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Dynamics of elongation of nematic tactoids in an electric field

Mohammadamin Safdari,1 Roya Zandi,1 and Paul van der Schoot 2

1Department of Physics, University of California, Riverside, California 92521, USA
2Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

(Received 24 December 2023; accepted 22 April 2024; published 29 May 2024)

Nematic tactoids are spindle-shaped droplets of a nematic phase nucleated in the co-existing isotropic phase.
According to equilibrium theory, their internal structure and shape are controlled by a balance between the
elastic deformation of the director field, induced by the preferred anchoring of that director field to the interface,
and the interfacial free energy. Recent experiments on tactoids of chitin nanocrystals dispersed in water show
that electrical fields can very strongly elongate tactoids, at least if the tactoids are sufficiently large in volume.
However, this observation contradicts the predictions of equilibrium theory as well as findings from Monte Carlo
simulations that do not show this kind of extreme elongation to take place at all. To explain this, we put forward
a relaxational model based on the Oseen-Frank free energy of elastic deformation of a director field coupled to
an anisotropic surface free energy. In our model, we use two reaction coordinates to describe the director field
and the extent of elongation of the droplets and evaluate the evolution of both as a function of time following
the switching on of an electric field. Depending on the relative magnitude of the fundamental relaxation rates
associated with the two reaction coordinates, we find that the aspect ratio of the drops may develop a large and
very long-lived overshoot before eventually relaxing to the much smaller equilibrium value. In that case, the
response of the curvature of the director field lags behind, explaining the experimental observations. Our theory
describes the experimental data reasonably well.
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I. INTRODUCTION

Dispersions containing elongated colloidal particles have
long been known to form nematic liquid-crystalline phases if
their volume or weight fractions exceeds some critical value
that actually can be surprisingly small [1]. As the transition
from the isotropic to a nematic state is discontinuous, the
coexistence of these two states occurs in a range of con-
centrations in between the binodals associated with them
[2]. The development of a macroscopic nematic phase under
conditions of coexistence with the isotropic phase is rather
slow, however, and involves the formation of nematic droplets
called tactoids in the isotropic parent phase [3–7]. Nematic
tactoids have an unusual, elongated shape reminiscent of a
spindle, a rugby ball or an American football, reflecting the
underlying uniaxial symmetry of the nematic phase. That the
structure and properties of tactoids may be studied experimen-
tally is because it may take months to years before the nematic
droplets sediment and coalesce, and a single nematic phase
presents itself. The nematic phase is typically denser than the
co-existing isotropic phase [2].

Since the pioneering work of Zöcher on vanadium pentox-
ide sols in 1925 [8], tactoids have been observed in a wide
range of molecular, polymeric and colloidal lyotropic liquid-
crystalline fluids. These include dispersions of different kinds
of filamentous and rod-like virus particles [9–12], inorganic
nanorods [13,14], polypeptides [15], carbon nanotubes [3,16],
F-actin [6], protein amyloids [17], chromonic liquid crystals
[18], and cellulose nanocrystals [19–22]. The characteristic
shapes and director-field structures of nematic tacoids have
been the subject of a large number of theoretical and computer

simulation studies [23–34]. From these studies we understand
that the spindle shape so typical of tactoids must be due to
the competition between the preference of rodlike particles
for a planar anchoring of the director field to the interface, and
the resulting elastic deformation of the (quasi bipolar) director
field. Because the free energy associated with the elastic de-
formation of the director field and the interfacial free energy
depend differently on the volume, both the shape and director
field configuration depend on the volume of a tactoid [25].

Experimental findings on the structure and shape of tac-
toids seem to be reasonably well described by macroscopic
theory, even if they are not very large on the scale of the length
of the colloidal particles. Indeed, the application of macro-
scopic theory makes possible the extraction of information on
the elastic constants of the nematic and interfacial free ener-
gies between the coexisting isotropic and nematic phases from
polarization microscopic images alone if the experimental
data include a sufficiently wide range of tactoid sizes [3,24–
27,35–37]. Interestingly, the experiments on the aspect ratio
(or length and breadth) as a function of the volume of tactoids
typically exhibit a significant amount of scattered data. Puech
et al. [16] argued that this must be due to thermal fluctuations
on account of the fact that the interfacial free energies of
lyotropic nematics must be very low. It so happens that for
this type of colloidal system interfacial tensions can be of the
order of µN m−1 or even significantly below that [4,16,38,39].
Incidentally, this also explains why tactoids require very little
energy to significantly deform, and why the shape and struc-
ture of tactoids are so strongly affected by the contact with
an adsorbing surface or the presence of an externally applied
electric, magnetic, or flow field [27,36,40,41].
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FIG. 1. Polarization microscopic images of the evolution in time
of tactoids in an aqueous solution of chitin fibers, following the
switching on and off of an AC electric field of root-mean-square
magnitude of E = 160 V mm−1 and a frequency of 300 kHz. [(a) to
(e)] The field is applied at time zero, and a collection of tactoids
imaged at 0, 120, 210, 640, and 1080 seconds. [(f) to (i)] The field
is switched off and the same tactoids are imaged after 230, 380,
530, and 820 seconds following the removal of the electric field.
Figure reproduced with permission from Ref. [36].

