ 5.8 L1 (cf. Fig. 6).

nonmonotonic but now, of course, is bounded by the length
of the walls. The highlighted values of the opening angle α1

and α2 are those for which X (α1) = X (α2) = H , both solving
Eq. (29).

The third significant value of the opening angle is αmin, for
which X (α) reaches its minimum. This value can be deter-
mined analytically by solving ∂X/∂α = 0, using

(
∂R

∂α

)
θ

= −
( ∂�ex

SP
∂α

)
θ( ∂�ex

SP
∂θe

)
θ

·
(

∂R

∂θe

)
α

, (30)

where (∂R/∂θe)α = L1 sec(θe − α) tan(θe − α)/2, as follows
from Eq. (12). The dependence of Xmin on θ is shown in
Fig. 6 and can be interpreted as the minimal length of walls
H allowing, for the given contact angle θ , condensation to a
single-pinned state. The dependence corresponds to the line

FIG. 6. The dependence of the minimal meniscus height X of a
condensed, single-pinned state on θ .

shown in Fig. 4(b) connecting the “turning points” of the
lines bounding the regions of single-pinning condensation,
which are the single solutions of Eq. (29). Note that the graph
Xmin(θ ) itself exhibits a minimum for θ ≈ 11.65◦ for which
Xmin ≈ 4.5 L1.

Second, the lines specifying the region of single-pinned
condensation always possess a turning point at θ+(H ), which
can be interpreted as the contact angle above which only
double pinning is possible for arbitrary α (for the given H).
However, there exists a specific value of the system size,
H̃ ≈ 4.63 L1, such that for H < H̃ , the lines enclosing single-
pinned condensation exhibit two such points, i.e., θ+(H ) and
θ−(H ), meaning that single pinning is only possible within
the interval θ−(H ) < θ < θ+(H ). As H further decreases,
the single-pinning region shrinks and ultimately vanishes
when H = Hc ≈ 4.5 L1, which corresponds to the minimum
of Xmin(θ ) shown in Fig. 6.

We briefly summarize the present results. At first, our sys-
tem formed of a pair of walls of length H with Young’s contact
angle θ may only ever experience capillary condensation
provided the walls are long enough, such that H � L1 sec θ .
Under these conditions, two types of capillary condensation
are, in principle, possible: (i) to a single-pinned state charac-
terized by an edge contact angle θe at the pressure given by
the generalized Kelvin equation (12) or, more commonly, (ii)
to a double-pinned state characterized by two edge contact
angles θe and θ ′

e at the pressure given by the generalized
Kelvin equation (19). The latter type always takes place for
acute angles when the walls are almost parallel; however, as
α increases, the upper edge contact angle θ ′

e decreases and
eventually depins from the top edges when θ ′

e = θ , in which
case the bottom edge contact angle θe takes the value given by
Eq. (29). Under further widening of the system, the condensa-
tion will lead to a single-pinned state, so that a portion of the
system filled with liquid (proportional to X ) decreases rapidly
with α. This decrease continues up to the point given by the
solution of Eq. (30), at which the upper meniscus reaches
its minimal position, Xmin, and beyond which the meniscus
location approaches the upper edges again. The reentrance
to the double-pinned condensation is accomplished at such a
value of α that corresponds to the second solution of Eq. (29)
(when X = H). The condensation to a double-pinned state
persists up to αmax as given by Eq. (27), which generalizes the
condition for the filling transition in a linear wedge. For α >

αmax, the free-energy cost for the presence of the metastable
liquid becomes too high for the system to condense. This
phenomenology is illustrated in Fig. 7, where a sequence of
equilibrium configurations of a system with H = 10 L1 and
θ = 45◦ is depicted for several values of α. A corresponding
movie is shown in the Supplemental Material [26].

