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We explore the structure and magnetic-field response of edge dislocations in Grandjean-Cano wedge cells
filled with chiral mixtures of the ferroelectric nematic mesogen DIO. Upon cooling, the ordering changes from
paraelectric in the cholesteric phase N∗ to antiferroelectric in the smectic SmZ∗

A and to ferroelectric in the
cholesteric N∗

F. Dislocations of the Burgers vector b equal to the helicoidal pitch 𝒫 are stable in all three phases,
while dislocations with b = 𝒫/2 exist only in the N∗ and SmZ∗

A. The b = 𝒫/2 dislocations split into pairs of
τ−1/2λ+1/2 disclinations, while the thick dislocations b = 𝒫 are pairs of nonsingular λ−1/2λ+1/2 disclinations.
The polar order makes the τ−1/2 disclinations unstable in the N∗

F phase, as they should be connected to singular
walls in the polarization field. We propose a model of transformation of the composite τ−1/2 line-wall defect into
a nonsingular λ−1/2 disclination, which is paired up with a λ+1/2 line to form a b = 𝒫 dislocation. The SmZ∗

A

behavior in the in-plane magnetic field is different from that of the N∗
F and N∗: the dislocations show no zigzag

instability, and the pitch remains unchanged in the magnetic fields up to 1 T. The behavior is associated with the
finite compressibility of smectic layers.

DOI: 10.1103/PhysRevE.109.054702

I. INTRODUCTION

A chiral nematic liquid crystal (N∗) forms a helicoidal
structure with a periodic twist of the director n̂, which de-
scribes the average orientation of the rodlike chiral molecules.
The director rotates around a helicoidal axis χ̂ remaining
perpendicular to it. The distance over which n̂ completes a
rotation by 2π is the helical pitch 𝒫. Due to the head-tail
symmetry, n̂ ≡ −n̂, the N∗ periodicity is𝒫/2 [1], Fig. 1(a). In
confinement, spatial variations of n̂ and χ̂ are determined by
surface interactions and bulk elasticity. Very often, boundary
conditions necessitate the appearance of defects such as dislo-
cations, disclinations, and focal conic domains [2]. When the
associated distortions extend over scales much larger than the
pitch, the elastic properties of N∗ are described similarly to
those of a smectic A [2].

Confinement-induced N∗ structures are often studied in the
so-called Grandjean-Cano wedge formed by a pair of glass
plates with a small dihedral angle α, Fig. 1(b). Each glass
plate is treated to provide a unidirectional planar alignment.
The equilibrium N∗ adapts to the varying wedge thickness
by introducing line defects [3], Fig. 1(b). These lines extend
along the direction perpendicular to the thickness gradient and
separate neighboring Grandjean zones, defined as the regions
within which the number m of director twists by π is constant.
There are three types of defects [3–16] in the N∗ wedge cells.

*olavrent@kent.edu

The line closest to the junction of the plates is a twist
disclination, also called a “Moebius disclination,” separating
a planar untwisted region from the first Grandjean zone in
which the director experiences a π twist [17]. The second
and the third types are “thin” and “thick” dislocations of
the Burgers vector b = 𝒫/2 and b = 𝒫, respectively. Their
cores represent pairs of the so-called λ and τ disclinations
of strength ±1/2. The nomenclature has been introduced by
Kleman and Friedel [8,9,18] and is based on the triad of axes:
χ̂ along the helical axis, λ̂ along the local director n̂, and
τ̂ = λ̂ × χ̂, Fig. 1(a); see also a review by Pieranski [16]. In
a λ disclination of strength ±1/2, τ̂ and χ̂ rotate by π around
the core, while λ̂ is along the core. In an τ disclination of
strength ±1/2, λ̂ and χ̂ rotate by π , while τ̂ is along the core.
The λ core, extending over a distance comparable to 𝒫, is
nonsingular and of a lower elastic energy than the singular
τ cores, in which the director is orthogonal to the disclination,
Fig. 1(b) [8,9,18].

Thin edge dislocations b = 𝒫/2 form in the thin part of
wedge, Fig. 1(b). Their cores split into pairs of τ−1/2λ+1/2

disclinations. When the thickness exceeds some critical value
hc, the thin dislocations are replaced with thick edge dis-
locations of the Burgers vector b = 𝒫 separating Grandjean
zones in which the director twist changes by 2π . The b = 𝒫

core splits into a pair of λ−1/2λ+1/2 nonsingular disclinations
[14]. The stability of thin vs thick dislocations and thus the
value of hc are controlled by the balance of orientational and
compressional elasticities [14].

Recently, a polar version of the N has been synthesized
and characterized [19–24]. This liquid crystal, called a 3D
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FIG. 1. Structural organization of (a) an apolar chiral nematic N∗ with a helicoidal axis χ̂, local director λ̂, orthogonal direction τ̂,
and period 𝒫/2; (b) the N∗ director field in a Grandjean-Cano wedge with thin b = 𝒫/2 and thick b = 𝒫 edge dislocations; (c) the chiral
ferroelectric nematic N∗

F; the structural period is 𝒫 rather than 𝒫/2.

uniaxial ferroelectric nematic (NF) [23], is formed by achiral
rodlike molecules with large permanent longitudinal electric
dipoles, which align parallel to each other, producing sponta-
neous macroscopic polarization P along n̂. Addition of chiral
molecules to the NF produces a ferroelectric cholesteric phase
(N∗

F) [25–27], Fig. 1(c). The most studied mesogens forming
the NF are abbreviated DIO [20] and RM734 [19]. Because
of the polar molecular order, in which P and −P are not
equivalent, the period of N∗

F is the pitch 𝒫, which corresponds
to a 2π twist of P, Fig. 1(c). This principal feature supports
b = 𝒫 dislocations in the Grandjean-Cano wedge cells, as
already observed by Zhao et al. [25] and Nishikawa et al. [26].

