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Traveling fronts in vibrated polar disks: At the crossroad between polar ordering and jamming
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We investigate experimentally the collective motion of polar vibrated disks in an annular geometry, varying
both the packing fraction and the amplitude of the angular noise. For low enough noise and large enough density,
an overall collective motion takes place along the tangential direction. The spatial organization of the flow reveals
the presence of polar bands of large density, as expected from the commonly accepted picture of the transition
to collective motion in systems of aligning polar active particles. However, in our case, the low density phase is
also polar, consistent with what is observed when jamming takes place in a very high density flock. Interestingly,
while in that case the particles in the high density bands are arrested, resulting in an upstream propagation at a
constant speed, in our case the bands travel downstream with a density-dependent speed. We demonstrate from
local measurements of the packing fraction, alignment, and flow speeds that the bands observed here result both
from a polar ordering process and a motility induced phase separation mechanism.

DOI: 10.1103/PhysRevE.109.054610

I. INTRODUCTION

Collective motion is a common feature in active matter
comprised of self-propelled particles [1,2], whether these are
synthetic, such as motile colloids [3–5] and vibrated disks
[6,7], or biological, such as humans [8–10], birds [11,12],
insects [13,14], or cells [15]. Its prevalence across a wide va-
riety of scales and its seeming independence from the precise
nature of the underlying particles’ pair interactions suggests
that the important physics in each of these systems is similar.
In response to this idea, minimal models have been proposed
and studied to quantify this emergent behavior.

Perhaps the most famous model, in which particles each
move at constant speed and update their orientations at each
time step to noisily align with their nearby neighbors, was pro-
posed by Vicsek et al. in 1995 [16]. This model demonstrated
that upon the reduction in the rotational noise in the alignment
or upon an increase in the global density of the system, the
particles spontaneously break symmetry from a state with no
net momentum to one in which the particles are moving, on
average, in the same direction. Remarkably, the polar order
is truly long range, even in two dimension, which would be
forbidden by the Mermin-Wagner theorem in an equilibrium
system [17,18].

Further work showed that the onset of this collective mo-
tion first manifests in the formation of polar traveling bands,
which are regions in which the particles are dense and aligned,
and therefore traveling together in the same direction. These
bands separate from, and coexist with, a dilute and completely
disordered background, as evidenced in simulation [19,20]
and rationalized in a simplified version [21] of the large scale
hydrodynamic equations of polar liquids, as described by
Toner and Tu [22–24]. As the rotational noise in the system
is decreased or the particle density is increased, the bands

enlarge, become more numerous, and eventually merge to-
gether as the system approaches uniform collective motion.

Experimentally, the transition to collective motion was first
reported in a system of aligning polar disks [25]. Careful
measurements of the microscopic statistics of the particle
displacements and collision rules [6] allowed confirming the
scenario associated to the transition in silico [26]. At the
same time, a remarkable experiment conducted with tens of
thousands of colloidal rollers characterized the details of the
transition, from the dilute disordered gas to the fully ordered
polar state, further discussing all aspects of the resultant polar
bands [3]. The experiment was fully backed up by a kinetic
theory analysis of the dynamics and the derivation of coarse-
grained hydrodynamic equations. This allowed a second set
of experiments on sound propagation in the polar phase, con-
firming the predictions of a linear analysis of the Toner-Tu
equations [5].

Another striking nonequilibrium large-scale behavior that
may be triggered by activity is clustering and phase separation
in the absence of cohesive forces. The tendency to form dense
clusters arises from the combination of self-propulsion and
excluded volume interactions. The resultant clusters grow as
self-propulsion or density is increased, eventually leading to
a complete phase separation, the so-called motility-induced
phase separation (MIPS) [27] originally reported in the con-
text of run and tumble particles [28]. The interplay between
the transition to collective motion and the motility induced
phase separation leads to a complex phase diagram and
remains a topic of intense research activity, using mostly
numerical simulations [29–31]. Experimentally, one aspect
of this rich phase diagram was exemplified using again the
system of colloidal rollers [32]. At very high density, the
crowding of the colloidal rollers lead to a motility induced
phase separation inside the polar phase, in a way analogous
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to a traffic jam on a dense highway. However, in contrast to
cars, for the rolling colloids, their individual polarization is
not intrinsic to the particles, but rather emerges as a result
of a local symmetry breaking. As a result, their jammed
phase is disordered and thus fully arrested. On the contrary,
the vibrated disks have a well defined polarity, independent
from their velocity. Additionally, their alignment mechanism
is robust, remaining operational at densities even close to
close packing, as evidenced by the existence of a remarkable
flowing-crystal phase [7].