It is also clear from the work of Jamali et al. on nematic
tactoids found in dispersions of carbon nanotubes in a su-
peracid, however, that this variation can neither be explained
in terms of the magnitude of thermal (equilibrium) fluctua-
tions predicted by macroscopic theory nor by potential errors
in the measurement of the aspect ratio of tactoids [3]. This
already suggests that the equilibration of the shape and direc-
tor field of tactoids might be quite slow [34]. In fact, recent
work by Mezzenga and collaborators on tactoids in aqueous
dispersions of amyloids and of cellulose nanocrystals sup-
ports this: tactoids produced via nucleation and growth may
have a different aspect ratio and internal structure than those
produced in a microfluidic device [7]. This explains to some
extent why experiments on tactoids in aqueous dispersions of
chitin in the presence of an applied AC electric field [36]
show a large disconnect with predictions from equilibrium
theory and the results from Monte Carlo simulations [35,42].
Experimentally, tactoids are able to elongate by a factor of
up to about ten through their coupling to the electric field. In
contrast, in equilibrium theory and Monte Carlo simulations
it is the director field that responds to the external orienting
field with the aspect ratio of the tactoids showing much less
sensitivity, see also Fig. 1.

In Refs. [35,42], this discrepancy was elucidated by sug-
gesting that the response of droplet shape and the director field
occurs on different timescales: initially the anchoring enslaves
the director field and forces it to follow the droplet shape.
Only after the droplet shape has relaxed, then the director field
starts relaxing. This eventually leads to the final relaxation
of the droplet shape. which in turn leads to the subsequent
relaxation of the shape of the drop to the actual equilibrium
value in the very much later stages of the process. Indeed,
Mezzenga and collaborators recently also suggested that tac-
toid equilibration might be kinetically controlled, leading to

very long-lived metastable states [17]. This, then, would also
explain the large scatter in tactoid shape and director field in
dispersions that have been left to equilibrate for a long time,
in that full equilibrium might not yet have been reached for
the tactoids themselves. This is remarkable, given that they
typically measure from ten to a few hundreds of micrometers
in length [3,41].

In this paper, we follow up on our previous work [35],
where we investigated the equilibrium shape and structure of
nematic tactoids in an external alignment field, and introduce
a relaxational dynamics based on two reaction coordinates.
These reaction coordinates describe (i) the elongation of a
tactoid with a prescribed spindle shape and (ii) the degree of
deformation of the director field where we prescribe the ge-
ometry of the deformation. The prescribed droplet shape and
director-field geometry allows us to straightforwardly evaluate
the well-known Oseen-Frank elastic free energy as well as the
surface free energies that we use as input for our dynamical
theory. For the surface free energy, we use the ansatz of Rapini
and Papoular [43]. By construction, the steady-state solution
to our equations produces the optimal aspect ratio and degree
of curvature of the director field, given the volume of the drop
and the strength of the alignment field [35].

We find that the elongation of tactoids in an electric field
is entirely a kinetic effect. Depending on the ratio of the two
fundamental relaxation rates associated with the two reaction
coordinates, we either obtain a monotonic time evolution of
both the aspect ratio and curvature of the director field or a
monotonic response of the curvature of the director field and
an overshoot in the aspect ratio of the tactoids. The actual
response times depend strongly on the strength of the electric
field and the volume of the tactoids, appropriately scaled to
the elastic constants and interfacial free energies associated
with the nematic. Curve fitting to the experimental data of
Metselaars and collaborators [36] gives reasonable agreement,
showing that the relaxation of the bipolarness of the director
field must be extremely sluggish. The cause of this remains
unclear and requires further study.

The remainder of this paper is structured as follows. In
Sec. II, we describe the ingredients of our theory. Section III
summarizes our main findings based on a numerical evalua-
tion of the theory. In Sec. IV, we compare our theory with
experiments, and finally we present our conclusions and dis-
cuss our results in Sec. V.

II. THEORY

Relaxational or model A dynamics is based on a phe-
nomenological description of how a system relaxes to a
state of equilibrium, described by an appropriate free energy
[44–46]. The free energy of the nematic droplet is the sum of
three components,

F = FS + FE + FC, (1)

where FS , FE , and FC refer to the contributions of (i) the
interface between the nematic tactoid and the host isotropic
phase it is in contact with, (ii) the elastic deformation of the
director field in the tactoid, and (iii) the interaction of the
nematic with alignment field, respectively.
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For the interfacial free energy, we use the well-known
phenomenological expression of Rapini and Papoular [43,47],

FS = σ

∫
[1 + ω(�q · �n)2]dA, (2)

that in the context of dispersions of rodlike particles has some
merit [16,38]. Here, σ denotes the interfacial tension between
the nematic droplet and isotropic medium for the case of
perfect planar anchoring, �q is the local surface normal, �n the
director field at the surface A, and ω > 0 a dimensionless
anchoring strength that penalizes nonplanar anchoring of the
director field to the interface. The integration is over the
entire surface A of the droplet. For simplicity, we presume
the interfacial tension and anchoring strength to be indepen-
dent of the strength of the alignment field, even though the
isotropic phase becomes paranematic in such a field and we
would expect the interfacial tension and anchoring strength to
respond to that [48]. As usual, we also ignore any curvature
dependence of the interfacial free energy and invoke the so-
called capillarity approximation.