The polar nature of NF manifests itself not only in the bulk
structures but also in surface interactions. In conventional N
and N∗ phases, the surface interactions are usually apolar in
the plane of the interface. In contrast, the NF phase shows
polar in-plane ordering: P adopts only one equilibrium ori-
entation at a buffed substrate, and alignment antiparallel to it
is of higher energy [28–30]. Sandwich NF cells show either
a twisted or a monodomain structure depending on whether
the planar alignment on the two bounding plates was achieved
by buffing along antiparallel directions or parallel directions,
respectively [28–30]. The bulk NF structure in flat samples
can also become twisted along the normal to the sample when
one surface imposes a unidirectional planar alignment while
the other surface allows P to orient along any in-plane di-
rection [31]. Such a sample, despite being formed by rodlike
molecules with no chemically induced chiral centers, spon-
taneously splits into domains of alternating left-handed and
right-handed twists of P in order to reduce the electrostatic
energy. This structural chirality caused by NF electrostatics

should be distinguished from the chemically induced chirality
in the N∗

F wedges explored in this study.
In addition to the N and NF phases, DIO exhibits an antifer-

roelectric smectic-Z phase (SmZA) with periodic modulation
of density and splay of n̂ and P [32]. The average n̂, denoted
n̄, is parallel to the smectic planes and the sign of P alternates
from one layer to the next with a period ∼18 nm [32]. SmZA

slabs bounded by two buffed glass plates show two types of
alignment: a bookshelf (BK) and parallel alignment (PA), in
which the layers are perpendicular and parallel to the plates,
respectively, with n̄ along the buffing direction in both cases
[32]. These two geometries can be distinguished by their
response to an in-plane electric field [32]. The PA readily
undergoes a twist Frederiks transition, while the BK resists
it [32] since the layers tend to keep equidistance.

The difference in the order parameters, sensitivity to polar-
surface interactions, and the presence of the SmZA phase
motivated us to perform a comparative analysis of N∗, SmZ∗

A,
and N∗

F in Grandjean-Cano wedge cells with both parallel and
antiparallel assembly of unidirectionally buffed substrates.
The direction of buffing is perpendicular to the thickness
gradient. The material under study is DIO doped with a chiral
additive R1011, which shows the phase sequence isotropic −
N∗ − SmZ∗

A − N∗
F upon cooling [29]. The study focuses on

five aspects: (a) the temperature dependence of the pitch 𝒫
measured by the analysis of dislocation networks; (b) optical
analysis of dislocations’ cores; (c) zigzag instabilities of dis-
locations and unwinding of the helicoids by a magnetic field;
(d) transformation of dislocations in phase transitions; and (e)
alignment of chiral SmZ∗

A phase in confinement. The main
findings are as follows:
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(a) The temperature dependence of 𝒫 is weak and non-
monotonous in the N∗, SmZ∗

A and N∗
F phases, with a

minimum in the deep N∗ phase. The pitch decreases with the
increase of the concentration of chiral dopant.

(b) The core width of the b = 𝒫/2 dislocations in the N∗
and SmZ∗

A is approximately 𝒫/4 whereas that of the b = 𝒫

dislocations in the N∗, SmZ∗
A, and N∗

F is approximately 𝒫/2.
The findings validate the Kleman-Friedel model [8,9] that a
b = 𝒫/2 core splits into a disclination pair τ−1/2λ+1/2 and
b = 𝒫 splits into λ−1/2λ+1/2.

(c) The magnetic field causes zigzag instability of thick
dislocations b = 𝒫 in both N∗ and N∗

F. The b = 𝒫/2 dis-
locations remain rectilinear. The pitch of both N∗ and N∗

F
diverges as the magnetic field increases, in qualitative (but
not quantitative) agreement with the theoretical models. In the
SmZ∗

A, dislocations of any Burgers vector remain straight, in
fields up to 1 T.

(d) In the N∗ and SmZ∗
A phases, thin dislocations b =

𝒫/2 occupy the thin part of the wedge, h < hc, while thick
dislocations b = 𝒫 are located at h > hc. In the N∗

F phase,
τ−1/2 disclinations cannot exist as isolated defects and must
be attached to a singular wall in the polarization field P(r),
which is in contrast to the λ±1/2 disclinations which exist as
isolated defects in the N∗

F. Restructuring of the τ−1/2λ+1/2

core by adding a half-pitch N∗
F layer transforms it into the

λ−1/2λ+1/2 core and thus replaces the symmetry-prohibited
b = 𝒫/2 dislocations with a symmetry-allowed b = 𝒫 ones
in the N∗

F.
(e) In the chiral SmZ∗

A, the smectic layers are perpendic-
ular to the helicoidal axis χ̂, since this arrangement preserves
the layers’ equidistance. As a result, in flat sandwich cells,
the SmZ∗

A adopts a twisted planar alignment, an analog of the
planar alignment geometry of the nonchiral SmZA.

II. MATERIALS AND METHODS

We study chiral mixtures abbreviated M0.2, M0.1, and
M0.04 containing the ferroelectric material DIO (synthe-
sized as described in Ref. [29]) doped with a chiral additive
R1011 (Daken Chemicals), in three different weight pro-
portions DIO:R1011 = 99.8:0.2, 99.9:0.1, and 99.96:0.04,
respectively. The mixtures yield different 𝒫, according to
the approximate dependence 𝒫 ∼ 1/c, where c is the weight
concentration of the chiral dopant. The chiral mixture M0.2 is
used to study the temperature dependence of 𝒫, whereas the
magnetic-field effects are studied in M0.1. The chiral mixture
M0.04 with the largest pitch 𝒫 ≈ 60 µm is used in optical
analysis of dislocations’ cores. The phase sequences upon
cooling from the isotropic (I) phase are

I-166.3 ◦C-N∗-82.4 ◦C-SmZ∗
A-67.2 ◦C-N∗

F for M0.2,

I-166.9 ◦C-N∗-83.4 ◦C-SmZ∗
A-68.9 ◦C-N∗

F for M0.1,

I-167.0 ◦C-N∗-83.5 ◦C-SmZ∗
A-68.5 ◦C-N∗

F for M0.04.

The phase diagrams and all other experimental data below
are determined with a cooling rate of 0.25 ◦C/min unless
specified otherwise.

The wedge cells with a small dihedral angle α are as-
sembled from two glass substrates coated with the polyimide

PI2555 (Nissan Chemicals) and unidirectionally buffed as de-
scribed in Ref. [29]. The buffing directions are perpendicular
to the thickness gradient in order to avoid splay, which in the
NF causes space charge, and the geometrical anchoring effect,
which is a replacement of energetically costly splay with twist
[33]. Depending on the parallel or antiparallel orientation
of the two buffing directions, the wedge cells are called as
being parallel or antiparallel assembled, respectively. The thin
part of the wedge is glued by a UV curable glue NOA68
(Norland Products, Inc.) without spacers, while the thickest
part contains either 210-µm soda lime glass microspheres
(Cospheric LLC) mixed with NOA68 or a 0.7-mm-thick glass
plate. The dihedral angle α is measured in empty cells by
an interference method [34] using a color filter (532 ± 1) nm
(Thorlabs, Inc.).