B. Asymptotic behavior of capillary condensation

In this section, we analyze asymptotic features of capillary
condensation, starting with its behavior in the limit of α → 0.
This, for any finite value of H , contrasts with the case of semi-
infinite capillaries examined in Sec. III since now the relevant
type of condensation is double pinning. From Eqs. (17) and
(18), it follows that to first order in α, the relation between the
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FIG. 7. A sequence illustrating capillary condensed states of a system with H = 10 L1 and θ = 45◦ for increasing α.

edge contact angles is

θe − θ ′
e ≈ 2α

(
1 + cot θe

a

)
, (31)

where we have temporarily introduced the abbreviation a =
L1/H . To the same order, the corresponding Laplace radius is

R ≈ L1

2
sec θe(1 − α tan θe). (32)

In what follows, we will further assume that the length-to-
width ratio of the slits is large and will drop the terms of the
order of aα. The free-energy balance, given by Eq. (20), can
then be written as

α + a + a2

4
sec2 θe(π − 2θ2) − a cos θ sec θe

+ a2

2
tan θe + O(α2, aα) = 0, (33)

which yields the relation between θe(α) and the edge contact
angle for parallel slits, θe(0),

cos θe(α) = cos θe(0)

(
1 − αH

L1

)
, (α → 0). (34)

This implies that θe(α) decays to θe(0) linearly, and, in con-
trast to the semi-infinite case, the asymptotic behavior is the
same both for partially and completely wet walls. Further-
more, we can also write for the shift in the corresponding
partial pressures,

δpDP = δpCC(L1, H )

[
1 −

(
H

L1
− tan θe(0)

)
α

]
, (α → 0).

(35)

These asymptotic relations are confirmed by comparing with
the numerical results obtained from Eqs. (19) and (20), as
shown in Fig. 8.

Next, we wish to investigate the growth of the equilibrium
Laplace radius R of the menisci along the double-pinned
phase boundary, as the maximal opening angle αmax is ap-
proached. From Eqs. (17) and (18), it follows that as α →
αmax (and R → ∞), θe and θ ′

e tend to adopt their respective
asymptotic values, π/2 + α and π/2 − α, according to

θe ∼ π

2
+ α − L1

2R
, θ ′

e ∼ π

2
− α − L2

2R
. (36)

In this limit, Eq. (20) reduces, upon substituting from (36), to

L1 + L2 + (L1 − L2) cos θ

sin α
+

(
L2

2 − L2
1

)
cot α

4R
= 0, (37)

bearing in mind that L2 itself is a function of α. This implies
the power law for the growth of the menisci,

R ∼ H sin α

2
(αmax − α)−1, (α → αmax), (38)

which is verified by a comparison with the exact numerical
solution of Eqs. (17)–(20), as shown in Fig. 9.

C. Depinning transition

The final remark regards the transition from a single- to a
double-pinned state in a fixed system geometry by varying the
pressure. This depinning transition, referring to a meniscus
(de)pinning at the wider capillary end, occurs when θ ′

e = θ ,
i.e., at the partial pressure

δpdepin = 2γ cos(θ + α)

L2
, (39)

as follows from Eq. (18). The free-energy change (per unit
length) associated with the transition is


�(R) ≡ �ex
DP − �ex

SP = γ

4R

{
L2

2 cot α + 4R2

[
cos θ cos(α + θ )

sin α
+ α + θ − cos−1

(
L2

2R

)]
− 4L2R

cos θ

sin α
+ L2

√
4R2 − L2

2

}
.

(40)

It is straightforward to show that both 
�(R) = 0 and d
�(R)/dR = 0, under the necessary condition that θ + α < π/2, for
R = Rdepin, where Rdepin ≡ γ /δpdepin is the Laplace radius corresponding to the transition. For the second derivative of 
�(R)
at the transition, one obtains

d2
�

dR2

∣∣∣∣
R=Rdepin

= 4γ cos3(α + θ )[cot α − cot(α + θ )]

