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Dynamic response of a simply supported liquid-crystal elastomer beam under moving illumination
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Optically responsive liquid crystal elastomer (LCE) devices have thriving potential to flourish in soft robots
and microdrives, owing to their advantages of remote controllability, structural simplicity, and no power supply.
In terms of illumination-driven modes, most research has focused on the dynamic response of LCE devices
under continuous and periodic illumination, while the theoretical study of the dynamic response under moving
illumination is limited. In this paper, based on the coupling of LCE and mechanical deformation under moving
illumination, the dynamic model of a LCE simply supported beam is built to investigate its dynamic response
under moving illumination. The analytical solution of the dynamic response of the LCE beam under moving
illumination is derived through the modal superposition method and the Duhamel integration, and the solution
is programed and analyzed with MATLAB software. By numerical calculations, the influence of the internal and
driving parameters of the structure on the dynamic response of the LCE simply supported beam can be analyzed.
The results show that when the moving speed of illumination reaches the first-order critical frequency, the
maximum amplitude of the dynamic response at the beam mid-span will reach a peak. Meanwhile, the dynamic
response of beam can be improved by increasing the illumination width, increasing the light intensity, increasing
the shrinkage coefficient, and reducing the damping coefficient. This work provides theoretical guidance for
applying the dynamic response of LCE devices under moving illumination in soft robots, microactuators, energy
harvesters, sensors, etc.
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I. INTRODUCTION

Soft materials based on liquid crystalline polymers [1–4],
composites [5], and electroactive polymers [6,7] have been
designed and matured gradually. As one of these, liquid
crystal elastomer (LCE) is a smart material combining liq-
uid crystals and polymer networks [8–10]. Its special way
of binding molecules gives LCE distinct properties such as
orientation, ferroelectricity [11], piezoelectricity, and optical
nonlinearity [12]. When exposed to disparate stimuli of elec-
tricity [13–16], light [17–20], heat [21–23], magnetism [24],
and chemicals [25], the liquid crystal nematic molecules [26]
rearrange, causing material deformation. These various modes
of stimulation have a wide range of potential applications in
both active and passive systems, such as artificial intelligence
[27,28], artificial muscles [29–33], nanotechnologies [34,35],
the memory of shapes [36,37], actuators and sensors [38,39],
stretchable optical devices [40], and so on. However, among
all kinds of stimulation, optical stimulation presents unique
features, namely, environmental friendliness, precise control,
noncontact, and easy access. Optical stimulation has become
a more desirable modality in aerospace, machinery, and civil
engineering [41–46].

Research on illumination-driven LCE falls into two cat-
egories. One is the self-excited response. This response
maintains its periodic movement through self-adjustment,
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which absorbs energy from a constant environment. The other
is the forced response that can be adjusted by changing the
external environmental parameters. In terms of self-excited re-
sponse, Liu et al. investigated the programmable deformation
of LCE plates under illumination [47]. Warner et al. found
that the cantilever beam forms a saddlelike shape with dif-
ferent curvature symbols in both length and width directions
under illumination [48]. Serak et al. experimentally confirmed
that focused sunlight can induce a rapid and large-amplitude
response of illumination-driven LCE cantilever beams [49].
Li and Cai studied the optical response of a LCE cantilever
and developed the corresponding mathematical model [50].
Lee et al. further experimentally investigated the self-excited
response of LCE cantilever beams by adjusting the liquid
crystal orientation [51]. Torras et al. studied the response char-
acteristics of LCE cantilever beams embedded with nanotubes
[52]. Parrany utilized the finite element method to study the
large optical response of the LCE cantilever beam [53]. In
terms of forced response, Goriely et al. converted a liquid
crystal elastic rod under illumination into a one-dimensional
model and concluded that this model is applicable to a variety
of liquid crystal elastic rods subjected to external stimuli [54].
Ahn et al. designed bionic functions, such as photodynamic
crawling, extrusion, and untethered jumping, for LCE robots
[55]. Rogóż et al. scanned a moving laser beam, causing a
series of deformations within the LCE brake, and realized
remote control of the drive as well as large deformation [56].
Rogóż et al. combined three-dimensional (3D) laser technol-
ogy to realize the conjecture of moving illumination to control
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the LCE robots [57]. Guo et al. demonstrated a heliotracking
device using liquid crystalline actuators. As the light source is
moving around the device, the platform tilt follows, always
exposing the payload face to the light [58]. Rogóż et al.
scanned the LCE robot with a laser, causing it to deform and
crawl like a caterpillar [59].