The M0.2 birefringence �n = ne − no, where ne and no are
the extraordinary and ordinary refractive indices, respectively,
is measured as the ratio of the optical retardance Γ to the
cell thickness h in a thin, h = (1.7 ± 0.1) µm, planar cell
with parallel buffing using a PolScope MicroImager (Hinds
Instruments) at the wavelength 535 nm. The thickness of the
cell is smaller than 𝒫(T )/4, so that the N∗ and N∗

F structures
are untwisted [29]. The measurements yield �n = 0.17 in the
N∗ (100 ◦C) and 0.20 in the N∗

F (55 ◦C).
To determine the temperature dependence of the pitch

𝒫(T ) in M0.2, we explore a wedge cell with α = 1.24◦,
exhibiting both b = 𝒫/2 and b = 𝒫 dislocations [14]. The
pitch is calculated as 𝒫(T ) = 2 l (T ) tan α, where l (T ) is the
separation distance between two b = 𝒫/2 dislocations, or half
the distance between two b = 𝒫 dislocations.

To decipher the SmZ∗
A structures, we explore M0.2 in a

flat sandwichlike planar cell, h = (4.1 ± 0.1) µm, such that
𝒫(T )/4 < h < 𝒫(T )/2. The twisted planar alignment struc-
ture is identified by observing the electro-optical response
to an in-plane square-pulse electric field with the frequency
200 Hz [32]. The planar cells are made from two glass sub-
strates; one is plain glass with a buffed PI2555, whereas
the other has two ITO electrodes separated by a 1-mm gap,
coated with PI 2555 buffed perpendicularly to the edges of the
electrodes.

Dislocations in M0.04 are analyzed by optical interference,
using a monochromatic filter (532 ± 1) nm [35]. With 𝒫 ≈
60 µm, �n ≈ 0.2, and λ ≈ 0.5 µm, the Mauguin parameter
is large, Mau = �n𝒫/2λ ≈ 12, so that the light polarization
can be assumed to follow the rotation of n̂. The incident
light with linear polarization at 45◦ to the rubbing direction
R, produces both ordinary and extraordinary waves. Their
interference, viewed between the crossed polarizers, results
in a system of fringes. At the dislocation cores, the molecules
are tilted towards the propagating light beam, thus decreasing
the effective local birefringence. Perturbations of fringes at
the locations of dislocations allow us to characterize their
cores.

The temperature is controlled by a hot stage HCS302 and
a controller mK2000 (both Instec, Inc.) with an accuracy of
0.01 ◦C. The textures are taken using a polarizing optical
microscope Nikon OPTIPHOT2-POL (Nikon Inc.) equipped
with a QImaging camera. The magnetic experiments are
performed using M0.1 wedge cells. A larger 𝒫 of this mixture
allows one to explore the helicoid unwinding by relatively low
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FIG. 2. Measurements of the pitch: (a) lattice of edge dislocations in a parallel buffed wedge cell (α = 1.24◦) in the N∗, SmZ∗
A, and N∗

F

phases; (b) temperature dependence of the helical pitch in M0.2.

fields. In the magnetic-field experiments, the temperature is
controlled within ±0.1 ◦C by a custom-made controller and a
hotplate.

In all experiments, the chiral mixtures are filled into the
wedge and flat cells in the isotropic phase, by capillary action.
All measurements are taken below 120 ◦C in order to avoid
degradation of DIO [20,36].

III. RESULTS AND DISCUSSION

A. Temperature dependence of the pitch in M0.2

1. Temperature dependence of the pitch upon cooling

A Grandjean-Cano wedge of a known dihedral angle α

allows one to measure the cholesteric pitch 𝒫 = 2 l tan α by
measuring the distance l separating thin b = 𝒫/2 dislocations
and 2 l separations between thick b = 𝒫 dislocations. We use
a parallel assembly with α = 1.24◦. The thin dislocations are
stable in the thin part of the sample, h < hc, and the thick
ones at h > hc, where hc ≈ 21 µm is measured at the midway
distance between the last b = 𝒫/2 dislocation and the first
b = 𝒫 dislocation, Fig. 2(a). Both dislocation types preserve
their shape during the N∗ - SmZ∗

A transition and in the SmZ∗
A

phase. One can also observe dislocations with b = 0 oriented
along the thickness gradient, Fig. 2(a). The N∗

F phase exhibits
only thick dislocations b = 𝒫, Fig. 2(a).

Figure 2(b) shows the temperature dependence 𝒫(T ),
which is weakly nonmonotonous, without significant diver-
gence at the N∗- SmZ∗

A transition. This behavior is different
from the divergence of 𝒫(T ) near the N∗- SmA phase tran-
sition [37–39], in which case the twist of n̂ is incompatible
with the layered structure. The finite 𝒫(T ) and the preserved
structure of edge dislocations indicate that twists are allowed
in the SmZ∗

A since n̂ and P, being in the plane of smectic
layers, rotate from one layer to the next.

B. Dislocation cores in M0.04

When a wedge cell is illuminated with a 532-nm
monochromatic light and viewed between crossed polarizers,
with the polarizer at 45◦ to the rubbing direction R, one
observes birefringence fringes of equal width in the regions
between edge dislocations; these are perturbed by the disloca-
tion cores, Fig. 3 [35].

The equidistant birefringence fringes in the N∗ are per-
turbed by the dislocations, Fig. 3(a). At the singular core
of τ−1/2 disclination, Fig. 3(b), the effective birefringence is
discontinuous, which results in light diffraction and an image
of the core as a sharp black thread, similar to the τ−1/2 textures
described in other N∗ material by Malet and Martin [35]. As
one moves towards the λ+1/2 disclination, the tilt of the heli-
coidal axis, and effective birefringence change continuously,
producing a broader intensity minimum. The distance 𝒫/4
between the two intensity minima is associated with the core
extension L𝒫/2 of the b = 𝒫/2 dislocation, i.e., the distance
between τ−1/2 and λ+1/2 disclinations in N∗, Fig. 3(b), and in
the SmZ∗

A, Fig. 3(c).
If the thick b = 𝒫 dislocation core splits into a pair of

nonsingular λ−1/2 and λ+1/2 disclinations, as predicted [8,9],
then the birefringence should change continuously and rapidly
because of the continuous reorientation of the helicoidal axis
[35]. This indeed is observed in the interference patterns with
multiple maxima and minima, Figs. 3(d)–3(g). The extension
L𝒫 of this strongly perturbed zone is close to 𝒫/2 in the
N∗, Fig. 3(d), SmZ∗

A, Fig. 3(e), and N∗
F, Figs. 3(f) and 3(g).