In this work, we take advantage of these properties of the
vibrated polar disks to investigate experimentally the interplay
of polar ordering and jamming in the case where density does
not trivially suppress polar ordering. To do so, we investigate
collective motion in an annular geometry, varying both the
global packing fraction and the amplitude of the angular noise.
For a wide range of parameter values, we observe polar bands
of large density, as expected for the transition to collective
motion, which however travel in a lower density polar phase.
The bands travel downstream, with a wave speed faster than
the mean flow velocity. At moderate packing fraction these
bands coexist with strong jams. We demonstrate from local
measurements of the packing fraction, alignment, and flow
speed that both the bands and the jams observed here obey a
local dynamical “equation of state,” also called “fundamental
relation of traffic flows” in other contexts [33]. In the present
case this relation results both from the polar ordering process
and the motility induced phase separation mechanism, corre-
sponding to a bona fide traffic jam, where the slow velocity
dense phase remains polar and moves at a speed that decreases
with density.

II. EXPERIMENTAL SETUP

The system of vibrated polar disks has been described in
detail elsewhere [6,34]. The disks are micromachined, copper-
beryllium cylinders with diameter d0 = (4.00 ± 0.01) mm.
They each have one narrow metal off-center foot and a glued
rubber skate located on opposite sides of the disk. These feet
raise the disks to a height of 2 mm and endow them with a
polar axis, such that a vibration applied to the glass plate on
which they stand causes them to undergo directed motion, as
sketched in the inset in Fig. 1(a). The disks are confined from
the top by a static lid, made of a thick glass plate. The bottom
and top plates are separated by (2.40 ± 0.05) mm. The vibra-
tion is applied in the form of a well controlled vertical sinusoid
displacement via an electromagnetic servo-controlled shaker
(V455/6-PA1000L,LDS) coupled to a triaxial accelerometer
(356B18, PCB Electronics). The specificity of the set up for
the present work is that the disks are confined in an annular
geometry with inner diameter Din = (180 ± 2) mm and outer
diameter Dout = (260 ± 2)mm, as illustrated in Fig. 1(a),
where we have highlighted the borders of the confining rings
in white for clarity.

A digital camera acquires the motion of the disks at a frame
rate of 30 images/s, from which we extract the position ri and
the orientation θi of each disk in each frame. The velocity of
each disk is then defined as vi = (ri(t + δt ) − ri(t ))/δt , with
δt = 1s and has components (ui,wi ) in the polar basis. For
choices of δt << 1 s, the motion of the disks is dominated by

FIG. 1. (a) A typical image of an experiment with φ0 = 0.39.
The borders of the ring have been highlighted in white for clarity.
Inset: Side-view schematic of a single vibrated disk. (b) The mean
squared change in the orientation of the disks as a function of
time (solid and dotted lines) and corresponding short-time linear fits
(dashed lines) for a0/g = 2.6 (solid red line) and a0/g = 2.2 (dot-
ted blue line). (c) The rotational diffusion coefficient as a function
of a0/g. (d) Probability distribution functions for the instantaneous
measurements of the order parameter for a sweep of various rota-
tional diffusion values for φ0 = 0.39. The numbers near the peak of
each curve are Dθ in inverse seconds.

diffusive displacements and vi does not represent the orienta-
tion of the disks’ directed motion well. Additionally, δt = 1 s
is approximately the limit of the ballistic regime of the mean
squared displacement for the trial with highest orientational
noise.