For the elastic deformation, we make use of the Oseen-
Frank free energy [49],

FE =
∫ (

1

2
K11( �∇ · �n)2 + 1

2
K33(�n × ( �∇ × �n))2

− K24 �∇ · (�n �∇ · �n + �n × ( �∇ × �n))

)
dV, (3)

where K11, K33, and K24 represent the elastic modulus of splay,
bend, and saddle-splay terms, respectively. Parenthetically, we
note that all contributions involving various kinds of spatial
variations of the director field are scalars, as they should. In
our description, we do not allow for a twisted director field
[26]. Integration is over the entire volume V of the drop. We
take the elastic moduli to be independent of the strength of
the field. Strictly speaking this cannot be true as their values
depend on the degree of nematic alignment of the particles
[50]. For the kind of bipolar director field that we shall be
considering, the saddle-splay deformation renormalizes the
splay elastic contribution to the free energy, implying that K11

becomes K11 − K24 and we can remove the saddle-splay term
from Eq. (3) [24,25].1

In the experiments of Metselaar and collaborators [36],
the alignment field is a high-frequency AC electric field that
we treat as a static field �E with a magnitude equal to the
root-means-square value of that of the AC field. At time zero
we switch on the field, and are interested in the response
of tactoids to the switching on of the field. We expect the
dielectric susceptibility of the nematic phase to be anisotropic
and reflect its uniaxial symmetry [51]. Hence, the dielectric
susceptibility of the nematic can be described as a second-rank
tensor with two principal susceptibilities ε‖ parallel and ε⊥
and perpendicular to the local director. Defining the suscep-
tibility anisotropy as �ε ≡ ε‖ − ε⊥ � 0, the electric-field (or

1We make use of the same expression in Refs. [24,35], except that
in the latter, we inadvertently put a factor of one-half in front of the
saddle splay term. Both representations are used in the literature [60].

FIG. 2. Cross section (solid) and director field (dotted) of the
structure of a tactoid presumed in our calculations. The droplet is
cylindrically symmetric about its main axis. R denotes the length of a
tactoid and r its width. R̃ is the distance between the virtual boojums,
which are the focal points of the (extrapolated) bipolar director field.
For R = R̃, the virtual boojums become actual boojums, i.e., surface
point defects. Also indicated is the opening angle α of the spindle-
shaped droplet. See also the main text.

Coulomb) contribution to the free energy becomes

FC = − 1

8π
�ε

∫
(�n · �E )2dV, (4)

apart from a constant term that we can ignore [35,52]. The
integration is again over the entire volume V of the tactoid.
The anisotropy of the dielectric susceptibility depends on
the degree of nematic ordering and hence also depends, in
principle, on the strength of the electric field. This, we also
ignore.

Obviously, we do not know the shape and director-field
configuration a priori. As in our previous work, we follow
Prinsen et al. and Kaznacheev et al. and choose to prescribe
the shape of the droplet and the geometry of the director field
[25,27,35]. For the shape, we use a circle section of revolution,
and for the director field a bipolar director field, sketched in
Fig. 2. The shape and director field are then fully described
by the length of the drop R, the width of the drop r, and
the distance between the focal points of the bipolar director
field R̃. The aspect ratio of a tactoid, x ≡ R/r, is related to
the opening angle α, also indicated in Fig. 2, via the relation
x = cot α/2. The degree of bipolarness of the director field
is described by the quantity y = R̃/R. For a homogeneous
director field, y → ∞ whilst for a purely bipolar field y → 1.
In the latter case, the foci of the bipolar director field are
located on the poles of the tactoid and represent surface point
defects called boojums [53]. We refer to our earlier work [35]
and also to Fig. 2. Note that for any value of the bipolarness
1 < y < ∞, the director field is quasibipolar.

It turns out that the free energy can be entirely described
in terms of the variables α = 2 cot−1 x and y, and in terms
of four dimensionless groups describing all the elastic and
surface materials parameters of the model. The volume of a
droplet V is fixed during an experiment and also constitutes a
model parameter that we make dimensionless by defining v ≡
(σ/(K11 − K24))3V , recalling that σ denotes the bare surface
tension and K11 and K24 are the elastic constants associated
with a splay and saddle-splay deformation of the director field.
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The free energy we also render dimensionless. A definition
that proves to be practical is f ≡ σF/(K11 − K24)2.

With these definitions, the full expression of our free en-
ergy now becomes [35]

f (α, y) = v2/3φ−2/3
v (α)(φσ (α) + ωφω(α, y))

+ v1/3φ−1/3
v (α)(φ11(α, y) + κφ33(α, y))

− 
vφ−1
v (α)φC (α, y). (5)

The first term of Eq. (5) represents the contribution from the
surface tension and anchoring energy, with

φv(α) = 7π

3
+ π

2

(
1 − 4α cot α + 3 cos 2α

sin2 α

)
, (6)

φσ (α) = 4π

(
1 − α cot α

sin α

)
, (7)

and

φω(α, y) = π

2
(y2 − 1)2 sin3 α

×
∫ π

0
dξ

[
sin2 ξ cos2 ξ

N (y, ξ , α)(1 + sin ξ cos α)3

]
. (8)

Here,

N (y, ξ , η) = (
sin ξ cos η + 1

2 Z (ξ, η)(y2 − 1)
)2

+ y2 sin2 ξ sin2 η (9)

and

Z (ξ, η) = 1 + sin ξ cos η, (10)

where we set η = α in Eq. (9).
The second term of Eq. (5) is due to the Frank elastic

energy, where the dimensionless group κ = K33/(K11 − K24)
acts as a measure for the importance of the bend elastic defor-
mation. Here,

φ11(α, y) = 8π

∫ π

0
dξ

∫ α

0
dη sin2 ξ cos2 ξ sin η

× 1

N (y, ξ , η)(1 + sin ξ cos η)3 (11)

describes the contribution of the splay and saddle-splay defor-
mations and

φ33(α, y) = 8π

∫ π

0
dξ

∫ α

0
dη sin4 ξ sin3 η

× 1

N (y, ξ , η)(1 + sin ξ cos η)3 , (12)

that of the bend deformation.
Finally, the third term describes the contribution from the

interaction of the nematic droplet with an electric field, with

 ≡ 1

8π
εaE2σ−2(K11 − K24) a measure for its strength rela-

tive to the surface and elastic deformation free energy cost,
and

φC(α, y) = 8π

∫ π

0
dξ

∫ α

0
dη

sin2 ξ sin η

(1 + sin ξ cos η)3

× (y2Z2 + sin2 ξ sin2 η − cos2 ξ )2

N (y, ξ , η)(1 + sin ξ cos η)2 . (13)