Table I shows the pitch 𝒫, measured as 𝒫 = 2 l tan α, and
core extensions of both types of dislocations in all three chiral
phases. We conclude that the dislocation cores split into the
disclination pairs as predicted by Kleman and Friedel [8,9]:
b = 𝒫/2 splits into a disclination pair with a singular τ−1/2

and nonsingular λ+1/2, while b = 𝒫 splits into a nonsingular
pair λ−1/2λ+1/2.
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FIG. 3. Birefringence fringes in M0.04 wedge cells with parallel, (a)–(f), and antiparallel, (g), assembly: (a) thin b = 𝒫/2 and thick b = 𝒫

dislocations in the N∗; (b) a high-magnification image of a thin b = 𝒫/2 core in the N∗; the inset shows the transmitted light intensity along
the white dotted line; (c) the same b = 𝒫/2 core in the SmZ∗

A; (d) a high-magnification image of a thick b = 𝒫 core in the N∗; the inset shows
the transmitted intensity along the white dotted line; (e) the same b = 𝒫 core in the SmZ∗

A and (f) in the N∗
F; (g) b = 𝒫 in the N∗

F wedge with
antiparallel assembly. Dihedral angle α = 3.39◦ in (a)–(f) and α = 3.36◦ in (g).

C. Magnetic-field effects in M0.1

Thin and thick edge dislocations in a conventional N∗
Grandjean-Cano wedge show dramatically different responses
to the magnetic field B applied along the thickness gradient
(x axis) [7]: b = 𝒫 lines experience a zigzag instability, while
b = 𝒫/2 ones remain rectilinear. The zigzag instability occurs
when the field exceeds a critical value Bzz ≈ Bc/2, where

Bc = π2

𝒫

√
μ0K2

χa
(1)

is the critical field unwinding the N∗ helicoid [40,41], K2

is the twist elastic constant, μ0 is the vacuum magnetic
permeability, and χa > 0 is the anisotropy of diamagnetic
susceptibility. The DIO mixture M0.1 shows a similar

behavior in the N∗ phase, Fig. 4(a), but presents a plethora of
effects in the two other chiral phases, SmZ∗

A, Fig. 4(b) and N∗
F,

Figs. 4(c)–4(e).

1. Zigzag instability in parallel assembly
wedge, Figs. 4(a), 4(c), and 4(f)

The magnetic field up to ≈ 1 T has no effect on the shape of
dislocations b = 𝒫/2 in the N∗ (except for the shift associated
with the pitch increase); these remain straight. The b = 𝒫

dislocations adopt a zigzag shape in both the N∗, Fig. 4(a),
and N∗

F, Fig. 4(c), when the field increases above Bzz, equal
0.49 T in the N∗ at 100 ◦C and ≈ 0.54 T in the N∗

F at 60 ◦C.
The period of zigzag wave increases with the dihedral an-
gle α, Fig. 4(f). In the N∗

F phase, the 2π disclination that
separates the untwisted regions from the 2π -twist Grandjean

TABLE I. Pitch 𝒫 and extensions L𝒫/2 of b = 𝒫/2 and L𝒫 of b = 𝒫 dislocation cores in M0.04.

Phase 𝒫 (µm) 𝒫/4 (µm) 𝒫/2 (µm) L𝒫/2 (µm) L𝒫 (µm)

N*, 100 °C 58 ± 1 14.5 29 14 30
SmZ∗

A, 75 ◦C 60 ± 1 15 30 14 31
N∗

F, 55 ◦C 64 ± 2 32 35 (parallel)
33 (antiparallel)
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FIG. 4. Dislocations in the magnetic field B: (a) parallel assembly N∗ wedge (α = 1.51◦), b = 𝒫/2 dislocations remain straight, b = 𝒫

dislocations adopt zigzag shapes above Bzz; (b) the same wedge, all dislocations in the SmZ∗
A remain straight; (c) the same wedge, all b = 𝒫

dislocations in the N∗
F change to zigzag shapes above Bzz; the 2π disclination near the edge of the wedge remains straight; (d) antiparallel

assembly wedge (α = 1.79◦) in the N∗
F; b = 𝒫 dislocations change to zigzag shapes above Bzz; note the arched shape of the first disclination

in the absence of the field, which is attributed to the splay-cancellation mechanism illustrated in; (e), see text for details; (f) period of zigzag
undulations in parallel rubbed N∗

F wedge cells increases with the dihedral angle α; B = 0.6 T. Mixture M0.1.

zone, Fig. 4(c), remains straight; the effect is analyzed in
Sec. III D. In a striking difference from the two other phases,
the b = 𝒫/2 and b = 𝒫 dislocations in the SmZ∗

A show no
zigzag instabilities in the field up to 1 T, Fig. 4(b).

The shapes of N∗ dislocations in the magnetic field,
Fig. 4(a), were explained by Kleman [42] as a result of the
core splitting. As established above, a b = 𝒫 core splits into
a nonsingular pair λ−1/2λ+1/2 and a b = 𝒫/2 core splits into
a pair τ−1/2λ+1/2. The splitting is related to the fact that the
product of two opposite rotations by π and - π along two
parallel axes is a translation [8,9]. In the space between the
two disclinations, the helicoidal axis χ̂ is along the thickness
gradient and is parallel to the applied field B, Figs. 1(a) and
4(a). Since χa > 0, this orientation maximizes the energy of
diamagnetic coupling. The energy is reduced if χ̂ tilts away
from B, thus forming a zigzag. The critical field causing a
zigzag instability is [42] Bzz ≈ Bc/2 for the λ−1/2λ+1/2 pair
and Bzz ≈ Bc for the τ−1/2λ+1/2 pair. The larger value of Bzz

in the case of a τ−1/2λ+1/2 pair is explained by a shorter
separation between the disclinations and by the singular char-
acter of the τ−1/2 core, which results in its high line tension
Ec,τλ ≈ π

2 K ln 𝒫

4rc
, where K is an average value of the Frank

elastic constants and rc is the core radius of molecular dimen-

sion. The core of λ−1/2λ+1/2 pairs is nonsingular, with a much
lower elastic energy per unit length, on the order of ∼K [42].

As shown in the next section and in Fig. 5, the magnetic
field that unwinds the cholesteric helix is Bc = 0.96 T in
the N∗ and 1.05 T in the N∗

F. In both phases, Bzz/Bc ≈ 0.5,
remarkably close to 1/2 as predicted by Kleman [42].

As indicated above, the SmZ∗
A dislocations remain rec-

tilinear in the field, Fig. 4(b), which is explained by finite
compressibility of the SmZ∗

A layers. The equidistance of
SmZ∗

A layers is violated near the −1/2 disclination cores,
where n̂ experiences alternating bend and splay, Fig. 1(b). In
the SmZ∗

A, splay of n̂, which is parallel to the smectic layers,
means that the layers cannot keep their thickness constant.
The situation is opposite in a conventional smectic A, in
which n̂ is normal to the smectic layers and it is bend and
twist of n̂ that are prohibited by the layered structure [2].
In contrast to the −1/2 cores, the +1/2 disclination cores
in the SmZ∗

A can be constructed exclusively with the bend
of n̂, which supplements the intrinsic twist, Fig. 1(b), thus
preserving the equidistance. A zigzag shape of dislocations
in the SmZ∗

A would imply additional splay in the xy plane
of the sample, which is not compatible with the requirement
of layers’ equidistance. Smectic layering is the reason why
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FIG. 5. Magnetic-field dependence of helical pitch in parallel
buffed wedge cell (α = 1.51◦) in the N∗, SmZ∗

A, and N∗
F phases of

M0.1.

the SmZ∗
A dislocations of any Burgers vector preserve their

rectilinear shape in the magnetic field.