The disks’ orientations experience an angular noise that we
quantify by extracting the orientational diffusion constant, Dθ ,
from the mean squared angular deviation, 〈�θ2(t )〉, as shown
for two examples in Fig. 1(b). For large times, 〈�θ2(t )〉 is
not diffusive because of the annular confinement. Interactions
between the disks and the walls of the annulus tend to align
the disks’ orientations along the wall, such that narrow annular
confinement effectively forces the disks to flow either clock-
wise or counterclockwise. Similarly, interactions between the
disks tend to align individual disks with the direction of flow
and decrease rotational diffusion. We therefore extract Dθ

from the short times, where 〈(�θ )2(t )〉 = 2Dθ t , using the
slope of a linear fit of the first 1/3 s of the dynamics. Here the
dotted blue and solid red lines correspond to a0/g = 2.2 and
a0/g = 2.6, respectively, with a0 the maximum acceleration
of the bottom plate and g the acceleration of gravity. Exper-
imentally, we control the orientational diffusion constant by
varying the amplitude of the vibrations at constant frequency,
f = 120 Hz; this in turn affects a0, further affecting Dθ , as
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shown in Fig. 1(c). For reference, a maximum acceleration of
a0 = 2g corresponds to a plate amplitude of 34 µm. Manipu-
lating the rotational noise of the particles this way also affects
the average velocity of the disks in each trial.

III. APPROACH TO COLLECTIVE MOTION

To examine the approach to collective motion, we perform
measurements at a constant area fraction, φ0 = 0.39, corre-
sponding to 858 disks, and vary Dθ over several trials. In
all cases we find that the instantaneous average tangential
speed of the disks u(t ) = 1

N

∑
i ui is non zero. Especially

in the presence of large noise, however, the direction of the
average flow switches back and forth between clockwise and
counterclockwise. These facts suggest our system is close or
within the collective-motion phase, and additionally reflect
its finite size. At long times, the temporal average of u(t )
should vanish, but for a given finite duration experiment, we
always observe a dominant direction of the flow. We con-
ventionally set the sign of u to be positive when the disks
are flowing in the direction of the time averaged flow. We
then define an order parameter related to the drift velocity
of the disks around the ring: �(t ) = u(t )/〈v〉, where 〈v〉 =
1
N

∑
i

√
u2

i + w2
i is the average speed of the disks throughout

the experimental run. Figure 1(d) shows the probability dis-
tribution functions (PDFs) of instantaneous measurements of
�(t ) for different a0/g. When Dθ is relatively small, the disks
align strongly and the measurements of �(t ) are narrowly
distributed around values that indicate high polar order. As Dθ

is increased, measurements of �(t ) skew toward lower order
and also become more widely distributed. The width of the
distributions for high Dθ indicates that the global order of the
system fluctuates widely. In particular, for the far left curve,
corresponding to Dθ = 0.97s−1, the PDF of �(t ) has a peak
near zero, indicating very low order. But note the peak is wide,
including average tangential speeds in both clockwise and
counterclockwise directions. These unimodal distributions of
the order parameter are typical of simulations with moderate
numbers of active particles [19,35,36].

IV. TRAVELING BANDS

We also find that the disks undergoing collective motion
around the ring spontaneously organize to form density fronts.
These can be clearly seen in the space-time plots of the local
packing fraction φ(θ, t ) [Fig. 2(a)], which we obtain by count-
ing the number of particles in overlapping angular sectors
of width 21o, having an area of 16.2 cm2. We also show in
Fig. 2(b) the space-time plot of u(θ, t ), the angular velocity of
the disks averaged in these same sectors, from which it is clear
that u(θ, t ) never reaches zero or slightly negative values, as it
would if there were locally disordered regions. We conclude
that, unlike the traveling bands reported near the transition to
collective motion in other systems or geometries, our ordered
fronts propagate through an ordered background. Such fronts
are observed whenever collective motion takes place—that is,
for all trials except for the trial with Dθ = 0.97s−1.

To quantify the average speed of the traveling fronts,
we compute the Fourier transform of the packing frac-
tion, �(q, ω) = 	θ	tφ(θ, t )e−2π i(qD0θ+ωt ), with D0 = (Din +

FIG. 2. (a) The area fraction (color scale) as a function of po-
sition around the ring and time for a trial with φ0 = 0.44 and
a0/g = 2.2. Fronts are visible as lighter patches propagating through
a darker background. (b) The average tangential velocity of the disks
as a function of space and time in the same trial. (c) Dispersion
relation in the same trial. The dotted white line is the linear fit around
(q, ω) = (0, 0); the slope of the line corresponds to c0. The color is
the amplitude of the Fourier transform normalized by the maximum
amplitude.