We have not been able to analytically evaluate the various
integrals, except when the tactoids are extremely elongated
and the opening angle becomes very small. In that case,
asymptotic relations may be obtained as well as robust scaling
estimates [25,35]. Since we do not wish to restrict ourselves
to large aspect ratios, we rely on a numerical evaluation of
the integrals. For this, we employ the Mathematica software
package [54] and use the N Integrate function to compute
integrals and the D function to calculate derivatives.

Now that we have formulated our free energy in terms of
the two reaction coordinates α and y, we are able to formulate
our relaxational theory in terms of the generalized forces:

∂α

∂t
= −�̃α

∂F

∂α
,

∂y

∂t
= −�̃y

∂F

∂y
, (14)

where we choose to ignore the contribution of cross terms
[55], the main reason being to limit the number of adjustable
parameters in our model. Here, �̃α and �̃y are fundamental
relaxation rates that have dimensions of J−1 s−1, so reciprocal
Joules per second. Because y describes the deformation of
the director field relative to the length of a tactoid this would
arguably require the collective reorientation of the colloidal
particles in the nematic phase. Hence, we would expect �̃y

to be inversely proportional to a rotational viscosity of the
nematic phase. Relaxation of the aspect ratio of the droplets
requires the transport of material in both the isotropic and
nematic phases. It would therefore seem sensible to presume
the relaxation rate �̃α to be some average of the relevant
viscosities of the two phases [56].

For dimensional reasons, this then implies that both rates
should also be inversely proportional to some volume scale.
Considering that the volume scale must represent the volume
in which the viscous dissipation takes place, we conclude that
both rates must be inversely proportional to the volume V of a
tactoid. Hence, we write for our dynamical equations in terms
of the dimensionless free energy f and tactoid volume v as

∂α

∂t
= −�α

v

∂ f

∂α
,

∂y

∂t
= −�y

v

∂ f

∂y
, (15)

where �α = �̃αV σ 2/(K11 − K24) and �y = �̃yV σ 2/(K11 −
K24) are our scaled fundamental rates with dimensions of
reciprocal seconds that do no longer depend on the volume
of a drop. Our approach should be equivalent to but extends
that of Weirich et al. [37] and of Almohammadi et al. [34],
who balance the rate of change in mechanical energy with the
rate of energy dissipation for fixed values of our parameter y.

To numerically integrate the two rate equations described
in Eq. (15), we apply the (forward) Euler method function
within the MATHEMATICA package [54]. As initial conditions,
we use the solutions of ∂ f /∂α = ∂ f /∂y = 0 in the absence
of an external field, so for the case 
 = 0. A complete phase
diagram describing the shape and director field of tactoids
as a function of the dimensionless tactoid volume v and the
dimensionless electric field strength 
 can be found in our
earlier work [35]. Notice that we can make time dimensionless
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by defining τ = t�α . In scaled time, our dynamical theory
therefore introduces a single additional dimensionless group,
namely γ ≡ �y/�α . In our numerical evaluation of the kinetic
equations, we choose to make use of a time-adaptive approach
in order to efficiently deal with the fast and slow processes that
turn out to characterize the response of tactoids. This means
that we dynamically adjust the time step, referred to as dτ ,
during each evaluation step. Specifically, we steadily increase
dτ by a factor of 1.01 and assess the difference between the
new values of α and y relative to the ones of the previous
time step. If the difference is less than 0.001 for α(t + dτ ) −
α(t ) < 0.001 α(t ) or y(t + dτ ) − y(t ) < 0.001 y(t ), we con-
tinue with a new value of the time step dτ . Conversely, if one
or both of the differences exceeds the mentioned thresholds,
we divided dτ by a factor of 50 in each subsequent time step.
This adaptive approach is particularly useful in the late stages
of simulation when changes in α and y become exceedingly
small, allowing us to expedite the numerical evaluation of the
kinetic equation.

Having presented the main ingredients of our theory, we
next discuss our most salient findings and compare our results
with the experimental data of Metselaar et al. [36].

III. RESULTS

To determine the conditions under which elongated tac-
toids can be observed, even if only transiently, it is important
to consider the following. As is now well established, small
nematic tactoids tend to have a uniform director field, while
for sufficiently large ones the director field is (for all intents
and purposes) bipolar [3,24,25]. Switching on an electric field
only acts to reorient tactoids with a uniform director field but
does not affect their elongation. Bipolar ones reorient and
do not become more elongated if their volume is smaller
than some critical value [36]. If sufficiently large, bipolar
tactoids may elongate substantially under the action of the
field but only if somehow the director field remains bipolar
and does somehow not immediately respond to the electric
field [35,42]. This can only happen if (i) the ratio of the two
fundamental relaxation rates γ = �y/�α is sufficiently small
and (ii) the volume of the drop is sufficiently large for the
electric field to be able to deform it. Making use of the scaling
theory of our previous work [35], we deduce by balancing the
interfacial and Coulomb free energies that the latter happens if
v 	 
−1/3. Note that, typically, the anchoring strength varies
from about 1.5 to 6 [3]. For the tactoids to be bipolar, we must
in addition insist that v 	 ω−5/2 [24]. The maximum aspect
ratio we expect to find, provided that these conditions are
met, is R/r ∼ 
3/7v1/7 	 1 at the level of the scaling theory,
so ignoring any constants of proportionality. This shows that
the field strength more strongly impacts upon the maximum
aspect ratio than the volume does. Our numerical evaluation
of the kinetic equations confirms this.