2. Zigzag instability in antiparallel assembly
wedge, Figs. 4(d) and 4(e)

The first dislocation in the thinnest part of the antiparal-
lel assembly wedge, which separates the zones with π - and
3π -twists, adopts a peculiar wavy shape even at B = 0. The
apparent reason is the splay of polarization P, necessitated
by the wedge geometry, and by the fact that in the bisecting
plane, P is collinear with the thickness gradient, Fig. 4(e).
NF and N∗

F textures tend to avoid splay since it produces a
bound electric charge of a density ρb = −div P and increases
the electrostatic energy [43]. The bound charge can be re-
duced by the “splay cancellation” mechanism described in
the context of the director for N droplets by Press and Arrott
[44] and for hybrid aligned [45] and suspended [46] N films.
The space charge produced by splay in the vertical plane xz
can be reduced by additional splay of an opposite polarity in
the xy plane, Fig. 4(e). Imagine, following Ref. [45], that P
experiences only splay, forming straight lines perpendicular
to a set of curved surfaces 
s. Each point at a surface 


is characterized by two principal radii of curvature R1 and
R2 that define the mean curvature 1

R1
+ 1

R2
and the Gaussian

curvature 1
R1R2

. The divergence of polarization is related to

the mean curvature, div P ∝ 1
R1

+ 1
R2

[2]. The signs of R1

and R2 depend on the orientation of vectors R1 and R2 with
respect to the chosen normal to 
. For a spherical 
, the radii
are of the same sign, R1R2 > 0, while they are of opposite
signs, R1R2 < 0, for saddlelike surfaces such as a hyperbolic
paraboloid. In the discussed geometry, Fig. 4(e), let R1 be the
radius of curvature induced by the wedge in the xz plane,
producing an electric charge density ρb ∝ | 1

R1
|. If there is

additional splay with R2 in the xy plane such that R1R2 < 0,
this space charge is reduced, ρb ∝ | 1

R1
| − | 1

R2
|. In Fig. 4(e), a

red disk marks a cloud of positive space charges and blue disks

mark the negative charges that compensate for the positive
charges. Therefore, the wavy shape of the first disclination
can be caused by the wedge-induced splay of polarization in
the xz plane and a reduction of the associated space charge
by additional splay in the xy plane. The effect should be
most pronounced in the Grandjean zone with one π twist,
as in that zone, the polarity of splay is the same everywhere.
Grandjean zones with a higher number of twists would show
splay of alternating signs as one moves along the z axis, which
diminishes the need for additional splay. The negative sign of
the vertical xz splay, ∂Pz

∂z < 0, in Fig. 4(e) is accompanied by

the splay-canceling positive xy splay ∂Py

∂y > 0 within an arch
that bulges towards the thin part of the wedge. The arches are
separated by cusplike regions of high curvature in which ∂Py

∂y

and ∂Pz

∂z are both negative. The space charge in these regions
is most likely screened by freely moving ions always present
in liquid crystals. The advantage of the combined geometrical
and ionic screening of the bound charge ρb = −div P is that
the average bulk concentration of ions can be low but still
sufficient to accumulate in a limited portion of space to screen
ρb there. The tendency of the first dislocation in Figs. 4(d)
and 4(e) to lower its length to minimize the core energy also
contributes to the asymmetric arched shape. An increased
angular extension of a splay-canceling arch implies a longer
total length and thus should be limited. The interplay of splay
cancellation and ionic screening requires further studies.

3. Unwinding the helix

The magnetic-field dependence of the pitch 𝒫(B) in the N∗
(100 ◦C), SmZ∗

A (75 ◦C), and N∗
F (60 ◦C) phases of M0.1 are

determined with the field increasing and decreasing in small
0.04 T increments, with 8 hours equilibration at each step,
Fig. 5. The equilibration results in a practically hysteresis-free
behavior. The pitch increases with B in both the N∗ and N∗

F,
but remains practically constant in the explored range in the
SmZ∗

A.
The critical field at which the helix unwinds completely is

determined as the field at which the last dislocation is expelled
from the sample: Bc = 0.96 T in the N∗ phase and 1.05 T in
the N∗

F phase. Using the measured Bc and the off-field pitch
𝒫 = 23.8 µm in the N∗ and 25.6 µm in the N∗

F phases of M0.1,
one estimates K2/χa = 1.1 × 10−6 SI for N∗ and 1.5 × 10−6

SI for N∗
F. Since χa ≈ 10−6 in most liquid crystals, K2 ≈ 1 pN

in the N∗ and ≈ 1.5 pN in the N∗
F.

In contrast to the helix unwinding in both the N∗ and
N∗

F, the pitch of SmZ∗
A does not increase in the field up to

1 T, Fig. 5. The apparent reason is the smectic layering of
SmZ∗

A, which prevents dislocations from experiencing zigzag
instability, as discussed above, Fig. 4(b). Apparently, the dis-
locations form a barrier for the realignment in the Grandjean
zones so that the pitch does not diverge. It would be of interest
to explore SmZ∗

A samples in the fields above 1 T.
The unwinding of N∗ by a magnetic field is well known

since the early theoretical works by de Gennes [40] and
Meyer [41] and experiments by the number of research groups
[47,48]. The theory considers an infinite sample with a he-
licoidal twist of the director, nx = cosϕ(z), ny = sinϕ(z),
nz = 0, and the free energy comprised of the elastic twist term
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and the diamagnetic coupling to the applied magnetic field
B = {B, 0, 0} :

F =
∫ ∞

−∞

[
1

2
K2

(
dϕ

dz
− q0

)2

− χa

2µ0
B2sin2ϕ

]
dz, (2)

where q0 = 2π/𝒫0, 𝒫0 is the cholesteric pitch in the absence
of the field, and ϕ is the angle between the director and B.
This functional is applicable to both the N∗ and N∗

F phases.
The analysis predicts the value of the critical field Bc of helix
unwinding, Eq.(1), and the pitch dependence 𝒫(B) on the
applied magnetic field [40],

𝒫(B)

𝒫0
= 4

π2
K(k2)E(k2), (3)

where K(k2) = ∫π/2
0

dψ√
1−k2sin2ψ

and E(k2) = ∫π/2
0√

1 − k2sin2ψdψ are the complete elliptic integrals of
the first and the second kind, respectively. Note that Eq. (3)
contains no adjustable parameters; it predicts that the pitch
diverges with K(k2) as the field approaches Bc, when k2 = 1

and E(k2) = 1. In weak fields, 𝒫(B)
𝒫0

≈ 1 + χ2
a𝒫

4
0B4

29π4μ2
0K2

2
, and near

Bc, the pitch diverges as 𝒫(B)
𝒫0

= 4
π2 ln 4Bc√

B2
c−B2

[49].