In terms of illumination-driven modes, the main focus of
most research has been on the dynamic response of LCE
devices under constant illumination and periodic illumina-
tion [47–55]. Although there is also some applied research
on moving illumination [56–59], there are limited theoreti-
cal studies on the dynamic response of LCE devices under
moving illumination. In view of this, based on the dynamic
LCE mode, the current paper analyzes the dynamic response
of a LCE simply supported beam through theoretical analysis
and numerical calculations, and further studies the influencing
factors of the dynamic response of the LCE simply supported
beam under moving illumination by adjusting several dimen-
sionless parameters in the system, which guides the study
of the influencing parameters of the LCE simply supported
beam and the design of illumination and mechanical energy
conversion systems.

The paper is organized as follows. In Sec. II, a dynamic
model of the LCE simply supported beam under moving
illumination is established, and the governing equation and
solution method are derived. Section III plots the dynamic
response curves of the LCE beam under moving illumination.
In Sec. IV, the influence of external parameters and driving
parameters on the mid-span response of the LCE beam under
moving illumination is analyzed. Conclusions are given in
Sec. V.

II. MODEL AND THEORETICAL FORMULATION

To calculate the dynamic response of the LCE simply
supported beam under moving illumination, we need first to
establish a dynamic model for simulation. Since LCE tends
to shrink together with absorbing photons, when the upper
surface of the beam is exposed to illumination, the contraction
of the upper surface of the beam causes the entire beam body
to respond dynamically. In order to qualitatively study the
dynamic response of the model, we will establish the dy-
namic control equation of LCE simply supported beams under
moving illumination, and further use modal superposition to
obtain the semianalytical solution of the model.

A. Governing equations of illumination-driven response

We first establish the dynamic model of the LCE sim-
ply supported beam under moving illumination, as shown in
Fig. 1. The LCE simply supported beam is placed horizon-
tally. An illumination of fixed width b, moving at a certain
speed v, from the left end to the right end, irradiates on the
upper surface of the beam. When the beam is under moving
illumination, the shrinkage strain on the upper surface of the
beam is significantly greater than that on the lower surface,
and thus the beam will show bending deformation. After the
illumination moves away, the LCE fiber will return to its orig-
inal state. Because of inertia, the deflection of each point on
the beam is changing dynamically. W (x, t ) is used to describe

FIG. 1. The dynamic model of the LCE simply supported beam
under moving illumination.

the vertical deflection of a certain position of the beam at a
certain time.

We assume that the beam height h is much smaller than
the beam length l . According to the response theory of con-
tinuous beams [60], we can obtain the control equation for the
dynamic response of the LCE simply supported beam:

ρ0
∂2W (x, t )

∂t2
+ a

∂W (x, t )

∂t
+ B

∂4W (x, t )

∂x2
= −∂M(x, t )

∂x
,

(1)

where a is the damping coefficient [61], ρ0 = ρh with ρ being
the mass density of the LCE beam, B = Eh3/12(1 − ν2) is the
bending stiffness with E and ν being the Young’s modulus
and Poisson ratio of the beam, and M(x, t ) is the bending
moment under the moving illumination. We assume that the
optically driven shrinkage strain is time independent, so that
when there is a sudden change in illumination, the contractile
strain changes abruptly. The optical drive moment on the unit
interface, m(x, t ), can be derived as [48]

m(x, t ) = E

1 − ν2

∫ h/2

−h/2
ε0(z, t )zdz, (2)

where ε0 is the bending strain [50], calculated as ε0(z, t ) =
C0φ(z, t ), in which C0 denotes the shrinkage coefficient
[62–64] and φ refers to the number fraction of the bent cis
isomers. Neither ε0(z, t ) nor φ(z, t ) is associated with x; there-
fore, based on the structural mechanics [65], we can further
obtain that

∂M(x, t )

∂x
= m(x, t )[δ(x − vt ) − δ(x − vt − b)], (3)

where δ(x−vt ) and δ(x−vt − b) are the Dirac functions.
Then we define the following dimensionless parameters:
W̄ = W/l , x̄ = x/l , b̄ = b/l , t̄ = t/l2√ρ0/B, v̄ = vl

