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Stress and alignment response to curved obstacles in growing bacterial monolayers
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Monolayers of growing bacteria, confined within channel geometries, exhibit self-organization into a highly
aligned laminar state along the axis of the channel. Although this phenomenon has been observed in experiments
and simulations under various boundary conditions, the underlying physical mechanism driving this alignment
remains unclear. In this study, we conduct simulations of growing bacteria in two-dimensional channel geome-
tries perturbed by fixed obstacles, either circular or arc shaped, placed at the channel’s center. Our findings reveal
that even sizable obstacles cause only short-ranged disruptions to the baseline laminar state. These disruptions
arise from a competition between local planar anchoring and bulk laminar alignment. At smaller obstacle sizes,
bulk alignment fully dominates, while at larger sizes planar anchoring induces increasing local disruptions.
Furthermore, our analysis indicates that the resulting configurations of the bacterial system display a striking
resemblance to the arrangement of hard-rod smectic liquid crystals around circular obstacles. This suggests that
modeling hard-rod bacterial monolayers as smectic, rather than nematic, liquid crystals may yield successful
outcomes. The insights gained from our study contribute to the expanding body of research on bacterial growth
in channels. Our work provides perspectives on the stability of the laminar state and extends our understanding
to encompass more intricate confinement schemes.
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I. INTRODUCTION

Self-organization allows biological active matter at scales
ranging from animal flocks to cell skeletons to react and adapt
to variable environmental conditions. This self-organization
can be powered by motility of the individual components of
the system [1–6] or it can be powered directly by growth
[7–12]. An ubiquitous example of a growth-powered active
system is a growing colony of nonmotile bacteria. Even in the
absence of individually directed motion, these colonies can
self-organize to adapt to their environments, for example by
escaping the monolayer into the third dimension or by simply
rearranging to alleviate pressure [13–23].

Bacterial monolayers have been successfully described as
extensile active nematics [1,15,18]. Active nematic behavior
can be reconstructed from a simple model of the bacteria
as hard spherocylinders that extend and divide over time.
The steric forces between cells produce alignment and the
growth produces extensional motion. However, in some cru-
cial cases, these hard-rod monolayers have also been found
to deviate from continuum active nematic behavior. When
growing without confinement, bacteria organize into highly
aligned microdomains with alignment discontinuities along
their boundaries rather than the point discontinuous topo-
logical defects of continuum active nematics [15,24]. This
behavior is characteristic of a close-packed granular mate-
rial, reflecting the fact that the monolayer is composed of
discrete hard elements [25,26]. Additionally, in confinement
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regimes that induce very high alignment, monolayers have
been observed to organize into rows of end-to-end aligned
cells [27,28]. Similar behavior can even be seen when looking
closely at the microstructure of highly aligned microdomains
[15]. This element of spatial ordering in addition to the ori-
entational ordering of a nematic liquid crystal suggests that
these systems may be better characterized as smectic liquid
crystals [29]. Smectic systems can also be constructed from
hard rods [30,31] and can produce grain boundaries similar to
those observed between bacterial microdomains [32,33].

One of these highly aligned states can be induced in a
growing bacterial monolayer using any confinement scheme
in which cells are confined along one axis and unconfined
along another [16,17,27,28]. This general class of confine-
ment will hereafter be referred to as a channel geometry. The
mechanism for the alignment, in which cells orient along the
unconfined axis, is not fully understood. Stress anisotropy was
originally proposed to promote cell alignment along the axis
of lower stress [16]. As cells grow confined in one axis and
unconfined in another, stress increases along the direction of
higher confinement and cells then align along the unconfined
direction—that is, parallel to the channel. However, as the
system approaches perfect alignment and the system becomes
spatially ordered into discrete rows as previously described,
this description breaks down [28]. Because the active stress in
growing-cell systems is oriented entirely along the cells’ long
axis, this arrangement prevents any transfer of active stress
between rows of cells. This leads to stress decoupling, where
the component of stress parallel to the channel is dependent on
position (lower near outlets) but the perpendicular component
is entirely passive and constant throughout the channel [28].
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FIG. 1. (a) Schematic of interaction forces between cells i and j. The instantaneous length of cell j is shown as l . (b) Schematic of the
channel confinement geometry with periodic boundaries on top and bottom, outlets on left and right, and a circular obstacle in the center.
(c)–(e) Evolution of cell alignment leading up to the steady state for (c) no obstacle, (d) circular obstacle, and (e) arc obstacle simulations.
Cells are colored by orientation, with light colored cells along the x axis (horizontal) and dark cells along the y axis (vertical). Cells are shown
smaller than their actual size for clarity.