Now that we know under what conditions we might expect
transients to arise, we first explore how the ratio of funda-
mental relaxation rates γ influences the aspect ratio x and
bipolarness y of tactoids. Figure 3 shows the aspect ratio
versus time for different values of γ , and fixed values of
v = 105, 
 = 65, ω = 1.3, and κ = 20. The latter two values
we obtain from the properties of chitin tactoids in the absence

FIG. 3. Aspect ratio x of a tactoid as a function of dimensionless
time τ for different values of the ratio γ of the fundamental relaxation
rates associated with the response of the director field and that of the
aspect ratio. From top to bottom: γ = 0.01 (blue), 0.05 (yellow),
0.1 (green), 0.5 (red), 1 (purple), 10 (brown), and 50 (light blue).
The dimensionless volume of the droplet is v = 105, the anchoring
strength ω = 1.3, the dimensionless strength of the electric field 
 =
65, and the ratio of the bend and splay elastic constants κ = 20.

of an electric field [35]. For these values of the parameters, we
have v
3 	 1, and based on the scaling estimate we expect
to see an overshoot of the aspect ratio of the order of 10 to
100 if γ � 1. Figure 3 confirms this: the aspect ratio goes
through a maximum before reaching its equilibrium value in
the late stages of the process, and the maximum value reached
increases as the magnitude of γ decreases. Also, the smaller
the value of γ , the longer lived the high-aspect-ratio states are.
For late times, when the tactoids approach the true equilibrium
state, the value of aspect ratio is not so large and does not
depend on the ratio of γ . Hence, this confirms that large aspect
ratios are possible only for smaller values of γ when the direc-
tor field has not yet fully equilibrated. Figure 4, showing the
degree of bipolarness y as a function of time, confirms this.

Figure 4 shows that, not entirely unexpectedly, the smaller
the value of γ the more slowly the changes in bipolarness
occur. This prevents the immediate alignment of particles and
therefore that of the director field with the applied external
electric field. The particles remain essentially enslaved to the
surface anchoring until the internal dynamics allow them to
break free from this and relax to the equilibrium value. Fig-
ure 4 shows that there is some feedback between the two:
whilst the bipolarness does increase monotonically with time,
it does seem to develop a weak “shoulder” around the region
where the aspect ratio of the droplets reaches its maximum. As
time passes, the bipolarness of the tactoid increases reaching
its equilibrium value, which leads to a reduction in the as-
pect ratio to a value consistent with our previous equilibrium
results [35]. This is the key reason for the presence of a
maximum value for the aspect ratio as a function of time.

We next investigate the impact of the strength of the ex-
ternal electric field on the shape and director-field structure
of nematic tactoids. Figure 5 shows that the final, equilib-
rium value of the aspect ratio does not appreciably depend
on the electric field strength, at least not for the values of

 = 10, 100, 200, 400, 1000, and 2000 shown in the graph
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FIG. 4. Bipolarness of a tactoid y as a function of dimensionless
time τ for the different values of the ratio γ of the fundamental
relaxation rates associated with the response of the director field
and that of the aspect ratio. From bottom to top: γ = 0.01 (blue),
0.05 (yellow), 0.1 (green), 0.5 (red), 1 (purple), 10 (brown), and 50
(light blue). The dimensionless volume of the droplet is v = 105,
the anchoring strength ω = 1.3, the dimensionless strength of the
electric field 
 = 65, and the ratio of the bend and splay elastic
constants κ = 20.

and the dimensionless volume of the drop v = 102. This is
consistent with previous equilibrium studies, showing that the
final state is characterized by a more or less uniform director
field and an aspect ratio that approaches the value of 2

√
ω if

the field is sufficiently strong [35,42]. Still, transients with a
large aspect ratio do arise with a maximum that increases with
the strength of the electric field. We notice that the transients
are very long-lived and more so the larger the field strength.
A careful review of the plots of the maximum value of aspect
ratio found in Fig. 5) shows that it is proportional to 
0.42. The
exponent is close to the prediction of 3/7 mentioned earlier.

FIG. 5. Aspect ratio x of tactoid as a function of dimensionless
time τ for different values of the dimensionless electric field strength

 = 10, 100, 200, 400, 1000, and 2000 (bottom to top). The di-
mensionless volume of the droplet is v = 102, the anchoring strength
ω = 1.3, and the ratio of the bend and splay elastic constants κ = 20.
The ratio of the fundamental relaxation rates was set at a value of
γ = 1/15.

FIG. 6. Bipolarness of tactoid y as a function of the di-
mensionless time τ for the different electric field strength 
 =
10, 100, 200, 400, 1000, and 2000 (bottom to top). The dimen-
sionless volume of the droplet is v = 102, the anchoring strength
ω = 1.3, and the ratio of the bend and splay elastic constants κ = 20.
The ratio of the fundamental relaxation rates was set at a value of
γ = 1/15.

Figure 5 also reveals that the time for a tactoid to reach its
maximum elongation becomes shorter as the strength of the
electric field becomes stronger. In fact, we find numerically
that this timescales as 
−0.77.