√
ρ0/B,

ā = al2/
√

ρ0B, and M̄ = M/B. Then, inserting Eq. (3) into
Eq. (1), we can obtain

∂2W̄

∂ t̄2
+ ā

∂W̄ (x̄, t̄ )

∂ t̄
+ ∂4W̄ (x̄, t̄ )

∂ x̄4
= ∂M̄(x̄.t̄ )

∂ x̄
, (4)

where M̄(x̄, t̄ ) = m(t̄ )[δ(x̄ − v̄t̄ ) − δx̄ − v̄t̄ − b̄], with

m(t̄ ) = 1

(1 − v2)h2

∫ h/2

−h/2
C0ϕ(z, t )zdz. (5)
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The number fraction of the bent cis isomers, φ(z, t ), can be
expressed as [66]

φ(z, t ) = φ0(t ) exp

(
−h/2 − z

d0

)
for −h/2 � z � h/2,

(6)
in which d0 is the penetration depth and φ0(t ) is the initial
number fraction of the cis isomers. The latter one can be
expressed as [67]

φ0(t ) = η0T0I0

η0T0I0 + 1

[
1 − exp

(
− t

T0
(1 + η0T0I0)

)]
, (7)

where η0 represents the light-adsorption constant, T0 is the
thermal relaxation time, and I0 denotes the light intensity.
Since this article assumes that t

T0
→ +∞, the formula can

also be expressed as

φ0(t ) = η0T0I0

η0T0I0 + 1
. (8)

In order to simplify the effect on parameter t , we assume
that the time for the cis-trans isomer conversion is much
smaller than the moving time of the illumination we set.
Therefore, we ignore the influence of time on the trans-cis
isomerization and the cis-trans isomerization, which can both
be represented by Eq. (8).

Substituting Eq. (6) into Eq. (5), we can have

m(t̄ ) = T̄0 Ī0φ̄0, (9)

where Ī0 = 12I0η0C0l2√ρ0/Bd̄2
0 [h̄/2d̄0 − 1 + (1 + h̄/2 d̄ )

exp(−h̄/d̄0)]/h̄3, d̄0 = d0/l , h̄ = h/l , T̄0 = T0/l2√ρ0/B and
φ̄0 = φ0/T0η0I0.

Since the LCE beam is initially stationary, we can list the
initial conditions as

W̄ (x̄, t̄ = 0) = 0,
∂W̄ (x̄, t̄ = 0)

∂ t̄
= 0. (10)

We can conjecture that the solution to control equation
(4) is

W̄ (x̄, t̄ ) =
∞∑
j=1

q j (t̄ )Yj (x̄), (11)

where q j (t̄ ) represents the time function of motion law,
and Yj (x̄) = sin β j x̄ is the mode function of the sim-
ply supported beam, with modal characteristic value β j =
jπ ( j = 1, 2, 3, . . .).

Substituting Eq. (11) into Eq. (4), we can obtain [68]

d2q j (t̄ )

dt̄2
+ 2ζ jω j

dq j (t̄ )

dt̄
+ ω2

j q j (t̄ ) = Pj (t̄ ), (12)

where the circular frequency of the beam ω j = β j
2, the

damping ratio of the mode ζ j = ā/2ω j , and the simpli-
fied expression of the right of Eq. (4) Pj (t̄ ) = [Y ′

j (ν̄t̄ ) −
Y

′
j (ν̄t̄ + b̄)]m(t̄ ), in which Y ′

j (ν̄t̄ ) and Y
′
j (ν̄t̄ + b̄) are the first

derivatives of the modal function that depends on x̄, when
x̄ = v̄t̄ and x̄ = v̄t̄ + b̄.

TABLE I. Material properties and geometric parameters.

Parameter Definition Value Unit

T0 Thermal relaxation time 0.1 s
η0 Light adsorption constant 0.00022 1/s
E Young’s modulus of beam 1 MPa
ν Poisson ratio of beam 0.5
ρ Mass density of beam 1000 kg/m3

a Damping coefficient [61] 10000 kg/m3

l Beam length 0.01 m
h Beam height 0.0001 m
C0 Shrinkage coefficient [62–64] 0.2–0.7
I0 Light intensity 0–500 KW/m2

d0 Penetration depth 0.00001 m

Therefore, the Duhamel integral can be used to represent
the solution to Eq. (12):

q j (t̄ ) = m(t̄ )

ωd j

∫ t̄

0
[Y ′

j (v̄τ̄ ) − Y ′
j (v̄τ̄ + b̄)] exp[−ε jω j (t̄ − τ̄ )]

× sin[ωd j (t̄ − τ̄ )] sin( jπτ̄ )d τ̄ , (13)

where the response frequency of this damped system, ωd j , is

ω j

√
1 − ζ 2

j .

