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Experimental and numerical study of a second-order transition in the behavior
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In this paper, we conduct experimental investigations on the behavior of confined self-propelled particles
within a circular arena, employing small commercial robots capable of locomotion, communication, and infor-
mation processing. These robots execute circular trajectories, which can be clockwise or counterclockwise, based
on two internal states. Using a majority-based stochastic decision algorithm, each robot can reverse its direction
based on the states of two neighboring robots. By manipulating a control parameter governing the interaction,
the system exhibits a transition from a state where all robots rotate randomly to one where they rotate uniformly
in the same direction. Moreover, this transition significantly impacts the trajectories of the robots. To extend our
findings to larger systems, we introduce a mathematical model enabling characterization of the order transition
type and the resulting trajectories. Our results reveal a second-order transition from active Brownian to chiral
motion.
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I. INTRODUCTION

Active matter comprises systems of particles that consume
energy to propel themselves or perform work [1,2]. One of
the possible characteristics that these systems may exhibit is
random behavior, exemplified by the trajectories of particles.
These disturbances may be caused by environmental influ-
ences, internal stochastic processes related to the locomotion
mechanism, or even decision-making arising from social in-
teractions [3]. An active Brownian particle (ABP) is a type of
particle model that describes the diffusive behavior, similar
to that observed in some living organisms, and is charac-
terized by the random change in the orientation of motion.
This trait is adopted by various living beings as a strategy for
environmental exploration, either to seek food or to distance
themselves from potential threats [4–6]. One type of active
particle that has received much attention in recent years is
chiral active particles (CAPs). Chirality is not only a property
of the geometry of objects but also of the trajectories that
self-propelled particles undertake when the symmetry of the
direction of motion is broken. There are various examples in
nature of particles exhibiting chiral behavior. For instance,
E. coli bacteria [7,8] and spermatozoa [9,10] exhibit chiral
behavior when moving near a glass surface. There are also
artificial systems, such as microswimmers, where the specific
geometry of the particles generates chiral trajectories [11].

The simplest model to describe the behavior of a chiral ac-
tive particle is based on specifying a translational velocity and
an angular rotation [12]. Based on this definition, many stud-
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ies have focused on exploring repulsion interactions [13,14],
polar alignments [15,16], and synchronization [16,17].
Furthermore, there are studies that have investigated how the
parameters governing the reorientation of particles determine
the type of emerging trajectory of a particle confined in a
channel [18].

The confinement of particles has been observed to enhance
emergent behavior in nature, primarily due to interactions
with the walls [19–21]. In particular, in the case of chiral par-
ticles, interactions with walls and obstacles produce currents
biased by the polarity of rotation [22–24]. This phenomenon
has inspired the design of containers that can organize and ex-
tract particles with specific polarity [25,26]. Previous studies
have mainly focused on particles that interact through contact.
The objective of this paper is to characterize the self-organized
behavior of a system of particles that exhibit chiral behavior
but modify their polarity through medium-range interactions.
We investigate an experimental system of confined particles
that can be programed to execute circular motion, communi-
cate with neighbors, and process received information. While
earlier works considered interactions aimed at aligning the
direction of motion [27–29], in this paper, a majority-based
stochastic interaction governs the rotation direction of the
particles. The experiments were conducted using a commer-
cial robot named Kilobot [30]. This type of agent has been
employed to investigate various phenomena such as collective
transport [31], pattern formation [32,33], morphogenesis [34],
decision-making [35], food searching [36], chiral behavior
induced by an external field [37], and decentralized learning
[38].

The paper is organized as follows: In Sec. II, we first
characterize the single Kilobot and then present experimental
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FIG. 1. (a) Photographs of the Kilobot showing the labels used
for tracking and an illustration demonstrating counterclockwise ro-
tation around the rear left leg. Five-minute trajectories of (b) an
isolated robot and (c) a confined robot, with their respective orien-
tations in (d) and (e). The color code represents time. Probability
distributions of the angular velocity magnitude: (f) for the isolated
robot and (g) for the confined robot. The black line represents the
estimation using a Gaussian kernel function. (h) Average angular
velocity as a function of distance from the center of the arena.

results demonstrating a shift in the system’s behavior by vary-
ing a control parameter in the decision-making mechanism. In
Sec. III, we introduce a mathematical model for the robots,
enabling numerous simulations to characterize the scaling
behavior and emerging trajectories, as well as analyzing the
role of arena boundaries in the particle density. Finally, in
Sec. IV, we discuss our conclusions.