L2
, (41)
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FIG. 8. The numerical test of the asymptotic results given by (a) Eq. (31), (b) Eq. (34), and (c) Eq. (35). The analytic predictions (solid
lines) are compared with the numerical solutions of Eqs. (19) and (20) (symbols) for partially wet walls (θ = 45◦) and completely wet walls
(θ = 0◦) with H = 20 L1.

which vanishes only for θ = 0. Finally, the third deriva-
tive of 
�(R) for completely wet walls at the depinning
transition is

d3
�

dR3

∣∣∣∣
R=Rdepin

= 8γ cos2 α cot3 α

L2
2

, (θ = 0), (42)

which is already finite.
Hence, the change from a single- to a double-pinned state

is accompanied by a continuous (depinning) phase transition,
which (according to the classical Ehrenfest classification) is
of second order for systems formed of partially wet walls
and of third order for completely wet walls. The behavior of
the excess grand potential near the transition is illustrated in
Fig. 10 (for partially wet walls) and in Fig. 11 (for completely
wet walls).

FIG. 9. The numerical test of the power law (38) showing the
divergence of the Laplace radius of the menisci upon widening the
pore up to the condensation limit αmax. The analytic predictions (solid
lines) are compared with the numerical solutions of Eqs. (19) and
(20) (dotted) for systems with H = 10 L1, θ = 0, and 45◦.

V. SUMMARY AND CONCLUDING REMARKS

In this work, we studied condensation in capillaries formed
of a pair of nonparallel walls, each of length H and making
an angle α with the vertical plane (say). We showed that the
rotation of the walls by the angle α, breaking the reflection
up-down symmetry, substantially enriches the phase behavior
of the confined fluid. The main features of the system phase
behavior are as follows:

(1) The system exhibits capillary condensation only if the
walls are sufficiently long, such that H � L1 sec θ , where L1 is
the capillary width at the narrow end and θ is Young’s contact
angle of the walls.

(2) Furthermore, if the condition H � L1 sec θ is
obeyed, capillary condensation may occur only for
systems with the opening angle α � αmax, where the
marginal angle αmax is given by the relation sin αmax =
cos θ − L1/H . This generalizes the condensation condition
for the semi-infinite system, H → ∞, which is αmax =
π/2 − θ , representing the wedge-wetting (filling) phase
boundary.

(3) Capillary condensation is one of two types, termed
single pinning and double pinning:

(a) In the former case, the capillary is only partially
filled with liquid, such that its lower meniscus is pinned
at the narrow capillary end and makes edge contact angle
θe with the walls, as given by Eq. (13); the upper meniscus
is inside the capillary and thus meets the walls with
Young’s contact angle θ . The pressure at which the system
condenses to a single-pinned state is given by the modified
Kelvin equation (12) in terms of θe.

(b) If the condensation leads to a double-pinned state,
the whole capillary is filled with liquid and the upper
meniscus is pinned at the wider capillary end with a
different edge contact angle θ ′

e. In this case, the
condensation pressure is given by the modified Kelvin
equation (19), which can be expressed by either of the edge
contact angles using Eqs. (17), (18), and (20).
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FIG. 10. The illustrative behavior of (a) first and (b) second derivatives of the grand potential of the single-pinned phase (for R < Rdepin)
and the double-pinned phase (for R > Rdepin), where Rdepin ≡ γ /δpdepin (denoted by the vertical line) corresponds to the depinning transition
of the system formed of partially wet walls with θ = 0.3. The other parameters of the system are L2 = 2 L1 and α = 0.03.

(4) The condensation scenario (when H � L1 sec θ ) is as
follows:

(a) For H > H̃ (≈ 4.6 L1), there exists a marginal value
of Young’s contact angle θ+ so that the condensation
always leads to a double-pinned state for any α � αmax.
For θ < θ+, the condensation may be of either type
depending on α, the variation of which leads to the
reentrant phenomenon:

(i) For α < α1, the condensation leads to a
double-pinned state.

(ii) For α1 < α < α2, the condensation leads to a
single-pinned state.

(iii) For α2 < α < αmax, the condensation leads to a
double-pinned state again. As α tends to αmax, the
menisci flatten as R ∼ (αmax − α)−1.