B. Solution method

To investigate the dynamic response of the LCE simply
supported beam, we need to determine the typical values of
the parameters. Material properties and geometric parameters,
as well as the corresponding dimensionless parameters, are
listed in Tables I and II, respectively. We will make use of
the above typical system parameters in our following calcula-
tion. To calculate the dynamic response of the LCE simply
supported beam under moving illumination, the integration
for different times is used to calculate q j (t̄ ) in Eq. (13).
Once qj (t̄ ) is solved, by multiplying the mode shape function
Yj (x̄) = sin β j x̄ with Eq. (10), we can obtain the dynamic
response W (x̄, t̄ ) according to the modal superposition.

III. DYNAMIC DEFLECTION OF LCE SIMPLY
SUPPORTED BEAM UNDER MOVING ILLUMINATION

According to the principle of modal superposition, there
exist two independent variables, namely, time t̄ and position
x̄, in the equation for dynamic deflection obtained by super-
position. It is more convenient to set one independent variable
as a fixed variable and then change the other independent
variable so that we can simplify the three-dimensional curve
of the dynamic response to a two-dimensional curve. In this
way, as shown in Figs. 2 and 3, we can obtain the dynamic
deflection of the beam at a fixed time and a fixed position,
respectively, through setting the independent variables t̄ and

TABLE II. Dimensionless parameters.

Ī0 C0 b̄ ā v̄

0–1 0.2–0.7 0.01–0.1 0–1 0–0.1
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FIG. 2. The dynamic deflection of the beam at different time points under moving illumination: (a) t = 200, (b) t = 400, (c) t = 500, and
(d) t = 800.

x̄ as fixed variables, respectively. This is conducive to the
theoretical study of the dynamic responses of the LCE simply
supported beam under moving illumination.

Figure 2 depicts the dynamic deflections of the beam under
moving illumination at different time points, with system pa-
rameters being set to ā = 0.3, b̄ = 0.01, C0 = 0.7, Ī0 = 0.8,
and v̄ = 0.001. Only the first three orders of the response
mode are employed, as the influences of the higher-order
frequencies on the structure are negligible. The peak of the
dynamic deflection curve generally occurs at the illuminated
position on the beam. As the illumination moves, so does the
position where the peak appears, and the dynamic deflection
curve of the entire beam is also changing. It is apparent that

FIG. 3. The dynamic deflection of the beam at different positions
under moving illumination.

the deflection of the beam is symmetric when the illumination
reaches the nidpoint of the beam.

Figure 3 describes the dynamic deflections of the beam at
different positions under moving illumination with the given
parameters ā = 0.3, b̄ = 0.01, C0 = 0.7, Ī0 = 0.8, and v̄ =
0.001. It is clear that the response curves of the beam at
different positions are different under moving illumination.
The curve peak occurs at the position where the illumination
arrives. The mid-span is observed to possess the largest peak
amplitude among all the portions of the beam. Consequently,
it is more practical to choose the mid-span of a beam as the
research object in the qualitative analysis of the LCE simply
supported beams under moving illumination. The oscillation
behavior of the curve is attributed to the fact that the frequency
of the moving illumination is much smaller than the natural
frequency of the beam, and the forced vibration of the beam
is still accompanied by a certain amount of free vibration.

IV. PARAMETRIC ANALYSIS

The dynamic response under moving illumination plays an
important role in LCE-based robots, actuators, and energy
collectors, among which the simply supported beam is the
simplest and most basic element. To explore the role of the
dynamic response of the LCE beam on future applications, we
calculate the dynamic responses of the simply supported beam
under different factors, including the external parameters
light intensity Ī0, illumination width b, and moving speed of
illumination, v̄, and the driving parameters shrinkage coeffi-
cient C0 and damping coefficient ā.
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FIG. 4. The influence of light intensity on the dynamic response of the LCE simply supported beam. (a) The influence of light intensity on
the mid-span deflection of the beam. (b) The variation of the maximum mid-span amplitude of the beam under different light intensity.