II. EXPERIMENTAL RESULTS

A. Kilobot behavior and characterization

The Kilobots are 3.3 cm of diameter, 3.4 cm tall, and stand
on three legs: one front and two rear. Each robot features two
vibrators which are controlled independently by an internal
microprocessor and allows the robot to rotate in one direction
or the other around one of its rear legs [Fig. 1(a)]. Counter-
clockwise turns are made around the left leg, while clockwise
turns are made around the right leg. As shown in the figure,
we attached two circular markers on the robots to measure
their absolute orientation and direction of rotation. More-
over, the robots have the ability to communicate with others
within a distance of approximately 10 cm [30]. They can

transmit information, such as the current rotation direction,
at a rate of two messages per second. The robots have imple-
mented a protocol that optimizes communication by reducing
possible message collisions. Reception is isotropic, allowing
messages to be received regardless of orientation within the
communication distance. This communication, which oper-
ates unidirectionally, enables the microprocessor to update
internal variables or robot motion based on the received in-
formation.

The motion of each robot was generated by clockwise
or counterclockwise rotations. The direction of rotation was
determined by an internal variable σi, which took a value of 1
for clockwise or −1 for counterclockwise. Each robot updated
the value of σi with a period T = 1 s following the stochastic
rule:

σi ← −σi , with probability 1 if �i < 0,

σi ← −σi , with probabilityp if �i � 0,

σi ← σi , with probability1 − p if �i � 0, (1)

where �i = σi
∑M

j=1 σ j . M is the number of random messages
considered out of all those received by robot i in each period
T . We arbitrarily chose M = 2, so �i could take values of
−2, 0, or 2. While �i = −2 implies that robot i rotates in
the opposite direction to the other two robots involved in the
interaction, �i = 2 determines that all three robots rotate in
the same direction. In the case of �i = 0, robot i has the
same direction of rotation as one of the other robots, and it
is considered to have the direction of the majority. The rule
states that if the direction is opposite to the majority, with
probability 1, the new rotation state will follow the majority.
On the other hand, if the robot rotates in the same direction as
the majority, then, with probability p, it inversely changes its
rotation direction. In the case where no messages have been
received during period T , the robot updates its rotation state
randomly.

First, we analyzed the behavior of a single robot in the
absence and presence of a confining arena. For the first case,
we placed the robot on a white melamine board. For the
second case, we further restricted the robot’s motion with a
circular arena of 15 cm radius. When not interacting with
other agents, the Kilobot moved by performing random turns.
The trajectories were recorded by an overhead video camera
at a rate of 20 FPS. Figures 1(b) and 1(c) show trajectories
of 5 min for the isolated and confined cases, respectively. It
can be observed that the enclosure affects the robot’s random
trajectory, particularly showing periods where the Kilobot
adheres to the container wall. Figures 1(d) and 1(e) show
the particle’s orientation over time. In the isolated case, the
orientation evolves randomly. However, in the presence of the
arena, there are periods of persistent orientation, indicated by
constant values of θ in Fig. 1(e), corresponding to when the
robot is in contact with the wall. We also analyzed the distri-
butions of angular velocity. In the case of the isolated robot
[Fig. 1(f)], the distribution is bimodal, describing counter-
clockwise and clockwise rotation speeds. On the other hand,
in the case of the constrained robot [Fig. 1(g)], the distribution
also shows probabilities of lower-intensity rotation speeds,
which are consequences of the interaction with the walls. This
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FIG. 2. Experimental setup. 20 Kilobots were positioned within
a circular arena with a radius of 15 cm.

can be further confirmed by observing Fig. 1(h), which shows
the angular velocity magnitude as a function of the distance
to the center of the arena. Additionally, Fig. 1(f) highlights an
asymmetry in the Kilobot motion, where the angular velocity
shifts towards negative values, indicating a tendency to rotate
clockwise. These individual differences are specific to each
robot and could be exploited to achieve better performance in
collective behaviors [39].