The opening angles α1 and α2, for which single and double
pinning coincide, are the solutions of Eq. (29).

(b) In a narrow interval of H , such that Hc � H � H̃
with Hc ≈ 4.5 L1, the interval of θ allowing for single
pinning is restricted by two marginal contact angles:
θ− < θ < θ+.

(c) For H < Hc, condensation always leads to a
double-pinned state.
(5) Upon narrowing the slit, i.e., in the limit of α → 0,

the asymptotic properties of capillary condensation are as
follows:

(a) For semi-infinite walls, the condensation pressure
pSP tends to the one corresponding to capillary
condensation in an infinite parallel slit, pCC, as

pSP − pCC ∼ α1/2 for partially wet walls, but substantially
slowly, pSP − pCC ∼ α1/4, for completely wet walls.

Analogous behavior applies to the way the edge contact
angle θe approaches Young’s contact angle θ .

(b) For H finite, the asymptotic behavior is different
because the system can now lower its free energy by
condensing to a double-pinned state so that the upper
meniscus meets the walls with the edge contact angle θ ′

e
rather than θ . Now, the condensation pressure approaches

the one pertinent to a finite parallel slit linearly in α—as
does the difference in the edge contact angles, θe − θ ′

e—
both for partially and completely wet walls.
(6) For geometries allowing for single-pinned condensa-

tion, there is a continuous transition between a single-pinned
and a double-pinned state by varying the pressure, as given
by Eq. (39). The transition is of second order for par-
tially wet walls and of third order for completely wet
walls.

We conclude with a few remarks concerning possible ex-
tensions of this study. Throughout this work, we implicitly
assumed that the capillary forces dominate the system behav-
ior and that gravity effects can be neglected. This is the case
when the pertinent capillary length is much larger than the
characteristic lengths of the system (such as L1). Allowing for
gravity would make it possible to consider significantly larger
(∼µm) systems and supposedly would substantially enrich the
system phase behavior in view of the competing surface and
gravity effects; this is experimentally accessible using, e.g., an
interferometric technique, as demonstrated by Moldover and
Gammon by measuring elevation and adsorption thickness of
SF6 in wedgelike cavities [27]. On the other hand, employ-
ing more microscopic approaches that would allow to link
the system behavior with its molecular origin would also be
desirable; this would, most notably, be important for the case
of θ = 0, when wetting layers adsorb at the walls, effectively
reducing the system size, which is something not accounted
for within our analysis. Here, the direct link with real experi-
ments is less straightforward, but possible using, e.g., atomic
force microscopy and we believe that a simple geometric
modification of the recent experiments by Geim et al. [14] of
capillary condensation of water on mica or graphite “walls”
of an atomic scale (few ångströms) is feasible. More sophisti-
cated treatments would be needed to capture further relevant
aspects, such as interfacial fluctuations, surface roughness,
or bulk criticality. Possible extensions also include modifi-
cation of the system geometry by, for example, breaking the
mirror symmetry, which can further increase the number of
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FIG. 11. The illustrative behavior of (a) first, (b) second, and
(c) third derivatives of the grand potential of the single-pinned
phase (for R < Rdepin) and the double-pinned phase (for R > Rdepin),
where Rdepin ≡ γ /δpdepin (denoted by the vertical line) corresponds
to the depinning transition of the system formed of completely wet
walls (θ = 0). The other parameters of the system are L2 = 2 L1

and α = 0.08.

condensation types. Some of these extensions will be subjects
of our future work.
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APPENDIX A: DERIVATION OF FORMULAS FROM SEC. II

Here, we present a detailed description of the geometric
expressions that lead to the modified Kelvin equations for both
single- and double-pinning condensations.