A. Influence of light intensity

Figure 4 illustrates how light intensity Ī0 influences the dy-
namic response of the beam, for ā = 0.3, b = 0.01, C0 = 0.7,
and v̄ = 0.001. According to Fig. 4(a), the light intensity Ī0

has a great influence on the mid-span deflection of the beam
when the other parameters are the same. The larger Ī0 is, the
larger the response of the simply supported beam becomes. As
Ī0 increases from 0.2 to 0.8, the mid-span deflection presents
a significant increase. As can be seen in Fig. 4(b), the value
of the maximum mid-span amplitude increases nonlinearly
as light intensity Ī0 rises. In summary, with the increase of
light intensity Ī0, the beam absorbs more energy from the
illumination, and its response is also greater. Therefore, as
one of the external parameters affecting the dynamic response
of the system, the light intensity plays an important role in
regulating it.

B. Influence of the illumination width

Figure 5 presents the influence of illumination width
b on the dynamic response of the LCE simply supported
beam, for ā = 0.3, C0 = 0.7, Ī0 = 0.8, and v̄ = 0.001. Fig-
ure 5(a) demonstrates that the mid-span deflection of the beam
increases as the illumination width b increases. The position
of the peak value on the curve shifts slightly forward as the
illumination width b increases. This is attributed to the fact

that the increase in illumination width reduces the time for
the illumination to move to the mid-span of the beam. If we
wish to obtain the peak amplitude in advance in practical engi-
neering, the illumination width b can be adequately increased.
Figure 5(b) depicts a nonlinear increase in the maximum mid-
span amplitude of the beam as the illumination width b is
increased. Hence, the adjustment of the illumination width b
can change the amplitude and the moment of peak generation.

C. Influence of the moving speed of illumination

Figure 6 illustrates the influence of moving speed of illu-
mination, v̄, on the response of the LCE simply supported
beam for ā = 0.3, b̄ = 0.01, C0 = 0.7, and Ī0 = 0.8. As ob-
served in Fig. 6(a), when v̄ � 0.015, the mid-span deflection
of the beam increases as the moving speed of illumination, v̄,
increases. The dynamic response under v̄ = 0.028 is smaller
than that under v̄ = 0.015. To accurately identify the moving
speed of illumination, v̄, that peaks the maximum mid-span
amplitude of the beam, we expand the range of values for
the speeds and reduce the interval between each speed in
Fig. 6(b). As the moving speed of illumination increases,
the maximum mid-span amplitude of the beam increases and
then decreases. When v̄ = 0.015, the maximum mid-span
amplitude of the beam reaches a peak. In general, the LCE
simply supported beam exhibits an increased dynamic re-
sponse when the moving speed of illumination is within a

FIG. 5. The influence of illumination width on the dynamic response of the LCE simply supported beam. (a) The influence of illumination
width on the mid-span deflection of the beam. (b) The variation of the maximum mid-span amplitude of the beam under different illumination
widths.
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FIG. 6. The influence of moving speed of illumination on the dynamic response of the LCE simply supported beam. (a) The influence of
moving speed of illumination on the mid-span deflection of the beam. (b) The variation of maximum mid-span amplitude of the beam under
different moving speeds of illumination.

specific range. When this phenomenon occurs, the frequency
of moving illumination approaches or equals the natural fre-
quency of the LCE beam. The natural frequencies of the
free response of simply supported beams, ωcr , are as follows:
ωcri = (iπ )2

√
B

ρl4 (i = 1, 2, 3, . . .) [69].
Converting the frequency into velocity, we can get the first-

order critical velocity v̄cr1 = 0.0167, which corresponds to the
first-order critical frequency. The result is almost consistent
with the conclusion obtained according to Fig. 6. Therefore,
it is concluded that the amplitude of the mid-span vibration
response can be adjusted by changing the moving speed of
illumination, and the amplitude of the mid-span vibration
is the largest only when the velocity reaches the first-order
critical velocity.

D. Influence of the shrinkage coefficient

Figure 7 depicts the influence of shrinkage coefficient C0

on the dynamic response of the LCE simply supported beam,
for ā = 0.3, b̄ = 0.01, Ī0 = 0.7, and v̄ = 0.001. Figure 7(a)
shows that the mid-span deflection of the beam increases as
the shrinkage coefficient C0 increases. The reason is that the
increase of the material shrinkage coefficient results in the
significant increase of the energy conversion medium, which
further improves the efficiency of the energy conversion. As

shown in Fig. 7(b), the maximum mid-span amplitude of the
beam increases linearly with the increase in the shrinkage
coefficient C0. Overall, the amplitude of the LCE beam can
be adjusted by Eq. (5). The shrinkage coefficient C0 can be
examined in engineering applications to modify the response
of the beam.