B. Collective behavior

Then, we placed 20 robots inside the arena whose trajecto-
ries were recorded at a rate of 1 FPS (Fig. 2). We studied the
emergent behavior of the system as a function of the control
parameter p. For this, we chose eight probability values in
the range p = [0.0 − 0.2], and for each of these, we let the
system evolve for 60 min from random initial conditions (both
spatial location and rotation state). Using image analysis, we
were able to ascertain σi for every robot within each frame, en-
abling us to quantify the system’s overall state by employing a
conventional order parameter defined as

s(t ) = 1

N

N∑

i=1

σi(t ), (2)

where s(t ) = 1 indicates that all robots rotate clockwise,
s(t ) = −1 counterclockwise, and s(t ) ≈ 0 suggests a balance
between the two directions of rotation.

Figures 3(a)–3(f) present results for p = 0.02, 0.08, and
0.20. It can be observed that in the case of the lowest p
[Fig. 3(a)], the system becomes completely ordered, showing
some fluctuations due to the low probability of changing the
rotation direction (Movie A in the Supplemental Material
[40]). In the case of the highest p [Fig. 3(c)], the order param-
eter exhibits random behavior (Movie C in the Supplemental
Material [40]). Finally, an intermediate value of p [Fig. 3(b)]
shows that the order parameter fluctuates between the two
possible ordered states (Movie B in the Supplemental Material
[40]). Furthermore, analyzing the individual trajectories of

FIG. 3. Experimental results with 20 Kilobots. (a)–(c) Tempo-
ral evolution of the order parameter for p = 0.02, 0.08, and 0.20,
respectively. (d)–(f) Trajectories performed by two robots during
5 min for the same values of p mentioned before. (g)–(h) Stationary
average of the order parameter and susceptibility as a function of p.
(i) Mean-squared angular displacement for different values of p. The
arrow indicates the direction of increasing p, and the black lines show
data trend.

the particles, it was observed that they undergo a noticeable
change in behavior. While for small values of p [Fig. 3(d)], the
trajectories were mostly circular and localized—resembling
the behavior of CAPs—increasing this parameter caused the
trajectories to cover a larger area in the same time interval
with a less defined structure, similar to that of ABPs [Fig. 3(e)
and 3(f)].

Then, for each value of p, we calculate S = 〈|s(t )|〉 and
χ = N (〈|s(t )|2〉 − 〈|s(t )|〉2), the temporal average of the order
parameter and the susceptibility, respectively. S measures the
order state throughout the experiment: a value close to 0
implies disorder in the rotation directions, while a value close
to 1 indicates an ordered system regardless of the direction.
The susceptibility measures the fluctuations of S during the
experiment. Results are shown in Figs. 3(g) and 3(h), where
a monotonic relationship between the order parameter and
the value of p can be observed. Additionally, a change in
concavity is noticeable between the values of p = 0.05 and
p = 0.10, along with a maximum value of susceptibility in
the same interval. These findings are consistent with an order
transition that we will characterize in the following section.
We also analyzed how the parameter p influences the tra-
jectories performed by the robots. For this, we calculated
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the mean squared angular displacement (MSAD) given by
MSAD = 〈�θ (t )〉2, where the brackets denote the average
over all particles. Figure 3(i) shows the results we obtained
for the different values of p. We analyzed the MSAD results
on a log-log scale, where a temporal evolution with a slope
of 2 indicates circular trajectories (CAP). On the other hand,
a slope of 1 implies that the particle orientations and their
trajectories follow symmetric diffusive behavior (ABP). The
results show that at low values of p, the particles exhibit chiral
behavior. As p increases, the MSAD deviates from ballistic
behavior towards a diffusive one. However, it does not reach a
slope of 1 due to the asymmetry in the angular velocity of the
robots, as described in Figs. 1(f) and 1(g).