1. Single-pinning condensation

All of the geometric measures that appear in Eq. (4) for the
excess grand potential can be easily determined using Fig. 12,
where all the important angles and distances are denoted.
Specifically, for the angles ω1 and ω2, we have that

ω1 = π + 2α − 2θe (A1)

and

ω2 = π − 2α − 2θ, (A2)

where θ is Young’s contact angle at which the upper meniscus
meets the walls and θe is the edge contact angle at which the
lower meniscus meets the walls. From here, the expressions
(5) and (6) for �1 and �2 immediately follow. Furthermore,
the shaded areas, S1 and S2, can now be determined as a

FIG. 12. Detailed sketch of a single-pinned state.
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FIG. 13. Detailed sketch of a double-pinned state.

difference between the areas of the corresponding circular sec-
tors, R2ω1/2 and R2ω2/2, and those of the isosceles triangles
with the apex angle ω1 and ω2, respectively, leading to Eqs. (9)
and (10). Finally, for the length X of the walls which are in
contact with liquid, it holds that

X = 2R cos(α + θ ) − L1

2 sin α
. (A3)

After substituting for �1, �2 S = Stot − S1 − S2, where the
trapezoid area Stot is given by Eq. (8), and X into the ther-
modynamic relation �ex

SP = 0, the condition (13), at which the
single-pinning condensation occurs, is obtained. The second
relation between the Laplace radius of curvature, R, and θe

reads

R cos(θe − α) = L1

2
, (A4)

as required by the system geometry.

2. Double-pinning condensation

Similar relations apply for the double-pinning condensa-
tion, which is illustrated in Fig. 13. While the expression (A1)
for ω1 remains unchanged, the one for ω2 is now given by the
second edge contact angle θ ′

e, as ω2 = π − 2α − 2θ ′
e. Hence,

for the (shaded) areas of the circular segments, we now have

that

S1 = R2

2
(π − 2θe + 2α) − sin(θe − α)RL1

2
(A5)

and

S2 = R2

2
(π − 2θ ′

e − 2α) − sin(θ ′
e + α)RL2

2
, (A6)

which determines the area occupied by liquid, S =
H cos α(L1 + L2)/2 − S1 − S2.

The phase boundary for the double-pinning condensation
is given by the thermodynamic condition, �ex

DP = 0, leading,
after substituting for all the geometric measures, to Eq. (20),
which is complemented by two geometric relations:

R cos(θe − α) = L1

2
(A7)

and

R cos(θ ′
e + α) = L2

2
, (A8)

forming now the set of three equations for the unknowns R,
θe, and θ ′

e.

APPENDIX B: DERIVATION OF EQ. (27)

At the saturation, δp = 0, both menisci in a double-pinned
state must be flat and the simple geometry dictates that in this
case, θe − α = π/2 and θ ′

e + α = π/2. The manner in which
the edge contact angles θe and θ ′

e acquire their limiting values
follows by expanding Eqs. (17) and (18), which yields

θe → π

2
+ α − L1

2R
(as R → ∞) (B1)

and

θ ′
e → π

2
− α − L2

2R
(as R → ∞), (B2)

implying that π − θe − θ ′
e ∼ (L1 + L2)/(2R), as R → ∞. Di-

viding Eq. (20) by RDP and considering the limit RDP → ∞,
one obtains that in this limit, the condition for a double-
pinning condensation reduces to

L1 + L2 + (L1 + L2) cos θ

sin α
= 0, (B3)

which in terms of the parameter H = (L2 − L1)/(2 sin α) can
be expressed in the form of Eq. (27).

APPENDIX C: DERIVATION OF EQ. (29)

The change in the condensation type from single to double
pinning occurs when X = H (cf. Fig. 1). In view of Eq. (A3)
and the relation H = (L2 − L1)/2 sin α, the condition can be
written as

cos(θe − α) = cq, (C1)

with q ≡ L1/L2 and c ≡ cos(θ + α). Using Eq. (C1)
and substituting for θe = cos−1(cq) + α and sin(θe − α) =√

1 − c2q2 into Eq. (13) for θe at single-pinning condensation,
Eq. (29) is obtained.
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