Dout )/2, and focus on the maxima, which yield the dis-
persion relation ω(q) of the propagating fronts. We then
perform a linear fit of the dispersion relation around (q, ω) =
(0, 0), as shown in Fig. 2(c), to obtain the speed of the
dominant long-wavelength fluctuations in our system, c0, cor-
responding to the traveling fronts. As shown in Fig. 3(a),
the speed of the fronts decreases with increasing noise
amplitude Dθ . We also find that it is always larger than
the average flow speed, averaged over the duration of
the experiment u0, suggesting that the disks in the front are
more aligned to flow tangentially to the ring than the average
disks in the trial. Note that the vibration frequency of the
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FIG. 3. (a) The average velocity of the disks in the direction
tangentially around the ring u0 (blue circles), the average speed of
the fronts c0 (red triangles), and the average speed of the disks 〈v〉
(down triangles) as a function of the disks’ diffusion constant for
φ0 = 0.39. Note no value of front speed was found for the largest
Dθ . (b) c0 and u0 as a function of the global area fraction.

plate has an effect on the average speed 〈v〉 of the disks [see
down triangles in Fig. 3(a)], but the decrease in u0 and c0

with Dθ is more pronounced. Interestingly, when we vary the
global area fraction φ0, while holding a0/g constant, therefore
holding Dθ ≈ 0.6s−1, we find that the speed of the fronts also
varies with φ0, as shown in Fig. 3(b). For moderate values
of the packing fraction, the front speed increases with φ0. In
contrast, for packing fraction φ0 > 0.55, both the average flow
speed and the front speed decrease. This change in behavior

hints at the fact that two competing mechanisms govern the
flow speed in the disks.

V. LOCAL EQUATION OF STATE

We propose the nonmonotonic behavior of both u0 and c0

is due to competing aligning and crowding effects. To test
this idea, we measure “local equations of state” that relate
the local averages of the alignment, mean squared velocity,
and tangential speeds of the disks to the local area frac-
tion. We first measure the average alignment, p(θ, t ), defined
as the average projection of the unit vector corresponding
to θi onto to the direction tangential to the annulus, and
the mean squared velocity, v2(θ, t ), of the disks in each of the
instantaneous 21o averaging windows used to construct the
above space-time diagrams. In the interest of obtaining better
statistics and a broader range of local area fractions, φ(θ, t ),
we group together all measurements of p(θ, t ) and v2(θ, t )
from the density sweep in Fig. 3(b) and sort these measure-
ments into bins by φ(θ, t ). In doing so, we obtain parametric
plots of the average alignment and the mean squared velocity
as a function of the local packing fraction [Figs. 4(a) and 4(b)].

We find that 〈p〉 smoothly increases with φ, until it
saturates around φ(θ, t ) = 0.55. At the same time, 〈v2〉 mono-
tonically decreases as a function of φ(θ, t ), indicating that
crowding effects are important at all of our experimentally
studied densities. These two effects combine to cause the trend

FIG. 4. (a) The average alignment of the disks in a 21o bin as a function of the area fraction in that bin. The error bars represent the
standard deviation of our measurements. (b) The average mean squared velocity of the disks in a bin as a function of the area fraction. (c) A
2D histogram of the total counts for each area fraction and local average velocity in the direction tangential to the ring over the course of the
density sweep. The color scale indicates the total number of counts in each 2D bin. (d) The black dashed line is the average flow speed of the
disks as a function of area fraction over the density sweep (left axis). The same curve is shown in panel (c) as a dashed white line. The solid
lines with points are the PDFs of the area fraction measured in each of the 21o bins over the course of a single trial (left axis). From left to
right, φ0 = 0.17, 0.39, 0.53, 0.66. (e) An image of one of the long lived jams, indicated by the arrow, caused by the inverse dependence of the
speed on density for high area fractions.
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in the local coarse grained flow speed of the disks, as can
be seen in the 2D histogram of the measurements of φ(θ, t )
and u(θ, t ) across the φ0 sweep at constant rotational noise
in Fig. 4(c). Here, the color scale indicates the number of
observed simultaneous measurements of φ(θ, t ) and u(θ, t ),
and the dotted line shows the average u(θ, t ) as a function
of φ(θ, t ). At low packing fractions, the increase in align-
ment due to the increasing number of collisions more than
compensates for the collisions’ slowing effect, and du

dφ
> 0.

Conversely, for packing fraction φ(θ, t ) > 0.55, when the
alignment saturates, any increase in the local density tends to
slow the disks down.