III. NUMERICAL RESULTS

To delve deeper into the study of the system, a model was
proposed that incorporates the main experimental features:
polar circular particles that move by rotating in both directions
and can exchange information with neighbors to update their
motion state. The particles are characterized by their position
r, orientation n = (cos θ, sin θ ), and motion state σi. The evo-
lutions of the position and orientation are given by

ṙi = v0 n + f i j, (3)

θ̇ = −σi(t )
|ṙi|
Rp

+ η, (4)

f i j = −κερ̂i j, (5)

where v0 is the translational velocity of the particle, Rp is the
turning radius, and η is an uncorrelated, zero-mean Gaussian
perturbation with amplitude D, accounting for the robot’s
vibration. fi j is the interaction force with other particles and
the arena. This is a repulsive force depending on the overlap
distance ε between the two involved objects, an intensity con-
stant κ , and the normal contact direction given by ρ̂i j = r j−ri

|r j−ri| .
A free particle will move with a velocity v0, describing, on
average, circular trajectories with a turning radius of Rp and a
direction given by σi(t ). This is motivated by the experimental
system where the robot’s rotations are around one of its rear
legs. The update of the state σi followed the same rules as in
the experimental system: for each particle, �i was calculated
with a period T , considering M = 2 particles within a radius
of 10 cm. The parameters were chosen as follows: the turning
radius was fixed as the Kilobot radius, Rp = 1.65 cm. For
the translational velocity, we took an approximate rotation
value of θ = 0.5 rad/s [Fig. 1(f)] to calculate v0 = |θ̇ |Rp =
0.825 cm/s. The constant κ was chosen so a 1% overlap with
another object of the particle’s radius produces a repulsive
force of equal intensity to propulsion, i.e., v0/κ = Rp/100.
For the perturbation, we used a value of D = 0.05, sufficient
to break deadlock situations that the robots resolve with their
vibrations [41].

We simulated the equations using the Euler-Maruyama
algorithm with an integration step of dt = 10−2 s and a
simulation length of 105 s. We varied the number of agents
in the range N = [20 − 2000] and the confinement radius
R =

√
N

πρ0
to fix the density at the value ρ0 = 0.028 cm−2

used in the experiment. Figure 4 presents numerical results,

FIG. 4. Numerical results. (a)–(c) Trajectories performed by two
particles during 5 min for N = 20 and p = 0.02, 0.08, and 0.20,
respectively. (d)–(g) Snapshots of system configurations at differ-
ent times for N = 2000 and p = 0.07. The color of the particles
indicates the direction of rotation: yellow for counterclockwise and
blue for clockwise. The size of the particles has been enlarged for
better visualization. The parameters used in the simulation were
v0 = 0.825 cm/s, RP = 1.65 cm, D = 0.05, and κ = 50 1/s.

specifically, individual trajectories of some particles for the
cases of p = 0.02, 0.08, and 0.20 with N = 20. Comparing
with the results shown in Figs. 3(d)–3(f), we find a qual-
itative agreement of the particle trajectories under different
regimes. Additionally, we observed that in larger systems, the
system exhibits spatial inhomogeneities. In Figs. 4(d)–4(g),
snapshots of the system’s evolution are shown, where the
inhomogeneities represented by clusters of different sizes and
spatial locations can be observed for a value of p = 0.07.
These inhomogeneities are characteristic of systems undergo-
ing second-order phase transitions and are found near their
critical point.

In Fig. 5, the results of the order parameter S, susceptibility
χ , and the reduced fourth-order cumulant of Binder defined
as U = 1 − 〈s(t )4〉

3〈s(t )2〉2 are shown. The results are the average of
100 independent realizations. The order parameter [Fig. 5(a)]
shows that, for this particular density, when the value of p
is reduced below a critical value, there is a transition from a
disordered phase to an ordered one. Additionally, it can be
observed that the transition is more pronounced when con-
sidering larger systems. Figure 5(b) shows the dependence
of susceptibility on p and N . The curves exhibit peak values
whose location depends on N . As the system size increases,
the maximum value of χ is located at smaller values pχ (N )
and appears to saturate at a value pc. On the other hand,
Fig. 5(c) shows the curves of the Binder parameter U (p). It
can be observed that two curves corresponding to sizes Ni and
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FIG. 5. Numerical results. (a) Order parameter, (b) susceptibility,
and (c) Binder coefficient as a function of p. The solid lines depict
results for five system sizes, and the symbols represent experimental
data for N = 20. The inset in (c) provides a detailed view of the
intersection between the different curves.