The theory has been confirmed by experiments, in which
the sample represented a fingerprint texture [48] or the
Grandjean-Cano wedge cell [47]. Our experimental data,
Fig. 5, are in qualitative agreement with the model, Eq. (3),
for both the N∗ and N∗

F. The pitch 𝒫 in the intermediate
fields, from 0.4 to 0.7 T, is somewhat below the theoretical
prediction; a similar discrepancy has been observed in the
electric-field experiments [50]. At high fields, above 0.8 T,
𝒫 is larger than the theory prediction, Fig. 5. The absence
of quantitative agreement is likely caused by the confinement
effects. One of these is surface anchoring, which makes the
pitch change a steplike process [51–55]. Another feature is
the variations of the structure along the x and z axes, with
periodic compressions and dilations and the presence of ex-
tended defect cores in which the χ̂ axis is parallel rather than
perpendicular to the applied field. These factors contribute
to the discrepancies between the experiment and the theory,
especially in the relatively thin samples explored in our work.
The important role of the dislocation presence in shaping the
𝒫(B) function is further supported by the data on SmZ∗

A in
Fig. 5. If the SmZ∗

A were an infinite sample without disloca-
tions, then Eqs. (2) and (3) would describe its unwinding since
the only deformation is twist of the director from one smectic
layer to the next, which does not change the thickness of the
layers. However, when the smectic layers are perpendicular to
the field, the unwinding is hindered, and the twist-only model
is not applicable.

D. Structural features of chiral phases in wedge cell of M0.2

A detailed exploration of Grandjean-Cano N∗ structures
was achieved by the fluorescent confocal polarizing mi-
croscopy (FCPM) [14]. FCPM requires materials with a low
birefringence, ∼0.1 or less. High birefringence of DIO di-
minishes the resolving power of FCPM, which explains why
our study is limited by a conventional optical microscopy.

The results above suggest the Grandjean-Cano wedge DIO
N∗ structure as shown in Fig. 1(b) and the N∗

F structure as
schematized in Fig. 6(a) for parallel assembly and Fig. 6(b)
for antiparallel assembly. As compared to the N∗ wedge in
Fig. 1(b), there are no b = 𝒫/2 dislocations in the N∗

F, which
are prohibited since the states P and −P are not equivalent to
each other. Below we describe the mutual transformations of
the N∗, SmZ∗

A, and N∗
F dislocation lattices upon cooling and

heating.

1. Dislocations upon cooling; parallel assembly

The Grandjean-Cano N∗ textures of DIO mixtures are
similar to the ones described for conventional N∗ materials
[7,14,17,35]. Namely, the thinnest part of the wedge exhibits
an untwisted N∗ with n̂ along the rubbing direction [14],
Fig. 1(b) and 7(a). As the thickness increases, but remains
below a critical value hc [14], one observes thin edge dis-
locations b = 𝒫/2 separating Grandjean zones in which the
director twist differs by π , Fig. 7(a). During the N∗- SmZ∗

A
transition and in the SmZ∗

A, these dislocations do not change,
except for the increase of the separation l = 𝒫/(2 tan α),
caused by the increase of 𝒫, Fig. 2(b). The reason is that the
SmZ∗

A is antiferroelectric, thus the disclination cores can still
afford π rotations.

Once the temperature is reduced below the SmZ∗
A - N∗

F
transition point, the Moebius π disclination and the first edge
dislocation b = 𝒫/2 merge to form a b = 𝒫 dislocation; the
untwisted zone moves towards the thicker part of the wedge,
Fig 7(a). Insets in Fig. 7(a) map the retardance Γ and show
the director orientation along the rubbing direction in the
untwisted regions of the N∗ and N∗

F. The retardance increases
linearly with the distance d along the thickness gradient,
Fig. 7(c). The maximum retardance of the untwisted region in
N∗ phase is Γmax = 403 nm, which is close to the retardance
of the wedge at the local thickness h = 𝒫/4 = 2.3 µm, since
�n = 0.17 and 𝒫 = 9.2 µm. The result implies that the Moe-
bius π disclination that separates the untwisted and π -twisted
regions is located at hπ = 𝒫/4 in the N∗ [12]. In the N∗

F, the
maximum retardance of the untwisted region is Γmax = 979
nm, Fig. 7(c), close to the retardance of wedge at h = 𝒫/2 =
5 µm, as �n × 𝒫/2 = 990 nm. Therefore, the first defect that
separates the untwisted- and 2π -twisted regions in the N∗

F is a
2π disclination residing at h2π = 𝒫/2.

The 2π disclination preserves its straight shape in the
magnetic field even when the other defects change to zigzag,
Fig. 4(c). The apparent reason is that the estimated h2π is

smaller than the thickness ht = π
B

√
μ0K2

χa
, at which the field

causes a Frederiks-like twist. If one inserts B = Bzz = Bc/2
in the last equation, then ht = 2𝒫/π , which is larger than
h2π = 𝒫/2.

The polar unidirectional azimuthal anchoring at the bound-
ing plates forces the polarization vector P in the N∗

F to twist
only by 2mπ , where m is an integer. Any Grandjean zone
with an odd number of π twists in a parallel assembly wedge
is prohibited and is removed by restructuring, which is a
complex process that involves a transformation of b = 𝒫/2
dislocations into b = 𝒫 lines by absorption of an N∗

F layer of
the thickness 𝒫/2, Fig. 8.
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FIG. 6. Structural schemes of the Grandjean-Cano wedge with (a) parallel assembly of buffed polyimide alignment layers and (b)
antiparallel assembly. The dislocations represent split pairs of nonsingular λ−1/2λ+1/2 disclinations.