E. Influence of the damping coefficient

Figure 8 illustrates the influence of damping coefficient ā
on the dynamic response of the LCE beam, for b̄ = 0.01, C0 =
0.7, Ī0 = 0.8, and v̄ = 0.001. Figure 8(a) presents that with
the damping coefficient ā increasing from 0.005 to 0.6, the
mid-span deflection of the beam gradually decreases and the
beam oscillation becomes stable. As illustrated in Fig. 8(b),
with the increasing damping coefficient ā, the maximum mid-
span amplitude of the beam gradually falls and then remains
almost constant due to the excessive damping. In general,
the increased damping is responsible for this phenomenon. In
order to overcome the damping, the beam needs to consume
more energy, which reduces the amplitude. Thus, through an
appropriate variation of the damping coefficient, the ampli-
tude of the dynamic response and the oscillation degree of the
beam can be adjusted.

FIG. 7. The influence of shrinkage coefficient on the dynamic response of the LCE simply supported beam. (a) The influence of shrinkage
coefficient on the mid-span deflection of the beam. (b) The variation of the maximum mid-span amplitude of the beam under different shrinkage
coefficients.
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FIG. 8. The influence of damping coefficient on the dynamic response of the LCE simply supported beam. (a) The influence of damping
coefficient on the mid-span deflection of the beam. (b) The variation of the maximum mid-span amplitude of the beam under different damping
coefficients.

V. CONCLUSION

Light-powered LCE devices can be applied in a wide
range of applications such as soft robots and microdrives,
due to their advantages of remote controllability and simple
structure. The dynamic response of LCE devices driven by
moving illumination is rarely studied. In this paper, a nonlin-
ear dynamic model of the simply supported LCE beam under
moving illumination is established, and the analytical solution
is derived using modal superposition and Duhamel integra-
tion. Under moving illumination, the LCE simply supported
beam performs a forced response, converting light energy into
mechanical energy, which is different from the conventional
mechanically driven mode. The dynamic forced response of
the LCE simply supported beam is systematically analyzed
through theoretical formulations and numerical calculations.
The dynamic response of the LCE simply supported beam
under moving illumination, which is brought about by the
coupling of optical deformation and its motion, is then il-
lustrated, along with the methods for managing the system
response.

In addition, the dependence of the dynamic response on
five physical parameters is quantitatively given. The results

demonstrate that when the moving speed of illumination
reaches the first-order critical velocity, the maximum ampli-
tude of the dynamic response at the beam mid-span peaks.
Besides, the dynamic response of the LCE beam can be en-
hanced by increasing the illumination width, light intensity,
and shrinkage coefficient or reducing the damping coefficient.
To sum up, changing the internal parameters and driving
parameters allows one to modify the dynamic response of
the beam. In the next stage, it is worth further illustrating
the dynamic response result by experimental verification to
confirm the numerical calculation and explore its applications,
and we expect that the current work has the potential to give
rise to new and diverse design ideas for soft robotics, energy
harvesters, micromachines, and so on.

ACKNOWLEDGMENTS

This research was supported by the Open Project Pro-
gram of Guangdong Provincial Key Laboratory of Intelligent
Disaster Prevention and Emergency Technologies for Urban
Lifeline Engineering and has also received funding from
National Natural Science Foundation of China (Grant No.
12172001), which are gratefully acknowledged.

[1] Y. L. Yu, M. Nakano, and T. Ikeda, Photoinduced bending and
unbending behavior of liquid-crystalline gels and elastomers,
Pure Appl. Chem. 76, 1467 (2004).

[2] T. J. White and D. J. Broer, Programmable and adaptive me-
chanics with liquid crystal polymer networks and elastomers,
Nat. Mater. 14, 1087 (2015).

[3] X. L. Pang, J. A. Lv, C. Y. Zhu, L. Qin, and Y. L. Yu, Photode-
formable azobenzene-containing liquid crystal polymers and
soft actuators, Adv. Mater. 31, 1904224 (2019).

[4] L. Qin, X. J. Liu, and Y. L. Yu, Soft actuators of liquid crys-
tal polymers fueled by light from ultraviolet to near infra-red,
Adv. Opt. Mater. 9, 2001743 (2021).