Nj intersect at a probability value pB(Ni, Nj ) and, moreover,
the location of the intersection appears to saturate at pc when
observing larger systems. The absence of negative values of
the Binder parameter indicates that the order transition is
consistent with a second-order one. Experimental results are
also presented in the figure to demonstrate the excellent agree-
ment with the numerical findings.

Figure 6(a) shows the values of pχ and pB as a function
of the corresponding size. To describe the system’s size, we
used N1/2, which, at constant density, is proportional to the
arena radius R. In the case of pB, we used an equivalent value
of N defined as Ñ = √

NiNj . The results of pB(Ñ ) show a
variation greater than 10%, contrary to what the theory sug-
gests, where all U curves should intersect at the critical value
pc. However, when considering larger systems, the two data
sets converge to a critical value estimated at pc = 0.067(1).
Next, to characterize the transition, we studied the numerical
results through a finite-size scaling analysis and calculated
the standard critical exponents: ν, γ , and β. For the first, we
studied the scaling behavior of the maximum value of the
derivative of the decimal logarithm of the order parameter,
following a power-law of the form [42]

d log S

d p

∣∣∣∣
max

∝ N1/2ν . (6)

In Fig. 6(b), we plotted the obtained values as a function of the
system size on a log-log scale. We found that the data does
not follow a linear trend across the entire range. Therefore,
we performed two fits of Eq. (6): one for the lower values
of the system size and another for the higher values. For the
first one, the calibration led us to a value νL = 1.04(3), and

FIG. 6. (a) Positions of the maxima of the susceptibility and the
intersections of the Binder parameter as a function of the system size
(N1/2) in a semilog scale. (b) Maximum value of the derivative of the
decimal logarithm (log10) of the order parameter. (c) Maximum val-
ues of the susceptibility. (d) Value of the order parameter evaluated
at the inflection point. The solid lines are fits made in two ranges of
system size. (b)–(d) are in log-log scale.

for the second, we obtained νH = 1.27(1). The results show
significant differences, indicating a change in the behavior of
the correlation length with increasing system size.

Then, we study the relationship between the maximum
susceptibility value χmax and the characteristic system size N .
For this, the scaling law is expressed as follows:

χmax ∝ Nγ /2ν . (7)

Encouraged by the previous results, we also performed two
fits of Eq. (7). In Fig. 6(c), the obtained results are shown.
For the lower values, we obtained (γ /ν)L = 1.77(2), while
for the higher, the value was (γ /ν)H = 1.76(1). In the case of
susceptibility, we found that the results between both regions
do not present significant differences and, moreover, the value
γ /ν corresponds to that of the 2D Ising model.

Then, we investigate the scaling behavior of the order pa-
rameter at the inflection point Sinf in relation to N1/2. This
scaling behavior is described by the following power-law re-
lationship:

Sinf ∝ N−β/2ν . (8)

Figure 6(d) shows the obtained results. The inflection point
of each curve was determined by finding the value of p cor-
responding to the maximum of the numerical derivative of S.
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FIG. 7. Collapse of the data considering (a)–(c) the smaller sizes,
and (d)–(f) the larger ones. The figures were plotted using pc =
0.067 and the corresponding values of νL,H , (γ /ν )L,H , and (β/ν )L,H

as indicated in the text.

We performed two fits again and obtained (β/ν)L = 0.21(2)
and (β/ν)H = 0.123(8), respectively. The results differ sig-
nificantly, and, similar to the susceptibility, in the higher range
of sizes, the value of β/ν corresponds to that of the Ising
model in 2D.

The finite-size scaling behavior can be verified by plotting
S Nβ/2ν , χ N−γ /2ν , and U as a function of ε N1/2ν , where
ε = p/pc − 1 and pc = 0.067. In Figs. 7(a)–7(c), the collapse
of the curves for the smaller sizes is shown. While the collapse
seems relatively appropriate for the order and Binder param-
eters, a strong discrepancy is observed for the susceptibility.
On the other hand, for the larger sizes [Figs. 7(d)–7(f)], the
collapse of all three quantities is satisfactory. Furthermore, we
found that the hyperscaling relation 2β/ν + γ /ν = 2 holds in
the higher range, resulting in 2.01(2), but it fails in the lower
one, yielding 2.18(4).