Let us now explore how the bipolarness y of tactoids de-
pends on the strength of the electric field 
. As shown in
Fig. 6, the equilibrium value of bipolarness increases with
time, and more so the stronger the electric field. This means
that the virtual point defects (the focal points of the ex-
trapolated bipolar director field) move away from the poles
of the tactoids and the director field becomes increasingly
more homogeneous. A careful examination of our numerical
results for late times shows that it increases as 
0.48. This
is consistent with the equilibrium theory of Safdari et al.
[35], which predicts that the bipolarness grows with the field
strength as 
0.5. Comparing Figs. 5 and 6 also shows that the
relaxation of the bipolarness to its equilibrium value is very
much more sluggish than that of the aspect ratio. In fact, it is
more sluggish than what we would expect based on the value
of γ , which in the figure is equal to 1/15. This is not all that
surprising given that any director field with bipolarness above
a value of, say, three is difficult to distinguish from a uniform
director field. This implies that any response of the aspect ratio
must be very small beyond that.

Finally, we investigate the effect of the volume of a tactoid
on both its bipolarness and aspect ratio for a given external
field and a given asymmetry in the relaxation dynamics of
the director field and the droplet shape. From the earlier-
mentioned scaling theory, we expect that the director field
is essentially uniform and the drop does not respond to any
alignment field other than aligning along the field direction
if the dimensionless volume v is smaller than ω−5/2. For our
choice of ω = 1.3, v needs to be much larger than unity for it
to have a noticeable degree of curvature of the director field.
For the external field to be able to straighten out the curved
director field, v must be larger than about 
−5/4 according
to the scaling theory. If we set 
 = 65, this implies that a
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FIG. 7. Aspect ratio of tactoids x as a function of time for the dif-
ferent dimensionless volume v = 1, 310, 2340, 5780, and 10 000
(bottom to top, central part). The electric field strength is 
 = 65, the
anchoring strength ω = 1.3, the ratio of the fundamental relaxation
times γ = 1/15 and the ratio of the bend and splay elastic constants
κ = 20.

tactoid responds to that field as long the tactoid is bipolar, so
v 	 1. The maximum value of the aspect ratio scales then
with the tactoid volume as v1/7, which predicts a very weak
dependence on the volume.

Figures 7 and 8 show how a variation of the dimen-
sionless volume for v = 1, 310, 2340, and 5780 affect the
time evolution of the aspect ratio and bipolarness following
the switching on of the electric field for 
 = 65, ω = 1.3,
γ = 0.1, and κ = 20. The figure confirms once more that
the equilibrium value of the aspect ratio of a tactoid does
not, as expected, strongly depend on its volume [35,42]. For
v = 1, the director field is almost uniform with y ≈ 3, so for
this volume, the external field has very little impact on both
the aspect ratio and bipolarness. The larger tactoids are all
essentially bipolar at time zero, with a bipolarness y close to

FIG. 8. Bipolarness of tactoid y as a function of the di-
mensionless time τ for different dimensionless volume v =
1, 310, 2340, 5780, and 10 000 (bottom to top on the right). The
electric field strength is 
 = 65, the anchoring strength ω = 1.3, the
ratio of the fundamental relaxation times γ = 1/15 and the ratio of
the bend and splay elastic constants κ = 20.

FIG. 9. The evolution of the aspect ratio x as a function of the
dimensionless time τ . The thick solid blue curve shows the response
to switching on of the field at time zero. The curves in bold dash
black, solid green, dotted red, dash-dotted pink, and thin dashed
orange show what happens after shutting of the field. The dimen-
sionless volume of the droplet is v = 5 × 103, the anchoring strength
ω = 1.3, the strength of the electric field is 
 = 425, the ratio of
the bend and splay elastic constants κ = 20, and the ratio of the
fundamental relaxation rates γ = 1/15.

unity, and these do respond to the switching on of the field.
The aspect ratio of this larger droplet does exhibit transient
overshoots, while their bipolarness increases monotonically
with time as the field straightens the director field.

Figure 7 confirms that the maximum value of the aspect
ratio increases only weakly with the dimensionless volume
that we varied over four decades in magnitude. The timescale
required to reach this maximum value decreases with the
volume of the drop but also not very strongly. The same can be
said about the relaxation of the director field. The equilibrium
value of the bipolarness does depend on the volume albeit
not very sensitivly. According to the scaling theory of Safdari
et al., which is confirmed by numerical minimization of the
free energy [35], we expect y to scale as v1/6. The late-stage
results shown in Fig. 8 agree with this prediction, as they
should.

After having investigated the response of the switching
on of an electric field, we ask ourselves the question what
happens when the electric field is turned off and the external
field is removed? Specifically, we are interested in understand-
ing the dynamics of the change in aspect ratio during the
transition. Does it revert to its initial state swiftly? Or does
it remain relatively unchanged? This is a relevant question,
because Metselaar et al. find that switching off of the field
prior to full relaxation in the presence of the field the largest
tactoids seem not to revert to the field-free aspect ratios in
roughly the same amount time as when the field was switched
on [36]. See also Fig. 1, noting that quantitative data are not
available.

To address these questions, we turn on and next turn off
the electric field once the tactoids have elongated to a certain
fraction of the maximum value for 
 = 425 and v = 5 × 103.
The results of our numerical calculations are presented in
Fig. 9. Consistent with the experiments of Metselaar et al.
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[36], we find that the tactoids take more time to approach their
equilibrium configurations than the time required to elongate
them. For the case shown, the difference in time amounts to
three or four orders of magnitude. We notice that the state of
elongation at which the field is switched off does not seem to
strongly influence the (dimensionless) relaxation time, which
for all cases shown in the figure is about 70 000. The blue
curve in Fig. 9 shows the situation when the electric field re-
mains turned on, showing a considerably slower convergence
to the equilibrium state in the presence of the field compared
to the cases where the field was switched off, reverting to the
equilibrium state in the absence of an alignment field. Both
are much larger, though, than the time it takes to reach peak
elongation. This illustrates that there are many very divergent
timescales involved in the relaxation of tactoids, highlighting
the nonlinear character of the kinetics at hand.