The traveling bands discussed in the previous section ap-
pear to be created by the first of these two effects. At low
packing fraction, a positive density fluctuation further polar-
izes the grains via the generic coupling between density and
order that drives the transition to collective motion. This high
density, high order, region then travels more quickly, picking
up the slower particles in front of it, becoming even denser.
This process continues until the local packing fraction is about
0.55, for which the typical flow speed is about u(θ, t ) ≈
3d0/s, or until a negative density fluctuation destroys the
traveling band. Notice that this flow speed is close to the
speed of the dominant long-wavelength fluctuations in trials
with global packing fractions 0.28 � φ0 � 0.53 in Fig. 3(b),
further hinting that bands with φ(θ, t ) ≈ 0.55 are the
most stable.

At the largest packing fractions, jamming tends to become
more important than alignment, such that positive density
fluctuations now slow down the particles in that region. The
mismatch in local speeds inside and outside the fluctuation
again reinforces the original fluctuation in a manner that is
the essence of the MIPS mechanism. The effect is also self-
reinforcing, because the particles behind the slow down are
moving more quickly than those in the slow down, which fur-
ther increases φ(θ, t ) in the slow region. This runaway effect
continues, driving the local density very high. For example,
see the perpetual jam formed in the trial with φ0 = 0.66
indicated by the white arrow in Fig. 4(e). At these higher
global packing fractions, the traveling bands detected by the
dispersion relations in the previous sections are groups of
particles that, as they break free from the leading end of the
jam find themselves in the depleted region in front of the
jam where they can propagate without further particles joining
from behind the band.

In principle, the growth of the large density fronts, whether
it is driven by the aligning mechanism or the MIPS mech-
anism, could take place for well separated packing fraction
values, as it is the case for the colloidal roller experiments
[3,32]. However, in the present case, the values of the effective
parameters controlling the large scale properties of the system
are such that both physics take place in the same range of
values of these parameters. Also, the system is not very large
and local fluctuations can reach values that drives one or
the other mechanism. This is best illustrated when looking
at the probability distribution of the local packing fractions
for experimental runs conducted at a given nominal value
φ0 [see Fig. 4(d)]. The experimental run with φ0 = 0.53 is
particularly illustrative. Any fluctuation away from the mean

density tends to slow the particles down and the macroscopic
behavior of the system results from a subtle mix of the two
mechanisms.

VI. CONCLUSIONS

The selection mechanism of polar, or nonpolar, high
density bands in systems of self-propelled aligning parti-
cles results from complex nonlinear and stochastic dynamics
[21,37]. Here we considered a system of self-propelled disks,
for which the alignment mechanism is robust to the slowing
down induced by large density. We observed a crossover be-
tween the traveling bands resulting from the first order nature
of the transition to collective motion and jams produced by
the slowing down of a high density system of self-propelled
agents. Also, the system size considered in our study facil-
itates large fluctuations, which favor the broadening of this
crossover. This experimental situation is illustrative of what
is likely to take place in many dense active systems, includ-
ing bacterial colonies, tissues, and traffic jams, calling for a
deeper theoretical investigation. On the one hand both types
of solutions were looked for and captured using large scale
hydrodynamic models [21,32]. It would be of interest to in-
vestigate the present crossover in this framework. On the other
hand, the important role of fluctuations call for a description in
terms of stochastic hydrodynamics. We expect the diameter of
the annulus to not strictly relate to the formation of the bands
discussed here, as it does not enter the explanation for the
bands’ existence. Increasing the width of the annulus while
maintaining the same density of disks would likely decrease
the importance of fluctuations and could lead to phase sepa-
ration. However, further work should be done to explore this
further, as it is possible that the high curvature of the confining
walls contributes to the magnitude of the density fluctuations
in our system. In a similar geometry, active brownian particles
were shown to exhibit reentrant behavior, transitioning from
collective motion to MIPS and back to collective motion, with
increasing Peclet number [38]. In that case, the presence of
soft boundaries were instrumental to allow the particles to
escape from MIPS at high Peclet number and transition to the
collective-motion phase. Since our confining walls are rigid,
we do not expect to see this type of reentrant behavior in
our disks, even if we were able to further reduce the disks’
angular noise relative to their speed. Overall, integrating the
motility-induced phase separation within the polar ordering
hydrodynamics seem to be a necessary step to capture the
behavior of dense systems of aligning polar particles, even of
simplest ones, like the self-propelled polar disks considered in
the present work.
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