Then, we characterized the trajectories of the particles as
a function of p. To do this, we calculated the MSAD for
N = 2000 to have a larger statistical ensemble. Figure 8(a)

FIG. 8. (a) Mean-squared angular displacement for different val-
ues of p. The results correspond to the N = 2000 system. The arrow
indicates the direction of increasing p. The black lines show data
trend. The shaded region represents the set of data fitted by a function
of the form tα . (b) Values of α obtained from the previous fits. The
vertical line indicates the estimated value of pc from Fig. 6(a).

shows the results obtained for different p values. The findings
indicate that, similar to the experimental observations, parti-
cles at low p values display chiral behavior. As p increases,
the system transitions to a disordered phase, following Brown-
ian trajectories. Unlike the experiments, the numerical results
tend to exhibit a slope of 1 due to the symmetric angular
velocity of the simulated particles. We quantified the transi-
tion from chiral to Browninan behavior by fitting the MSAD
for t > 100 s using functions of the form tα . In Fig. 8(b),
we present the values of α obtained for each p. It can be
observed that there is a change in the particle motion behavior
upon crossing the critical value pc: the phase transition from
ordered to disordered state results in a transition from CAP to
ABP behavior.

The system under study is a network in which connections
between nodes vary over time because they depend on the
motion of the agents. When an agent is at a distance greater
than its communication range from its nearest neighbor, its
behavior becomes random, introducing a disturbance in the
global state of the system. To characterize how frequent this
disturbance is, we estimated the probability per unit of time,
Pd , that the distance to the nearest neighbor is greater than
10 cm, i.e., the probability that an agent has not received
messages at each state update step. Figure 9(a) shows the
results obtained for the experimental and numerical systems
with N = 20 as a function of p. It can be observed that as
p increases, the probability of not receiving messages grows
in both systems. We can see that for values near the critical
point, the probability is significantly higher than for lower p
values. The greater variability in the experimental results is
due to the smaller amount of data used for the estimation.
Then, Figure 9(b) shows the numerical results of Pd as a
function of N . We can observe that for higher p values, the
probability decreases with increasing size until reaching val-
ues comparable to those of lower p values. It can be seen that
for N > 200, the probability of the nearest neighbor being at a
distance greater than 10 cm is practically uniform, and the ran-
domness source due to the individual behavior of the agents is
independent of p.

To understand the cause behind these differences in Pd ,
we characterized how the particles are distributed within the
arena. For this, we divided the space into two regions—one
bulk and the other surface—using a circle of radius Rc =
R − 2RP. Then, we calculated the density of bulk particles
according to

ρB = NB

πR2
c

, (9)

where NB is the number of particles located at a distance from
the center of the arena less than Rc. We also calculated the
density of particles on the surface using

ρS = N − NB

π
(
R2 − R2

c

) . (10)

Figure 9(c) displays the relative density results for N = 20
for both the experimental and numerical systems. For this,
we used the experimental density ρ0 = 0.028 cm−2 as the
reference value. A consistent trend is observed in both data
sets: the bulk density decreases with increasing p, while the
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FIG. 9. (a) Probability of not receiving messages per unit time
as a function of p for the experimental (symbol) and numerical
systems (solid line), both with N = 20. (b) Same probability for
the numerical system as a function of N . (c) Relative density as a
function of p for N = 20, both for the bulk (ρB) and the surface (ρS).
Points correspond to experimental results, and lines to numerical
ones. Relative density of (d) bulk and (e) surface as a function of
p and N .

surface density increases. This indicates a notable migra-
tion of particles toward the surface region. This decrease in
particles within the arena’s interior increases the likelihood
of particles being outside the communication range of their
neighbors [see Fig. 9(b)]. As N increases, the numerical re-
sults show that the bulk density becomes uniform across the
entire range of p [Fig. 9(d)]. Subsequently, in Fig. 9(e), we
present the results related to the density of particles near the
surface for various N . It is evident across all the analyzed sizes
that increasing p enhances the particle density at the surface.
This outcome is expected due to the reduction in rotational
speed that we observed in the previous characterization. This
explains why the bulk density decreases at higher values of
p, where the particles in the system behave like ABPs. Ad-
ditionally, it is noteworthy that the number of agents present
on the surface scales with N1/2, while in the bulk it grows
linearly with N . Consequently, the average bulk density tends
to ρ0 and Pd becomes uniform, regardless of p, as the system
size increases. This analysis provides an explanation for the

failure of the scaling in smaller systems: in those cases, the
system’s behavior is significantly influenced by the arena’s
presence. The accumulation of particles on the surface for
higher p values alters the degree of communication between
agents and introduces randomness in the behavior of isolated
particles.