In the N∗, τ±1/2 disclinations are singular since the local
director is perpendicular to them, while λ±1/2 disclinations
are nonsingular, Fig. 8(a). In the N∗

F, the difference between
these two classes is even more pronounced, as the τ±1/2

disclinations cannot exist as isolated defects and must be con-
nected to a defect wall separating the opposite directions of
polarization, P and −P, Fig. 8(b). A π rotation of P around a
τ±1/2 disclination line yields a −P state incompatible with P.
This feature leads to “composite” defects, representing ±1/2
singular disclinations connected by a wall, as predicted for
the nonchiral NF [56,57] and observed in thin NF films [58].
Below the SmZ∗

A - N∗
F transition temperature, the emerging

domain wall attached to the τ−1/2 core in Fig. 8(c) must be
healed, as it carries a large energy of a perturbed ferroelectric
order. By restructuring the τ−1/2 core and gliding it along the

z axis, which amounts to the elimination of the singular wall
and an addition of a half-pitch 𝒫/2 to the defect, one trans-
forms the τ−1/2λ+1/2 pair into the λ−1/2λ+1/2 one with b = 𝒫.
Fig. 7(a) shows that the Grandjean zones and well-defined
dislocations are strongly distorted during this restructuring at
the SmZ∗

A - N∗
F transition point.

Sometimes the networks show dislocations of a zero Burg-
ers vector which run along the thickness gradient and connect
neighboring b = 𝒫 dislocations, Fig. 2(a). At the dislocation
nodes, the mechanical equilibrium requires the sum of line
tensions T of dislocations to be zero [2,14]. The angle φ𝒫
between the b = 0 line and each of the two segments of the
b = 𝒫 dislocations is 38◦ in the N∗ (100 ◦C) and 37◦ in the
N∗

F phase (55 ◦C). It implies that the line tension of b = 0
dislocation is about 1.6 times stronger than the line tension
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FIG. 7. Transformations of thin-edge dislocations b = 𝒫/2 in the thin part of the wedge on cooling in (a) parallel assembly, α = 0.74◦ and
(b) antiparallel assembly, α = 0.77◦. The edge dislocations preserve their structure upon the N∗ to SmZ∗

A transition but increase the separation
distances since the pitch increases. In the N∗

F, the number of dislocations is reduced by a factor of 2 and all of them are of the Burgers vector
b = 𝒫; (c) optical retardance of the untwisted regions shown in (a) grows linearly with distance d along the thickness gradient in the N∗

(100 ◦C), line AB, and the N∗
F phase (55 ◦C), line AC. Mixture M0.2.

of the b = 𝒫 defect, T0 /T𝒫 = 2 cosφ𝒫 ≈ 1.6 in both the N∗
F

and N∗. The estimate is close to the one found previously,
T0 /T𝒫 ≈ 1.7, for a conventional N∗ [14]. The result is rea-
sonable, since the b = 0 dislocation is formed by two λ+1/2

and two λ−1/2 nonsingular disclinations, which produce a so-
called “Lehmann cluster” [14]. The existence of the Lehmann
clusters supports the idea that λ disclinations of semi-integer
strength in the N∗ and N∗

F are similar. The Lehmann cluster

in Fig. 8(e) is fully compatible with the ferroelectric order of
the N∗

F.

2. Dislocations upon cooling; antiparallel assembly

In an N∗
F wedge cell with an antiparallel assembly, the sur-

face anchoring forces P to twist by (2m + 1)π . The untwisted
region of the N∗ phase becomes a π -twisted region in the

FIG. 8. Nonsingular disclinations in the N∗
F. (a)–(d) Restructuring of (a) τ−1/2λ+1/2 into (c),(d) λ−1/2λ+1/2 disclination pair through the

creation of a singular wall of polarization (b). The restructuring amounts to an addition of a half-pitch 𝒫/2 to the Burgers vector of the
dislocation, which eliminates Grandjean zones with an odd number of π twists in a parallel assembly of a wedge; (e) Lehmann cluster b = 0
comprising of two λ−1/2 and two λ+1/2 disclinations is fully compatible with the polar ordering of the N∗

F.
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FIG. 9. Edge dislocations in the wedge heated from the N∗
F to SmZ∗

A and N∗; (a) parallel assembly wedge, α = 0.80◦; (b) antiparallel
assembly, α = 0.77◦. The thick b = 𝒫 dislocations restructure and split into two thin-edge dislocations b = 𝒫/2. Mixture M0.2.

N∗
F, Fig. 7(b). The b = 𝒫/2 dislocations behave similarly to

what is described above for the parallel assembly. They do
not change much upon the N∗- SmZ∗

A transition but they all
transform into b = 𝒫 in the N∗

F, Fig. 7(b).

3. Dislocations b = 𝒫 splitting upon heating;
parallel assembly wedge

On heating the sample from the N∗
F to the SmZ∗

A at a slow
rate of 0.05 ◦C/min, b = 𝒫 dislocations undergo a complex
restructuring process at the transition point, which results in
the appearance of a few b = 𝒫/2 dislocations in the thinnest
part of the SmZ∗

A wedge, Fig. 9. Once the heating yields the
N∗ phase, the thick dislocations b = 𝒫 in the thin part of the
sample, h < hc, split into pairs of dislocations b = 𝒫/2. The
splitting starts at the thinner part of the wedge.

As already stated, the cores of the b = 𝒫 and b = 𝒫/2
dislocations are very different, the first being nonsingular
and the second containing a singular τ disclination. The core
energy Ec,τλ of a b = 𝒫/2 dislocation is estimated as [14]
Ec,τλ ≈ π

2 K ln 𝒫

4rc
, where rc is the radius of the τ core, on the

order of 1–10 molecular sizes. For typical rc = 10 nm and
𝒫 = 10 µm, Ec,τλ could be as large as ∼17K . In contrast,
the b = 𝒫 core is smooth over the area ∼𝒫2 and the core
energy is Ec,λλ ≈ K [14]. At first sight, the strong inequality
Ec,τλ � Ec,λλ prohibits splitting of b = 𝒫 dislocations into
two b = 𝒫/2 dislocations. The paradox is resolved by notic-
ing that the core energies should be supplemented with the
compression energy of N∗ pseudolayers. Briefly, inserting a
slab of a thickness b = 𝒫/2 into a cell of a fixed thickness
h requires less compression energy as compared to a thicker
b = 𝒫 slab. The difference is significant only when the num-
ber n = 2h/𝒫 of pseudolayers of thickness 𝒫/2 each is small.
As demonstrated in Ref. [14], the difference between the line
energies of two b = 𝒫/2 and one b = 𝒫 dislocations, which

accounts for the compressibility term, writes

(2E𝒫/2 − E𝒫)

K
≈ π ln

𝒫

4rc
− 𝒫

3

32hξ 2tanα
, (4)

where ξ = 𝒫

2π

√
3K33
8K22

is the “penetration” length, which is
usually a few times smaller than the pitch 𝒫 [59]. This re-
lationship explains why in the thin part of the wedge, the
b = 𝒫/2 dislocations are more stable than the b = 𝒫 defects
once the material transitions into the N∗. The energy gain
increases for smaller h/𝒫, in agreement with the experimental
observation that the splitting occurs first in the thinnest part of
the wedge, Fig. 9. Furthermore, the critical thickness can be
estimated from the condition E𝒫/2 ≈ E𝒫 as hc ≈ 𝒫

3

32αξ 2π ln 𝒫

4rc

.