In the next section, we apply the theory developed here in
order to interpret the experimental results of Metselaar et al.
[36].

IV. COMPARISON WITH EXPERIMENT

In a series of measurements, Metselaar et al. recently
measured the dimensions of tactoids in different batches of
an aqueous dispersion of chitin nanocrystals as a function
of time, following the application of a high-frequency AC
electric field [36]. Experiments were done for root-mean-
square field strengths in the range from 160 to 450 V/mm
and frequencies ranging from 300 to 700 kHz. Even though
the findings between different experiments differed quantita-
tively, qualitatively the results are consistent with each other.
Despite the small difference in the dielectric properties of the
coexisting isotropic and nematic phases, which are dominated
by the contribution from the aqueous solvent, it turns out that
electric fields can significantly elongate tactoids at least if
these are of sufficiently large volume. See also Fig. 1. In our
previous work [35], focusing on the thermodynamic proper-
ties of tactoids in an electric field, we showed we could only
get reasonable agreement between theory and experiment for
the maximum elongation by invoking a restricted equilibrium.
In this restricted equilibrium, we fixed the bipolarness of the
tactoids to the equilibrium values obtained in the absence of
the field.

Our aim here is to relax the restricted equilibrium, and
adjust and calibrate our relaxational model in order to achieve
the closest possible alignment with the experimental data.
Given that the available data from different experiments
agree only qualitatively, we seek to reproduce trends rather
than achieve quantitative agreement. For this, we use model
parameters obtained by fitting the theory to the available
experimental data on field-free aspect ratio for a range of
tactoid volumes varying four orders of magnitude [35]. In our
previous work, we found the values for the anchoring strength
ω = 1.3, the ratio of bend to splay elastic constants κ = 20,
and the extrapolation length (K11 − K24)/σ = 4 µm. Hence,
in the conversion of dimensionless volume v to dimension-
bearing volume V we multiply v by 64 to change the unit of
our dimensionless volumes to µm3.

Figure 10 shows the aspect ratio x = R/r versus the ac-
tual time t in seconds for three different tactoid volumes of

FIG. 10. Time evolution of the aspect ratio of three droplets
of different dimensionless volumes v, indicated by different col-
ors (from top to bottom on the right): solid green for v = 5780,
dash-dotted orange for v = 2340, and dashed blue for v = 310.
Dots are experimental data points extracted from Ref. [36] and the
drawn curves display our curve fits. We set the anchoring strength
ω = 1.3, the ratio of bend to splay κ = 20, the coefficient of the
electric field strength 
 = 190 the ratio of relaxation rate γ = 0.5
and �α = 1.6 × 10−4 s−1. The r2 values for the quality of the curve
fits are 0.61, 0.91, and 0.94 for dashed blue, dash-dotted orange, and
solid green curves, respectively.

V � 20 × 103, 150 × 103, and 370 × 103 µm3. Shown are the
ratios of lengths and widths of the chitin tactoids obtained
experimentally by Metselaar et al. [36], together with the
solid curves that are the result of our curve-fitted numerical
solutions to the kinetic equations. Each color corresponds to
a different volume. To find the best fit, we applied a hyperpa-
rameter grid search (on the parameters 
, γ , and �α) [57] and
minimize the so-called cost function,

∑
(xthe − xexp)2/N with

N the number of data points, a measure for the mean-square
distance between the aspect ratio of the theoretical prediction
xthe and the experimental data points xexp. The values for the
various parameters that we find are γ = 0.5, 
 = 190, and
�α = 1.6 × 10−4s−1.

We get reasonable agreement between theory and exper-
iments, noting that we use the same values of all of the
parameters except the volume of the drops, with coefficients
of determination r2 between 0.61 and 0.95. The curves clearly
show that whilst the initial response time goes down with
increasing droplet volume, final equilibration actually slows
down and takes longer the larger the tactoids. Our curve-fitting
procedure produces maxima that are not quite observed yet
in the data, except perhaps for the smallest volume. It is
important to point out that setting γ � 1 produces curves for
which the maximum moves to much larger times. In fact, set-
ting γ = 0 and suppressing the maximum entirely produces
curve fits that have much smaller values of r2. In fact, a sim-
ple exponential relaxation, put forward in a slightly different
context in Refs. [34,37], cannot describe the experiments in
any satisfactory way (results not shown). We expect that for
times much larger than, say, 7000 s, the experiments should
show a downturn in the aspect ratio. This, now, is a prediction
amenable to experimental verification.
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FIG. 11. Aspect ratio of tactoids x as a function of their volume
V in µm3 for different times. (a) Experimental findings for chitin
in water, taken from [36]. (b) Our theoretical predictions are based
on the curve fitting. Parameter values for the theoretical predictions:
ω = 1.3, κ = 20, 
 = 500, γ = 1/20, and �α = 1.6 × 10−4s−1. Re-
sults for the same moment in time are presented with the same color.
Blue circles: 120 seconds, red triangles: 210 s, green squares: 410 s,
black diamonds: 640 s, purple triangles: 850 s, orange triangles:
1080 s. See also the main text.