[5] W. Hu, G. Z. Lum, M. Mastrangeli, and M. Sitti, Small-
scale soft-bodied robot with multimodal locomotion, Nature
(London) 554, 81 (2018).

[6] M. Vatankhah-Varnoosfaderani, W. F. Daniel, A. P. Zhushma,
Q. Li, B. J. Morgan, and K. Matyjaszewski, Bottlebrush elas-
tomers: A new platform for freestanding electroactuation, Adv.
Mater. 29, 201604209 (2017).

[7] H. Palza, P. A. Zapata, and C. Angulo-Pineda, Electroactive
smart polymers for biomedical applications, Materials 12, 277
(2019).

[8] P. J. Driest, D. J. Dijkstra, D. Stamatialis, and D. W. Grijpma,
Tough combinatorial poly(urethane-isocyanurate) polymer net-
works and hydrogels synthesized by the trimerization of
mixtures of NCO-prepolymers, Acta Biomater. 105, 87
(2020).

[9] E. Zant and D. W. Grijpma, Synthetic biodegradable hydrogels
with excellent mechanical properties and good cell adhe-
sion characteristics obtained by the combinatorial synthesis

054704-7

https://doi.org/10.1351/pac200476071467
https://doi.org/10.1038/nmat4433
https://doi.org/10.1002/adma.201904224
https://doi.org/10.1002/adom.202001743
https://doi.org/10.1038/nature25443
https://doi.org/10.1002/adma.201604209
https://doi.org/10.3390/ma12020277
https://doi.org/10.1016/j.actbio.2020.01.025


ZHAO, SUN, DAI, WU, AND LI PHYSICAL REVIEW E 109, 054704 (2024)

of photo-cross-linked networks, Biomacromolecules 17, 1582
(2016).

[10] M. Grasinger, C. Majidi, and D. Kaushik, Nonlinear statisti-
cal mechanics drives intrinsic electrostriction and volumetric
torque in polymer networks, Phys. Rev. E 103, 042504 (2021).

[11] X. L. Zhuang, W. Zhang, K. M. Wang, Y. F. Gu, Y. W. An, and
X. Q. Zhang, Active terahertz beam steering based on mechan-
ical deformation of liquid crystal elastomer metasurface, Light
Sci. Appl. 12, 14 (2023).

[12] W. Lehmann, H. Skupin, C. Tolksdorf, E. Gebhard, R. Zental,
and P. Kruger, Giant lateral electrostriction in ferroelectric
liquid-crystalline elastomers, Nature (London) 410, 447 (2001).

[13] Y. H. Na, Y. Aburaya, H. Orihara, and K. Hiraoka, Measurement
of electrically induced shear strain in a chiral smectic liquid-
crystal elastomer, Phys. Rev. E 83, 061709 (2011).

[14] D. Corbett and M. Warner, Deformation and rotations of free
nematic elastomers in response to electric fields, Soft Matter 5,
1433 (2009).

[15] F. Atsushi, U. Kenji, K. Patrick, and T. Toshikazu, Electrically
driven director-rotation of swollen nematic elastomers as re-
vealed by polarized Fourier transform infrared spectroscopy,
Phys. Rev. E 79, 051702 (2009).

[16] C. M. Spillmann, J. Naciri, B. R. Ratna, R. L. Selinger, and J. V.
Selinger, Electrically induced twist in smectic liquid-crystalline
elastomers, J. Phys. Chem. B 120, 6368 (2008).

[17] H. Zeng, O. M. Wani, P. Wasylczyk, R. Kaczmarek, and A.
Priimagi, Self-regulating iris based on light-actuated liquid
crystal elastomer, Adv. Mater. 29, 1701814 (2017).

[18] K. Kumar, C. Knie, D. Bleger, M. A. Peletier, H. Friedrich,
and H. Stefan, Chaotic self-oscillating sunlight-driven polymer
actuator, Nat. Commun. 7, 11975 (2016).

[19] O. M. Wani, H. Zeng, and A. Priimagi, A light-driven artificial
flytrap, Nat. Commun. 8, 15546 (2017).

[20] H. Zeng, O. M. Wani, P. Wasylczyk, and A. Priimagi, Light-
driven, caterpillar-inspired miniature inching robot, Macromol.
Rapid Commun. 39, 10 (2018).
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