With the known α = 1.24◦, 𝒫 = 10 µm for M0.2 and the
estimates rc = 10 nm, ξ = 0.2𝒫, one obtains hc = 21 µm, in
a remarkable agreement with the experimental value above.

E. Twisted planar alignment of chiral SmZ∗
A

In the nonchiral SmZA phase, the polarization P is parallel
to the smectic layers, reversing its polarity from one layer
to the next. In confinement, an achiral SmZA can adopt two
different alignment geometries [32]. In the chiral SmZ∗

A, the
orientation of smectic layers is better defined: they should
be perpendicular to the helicoidal axis χ̂ to preserve equidis-
tance. To verify this statement, we study the response of the
π -twisted N∗ and SmZ∗

A to an in-plane electric field applied
perpendicularly to χ̂ and along the buffing direction, Fig. 10.

The π -twisted N∗ structure undergoes helix unwinding,
Figs. 10(a)–10(c), at some critical field Ec = 40 V/mm.
Similarly, the π -twisted SmZ∗

A unwinds at Ec = 45 V/mm,
Figs. 10(d)–10(f), which means that the smectic layers are per-
pendicular to χ̂. This verifies that the twisted Grandjean zones
in the wedge SmZ∗

A cells have a twisted planar alignment.
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FIG. 10. Unwinding of a π -twisted (a)–(c) N∗, (d)–(f) SmZ∗
A in planar cells with parallel assembly by an in-plane electric field applied

along the buffing direction. Mixture M0.2, h = 4.1 µm.

IV. CONCLUSION

Below, we formulate the main results in relationship to the
three explored phases, N∗, SmZ∗

A, and N∗
F.

A. Paraelectric cholesteric N∗

The Grandjean-Cano structures in the cholesteric N∗ phase
of the ferroelectric material DIO are the same as previously
established in the optical [35] and FCPM [14] experiments
on conventional N∗ materials. Namely, the thickness gradient
is relieved by a one-dimensional lattice of dislocations of
Burgers vector b = 𝒫/2 in the thin part of the wedge, h < hc,
and b = 𝒫 in the thick part, h > hc.

The separation between the dislocations allows us to deter-
mine the temperature dependence of the helical pitch𝒫, which
shows a weakly nonmonotonous behavior upon cooling, with
a minimum in the middle of the N∗ temperature range. 𝒫
remains finite during the N∗ − SmZ∗

A transition. The N∗ pitch
diverges in a magnetic field applied in the plane of the wedge,
perpendicularly to the dislocations. The full unwinding is
achieved at about Bc ≈ 1 T.

The dislocations in the N∗ phase show cores split into pairs
of disclinations, as foreseen by the Kleman-Friedel model
[8,9]. Namely, a b = 𝒫/2 core splits into a pair of a singular
τ−1/2 and a nonsingular λ+1/2 disclinations separated by a
distance ≈ 𝒫/4, while a b = 𝒫 core splits into a nonsingular
λ−1/2 and λ+1/2 separated by 𝒫/2. An in-plane magnetic
field ∼Bc/2 causes zigzag instability of λ−1/2λ+1/2 cores,
but the τ−1/2λ+1/2 cores remain rectilinear. Because of the
singular structure, the core energy of the b = 𝒫/2 dislocations
is much higher than that of the nonsingular b = 𝒫 disloca-
tions, which makes the existence of b = 𝒫/2 dislocations
at h < hc puzzling. Their stability is explained by the finite
compressibility of cholesteric pseudolayers: in the thin part of
the wedge, the compressibility energy cost of inserting a slab
of a thickness b = 𝒫 is much higher than the compressibility
cost of inserting a slab of a thickness b = 𝒫/2. The balance
of curvature and compressibility energies defines hc [14]. Note

that the existence of two different types of dislocations must
be accounted for in the measurements of𝒫 in Grandjean-Cano
wedges.

B. Antiferroelectric chiral SmZ∗
A

Upon cooling from the N∗, the SmZ∗
A preserves the disloca-

tions with the Burgers vector b = 𝒫/2 in the thin and b = 𝒫 in
the thick part of the sample. They also split into the τ−1/2λ+1/2

and λ−1/2λ+1/2 pairs, respectively. On heating from the N∗
F,

b = 𝒫 dislocations split into two b = 𝒫/2 lines in the thin part
of the wedge, h < hc. The SmZ∗

A dislocations show no zigzag
instability in the magnetic field as high as 1 T. Furthermore,
the helical pitch remains unchanged in the same range of the
field. We associate these features with the layered structure of
the SmZ∗

A.

C. Ferroelectric cholesteric N∗
F

Cooling from SmZ∗
A into the N∗

F causes a dramatic restruc-
turing, in which dislocations b = 𝒫/2 transform into b = 𝒫

dislocations. The b = 𝒫 dislocations are similar to their coun-
terparts in the N∗. The b = 𝒫 dislocations in all explored
phases carry a split nonsingular λ−1/2λ+1/2 core, which is
compatible with the polar ordering of N∗

F, antiferroelectric
ordering of SmZ∗

A, and apolar ordering of N∗. Further ev-
idence of the stability of λ disclination is the existence of
b = 0 dislocations; their cores contain two λ−1/2 and two
λ+1/2 disclinations (the so-called Lehmann clusters). An in-
teresting feature of the antiparallel assembly N∗

F wedge is that
the first line defect in the thinnest part is of a wavy shape
even when there is no magnetic field; this shape is related to
the splay-cancellation effect. The bound charge caused by the
confinement-induced splay of polarization can be reduced by
an additional splay in the cell’s plane.

The transformation of thin dislocations b = 𝒫/2 inherited
from the antiferroelectric SmZ∗

A into thick b = 𝒫 dislocations
in the N∗

F is necessitated by the fact that the τ±1/2 disclina-
tions, unlike their λ±1/2 counterparts, cannot exist as isolated
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defects and must be connected to a domain wall in the po-
larization field. These walls, however, can be eliminated by
the reconstruction of the defect core, which is equivalent to
the addition of a half-pitch 𝒫/2 to the τ−1/2λ+1/2 pair and
its transformation into λ−1/2λ+1/2, with a corresponding dou-
bling of the Burgers vector. The experiments demonstrate that
the structure and field response of the confinement-induced
edge dislocations depend strongly on the type of microscopic
ordering, which changes from paraelectric to antiferroelec-
tric and ferroelectric. This dependency can be used not only

in measuring the properties such as the helical pitch, but
also in identifying the type of ordering in newly synthesized
materials.
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