In Figs. 11(a) and 11(b), we compare for the time evolution
of tactoids ranging three orders in magnitude in size following
the switching on of the electric field. Figure 11(a) shows the
experimental findings for the aspect ratio x of the tactoids as
a function volume, and Fig. 11(b) the results of our numerical
simulations, where we used the value of 
 = 500 estimated
from the restricted model of Ref. [35]. The other parame-
ters we set at γ = 0.05 and �α = 1.6 × 10−4 s−1 to obtain
reasonable agreement (by eye). Note that the data set of the
results of this figure is different from the one shown in Fig. 10.
Different colors and symbols are used to denote various points
in time. Agreement is semiquantitative. The figures show that
for larger droplets, a gradual increase in elongation occurs
over time due to the coupling to the external field. In contrast,
smaller droplets exhibit minimal changes in their aspect ratios,

because the Coulomb energy is not strong enough to be able
to affect any changes in the droplet shape as it is strongly
volume-dependent. The behavior predicted from our model
closely mirrors the trends observed in the experimental data
points, indicating an agreement between our simulations and
the experimental observations.

We stress that whilst from our perspective the experiments
on tactoids in dispersion of chitin in water can only be under-
stood in terms of an overshoot, so far we do not have definitive
experimental proof for it. On the other hand, overshoots have
also been seen in a more conventional setting of a droplet
of water in oil albeit that in this case the overshoot is more
modest and arguably the result of a very different physical
mechanism [58]. Our hope is that the present work acts to
stimulate follow-up experimental work on nematic tactoids in
electric fields.

V. CONCLUSION

In this study, we investigate theoretically the behavior of
spindle-shaped nematic tactoid droplets in response to the
switching on of an external electric field. For this, we set up a
relaxational kinetic model based on a free energy landscape
in terms of two reaction coordinates, extending our earlier
work on the equilibrium structure of tactoids in an electric
(or a magnetic) field [35]. These reaction coordinates are the
aspect ratio and the degree of curvature of the director field
of the droplet, which is presumed to be quasi bipolar and
continuously interpolates between a uniform and a bipolar
director field. The free energy is determined by a combination
of the usual Frank-Oseen elasticity, a surface contribution that
includes a preference for planar anchoring to the interface,
and the coupling to the field via the dielectric anisotropy
of the nematic phase. Clearly, our two reaction coordinate
description is a simplification as it ignores any potential lo-
cal rearrangements of the nematic fluid in the tactoid [35].
Allowing for more intricate relaxation pathways comes at the
expense of more model parameters, which is why we shied
away from it.

We find that the elongation of the tactoids is purely a
kinetic effect. Indeed, it is not uncommon for kinetic effects
to transiently modify the shape and symmetry of a structure
before it attains its final equilibrium form [59]. In this paper,
we made plausible that the elongation of tactoids by an exter-
nally applied electric field must be a transient effect and that
tactoids are only able to elongate strongly under the action
of the electric field if the relaxation time of the anchoring
of the director field to the interface is large compared to the
relaxation time of the aspect ratio. Hence, the elongation of
tactoids is only transient albeit that it may be very long-lived.
Eventually, the aspect ratio returns to a much smaller equilib-
rium value predicted by equilibrium theory. Since equilibrium
theory cannot explain strongly elongated configurations of
tactoids observed in the experiments of Metselaar en collab-
orators [36], we propose that it must be the approach to the
transient state that the measurements have probed. This means
that significantly longer measurement times are required to
observe the return to equilibrium.

This conclusion is not as far-fetched as it may seem,
because the aspect ratios of the largest drops observed in
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the experiments seem not yet to have reached the largest
value at the latest times measured, as can in fact be con-
cluded from the data shown in Figs. 10 and 11. That the
relaxational dynamics of tactoids may exhibit a very long-
time tail can also be deduced from the very large scatter
in aspect ratio found experimentally in a host of different
systems [3,6,16,17,19–22,36]. We argue that such a large scat-
ter cannot be understood based on experimental uncertainty,
spontaneous fluctuations or even the polydispersity of the
colloidal particles involved [3,11]. Perhaps even more con-
vincingly, a recent study shows that the producing tactoids by
means of nucleation-and-growth or making use of a microflu-
idic device result in different aspect ratios that seem stable for
a very long period of time [7].

Our simple relaxational model captures the most salient
features of the experimental findings. One of these is the
observation that relatively small tactoids do not appreciably
respond to an applied field, even if they are bipolar. The reason
for this is that anchoring, Frank elastic and Coulomb free en-
ergies all scale with different powers of the volume of a tactoid
[35]. We find that the larger the volume or the field strength,
the shorter it takes for the aspect ratio to reach its largest
value, but the longer it takes to relax back to its equilibrium
value. Another significant aspect of this investigation is our
finding that if the electric field is suddenly turned off, tactoids
revert to their initial aspect ratio on a considerably shorter

timescale than needed for the full equilibration to take place in
response to switching on of the field. This seems also to agree
with the experimental findings shown in Fig. 2, although no
quantitative data are available as far as we are aware.

It seems that the underlying fundamental relaxation time
associated with the “bipolarness” of the director field is much
lower than that of the aspect ratio of the tactoids. This makes
their aspect ratio become in a sense enslaved by the anchoring
of the director field to the interface with the isotropic host sus-
pension [35,36]. The reason for this behavior remains unclear.
Within our model, it might reflect differences in the values of
the viscosities that describe the relaxations of the shape and
director field of a tactoid. These include five Leslie coeffi-
cients of the nematic and the viscosity of the isotropic phase
[51]. On the other hand, it may also point at the existence
of complex interfacial relaxations not captured by current
models. The issue in our view merits further study.
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