IV. CONCLUSION

In summary, we investigated the emergent behavior of an
interacting particle system confined within a circular arena.
For this purpose, we employed 20 commercially available
robots known as Kilobots. These robots possess differen-
tial locomotion capabilities and can communicate with their
neighbors. They were programed with two rotational motion
states: one in the clockwise and the other in the counterclock-
wise direction. Using a stochastic interaction that considered
the rotational states of two neighboring units, each robot had
the ability to change its own rotational state. The interaction
was mediated by a control parameter, where higher values
led to a disordered and symmetric behavior, implying that
robots rotated randomly in both directions. Upon reducing
the parameter below a certain threshold, the system exhibited
a symmetry breaking where all robots rotated in a uniform
direction. Furthermore, we observed that as a consequence
of this transition, the trajectories of the particles exhibited a
noticeable change: below the threshold, they were circular,
while above it they displayed random motion.

Then, we employed a mathematical model to extend the
results to larger systems. This enabled us to characterize the
transition of the system using the order parameter, suscepti-
bility, and Binder parameter. We found that the results did not
meet the scaling relation in the studied range. Consequently,
we opted to conduct a finite-size analysis in two regions.
The critical exponents determined for the smaller size region
failed to satisfy the hyperscaling relationship and resulted in
poor curve collapses, notably in the susceptibility. Conversely,
within the larger size region, the exponents adhered to the
hyperscaling relationship, and the curves displayed excellent
collapse in scaling renormalization. An intriguing aspect of
the critical exponents in the higher region is that both γ /ν =
1.76(1) and β/ν = 0.123(8) agree with those of the 2D Ising
model. However, the value ν = 1.27(1) significantly differs.
In addition, we found that the transition type corresponded to
that of a second order.

We also studied the MSAD and confirmed what was ob-
served in the experiments: the system’s order transition is
accompanied by a transition in the particles’ trajectories.
While in the disordered state, the particles exhibit diffusive
trajectories characterized by an evolution like MSAD ∝ t ,
in the ordered state, we found a relationship of the form
MSAD ∝ t2, indicating chiral behavior.

Finally, we measured the probability per unit time, Pd , that
an agent does not receive messages because it is at a distance
greater than the communication range. We found that, both
in the experimental and in the smaller numerical systems, Pd

was affected by the control parameter p. In the case of larger
systems, Pd is low and independent of p. Analyzing the bulk
density distribution, we observed that for the smaller system
sizes it is notably sensitive to the control parameter. This is
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because for high values of p, the particles behave like ABPs
and tend to accumulate at the boundaries of the arena, as
shown in the calculation of the surface density. However, in
the larger systems, the bulk density shows independence from
the control parameter. This is attributed to the limitation on
the number of particles that can reside on the surface, which
scales proportionally with the system’s radius, that is, N1/2.
This results in the failure of the scaling analysis for the smaller
systems, as the dependence of the bulk density and Pd on
the control parameter causes random disturbances in that size
range.

The findings from this study hold significant implications
in the field of swarm intelligence, wherein system functionali-
ties often scale with the number of particles without requiring
a redefinition of interaction types. Specifically, the behavior
demonstrated by this system can be adopted as a search strat-
egy, where the control parameter acts as the response to a
environmental stimulus. Regarding future research directions,
it would be valuable to investigate how the speed of particles
influences emergent behavior. Evidence from self-propelled

particle systems that engage in opinion exchange suggests that
the critical point of the order transition is directly related to
the particles’ translational speed. Specifically, these systems
exhibit a critical point at a perturbation value of zero under
static conditions [43]. Further investigation into how the sys-
tem responds to changes in interaction characteristics would
be valuable. Recent studies with robots have demonstrated
improved adaptability to changes when agents operate within
a reduced communication range [44]. Therefore, exploring
the impact of varying the number of interacting agents and
the interaction radius could provide deeper insights into the
system’s behavior.
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