Because of this, in channel centers in very highly aligned
systems, the component of stress in the direction of confine-
ment is lower [28]. This reversal of stress anisotropy does not
result in the rearrangement of cell orientations. The highly
channel-aligned state persists even when stress is higher in
the direction of alignment.

To better understand this phenomenon, we simulate
growing bacteria in channel geometries whose ordering is
frustrated by the presence of curved obstacles. In doing so,
we draw direct comparisons to the behavior of passive smectic
liquid crystals. Like growing bacteria, these can organize into
a rich variety of geometric states when confined [33–35].
These states result from a competition between the constituent
particles’ drive toward alignment with each other and their
drive toward planar anchoring when in contact with a hard
boundary [29,34], both of which are fully present in a hard-rod
bacterial monolayer. In confinement schemes with a circu-
lar obstacle, this competition leads to two primary states: a
laminar state in which global alignment dominates and planar
anchoring is violated (analogous to the highly aligned state
in a bacterial colony) and a Shubnikov state in which planar
anchoring is maintained and alignment in the bulk is subject
to near-constant bend deformations [34].

We find that the highly aligned laminar state is robust to
perturbation. Similar to passive smectics, bacterial colonies
form a laminar state in the presence of circular obstacles. As
obstacle size increases this state is disrupted by the increasing
dominance of planar anchoring at the obstacle’s surface, cre-
ating an anchored state where near-obstacle cells align tangent
to its surface but more distant cells maintain the laminar state.
Additionally, we find that concave obstacles can induce and

trap topological defects in the monolayer, potentially leading
to different ways to control the active flow.

II. METHODS

A molecular dynamics model of cell growth and interac-
tion was used for simulations. Different implementations of
the same model have been previously described in numerous
other works on growing bacteria systems [15,16,24,27,28].
Individual bacteria were modeled as hard spherocylindrical
rods constrained to the xy plane. The rods were initialized
with length l (defined as the distance between hemispherical
end caps) and set to grow at a uniformly distributed rate be-
tween g0/2 and 3g0/2 while maintaining a fixed width of d0.
Upon reaching the cell-division length of l = ld , a parent cell
divided into two child cells, each possessing a unique growth
rate from the distribution described previously [Fig. 1(a)].
These varying growth rates were used to avoid synchronized
cell divisions. A drag-per-unit length of ζ was introduced
to represent a fluid- or substrate-based drag. Additionally, a
noise force η was applied to each cell at each time step.

Apart from noise forces, the translational and rotational
motion of the cells were driven exclusively by the physical
interactions between contacting cells. This motion was mod-
eled using the following overdamped Newton’s equations:

d�x
dt

= 1

ζ l

∑ �F , (1)

dθ

dt
= 12

ζ l3

∑
τ, (2)
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where �F were the forces generated from cell-cell interactions
and τ were the torques produced about the geometric center of
the cell by these same interactions. Intercellular interactions
were modeled as Hertzian forces, where overlapping cells
generate a repulsive force based on the overlap distance. The
force of cell j acting on cell i was defined in the following
way:

�Fi j = Y d
1
2

0 h
3
2
i j

�Ni j, (3)

where Y is the cell Young’s modulus, hi j is the overlap
distance between cells, and �Ni j is the vector normal to cell
j’s surface at the point of contact [15,36]. After each time
step, cell positions, lengths, and orientations were updated by
integrating the equations of motion using the explicit Euler
method.

In keeping with the properties of rodlike bacteria and with
similar previous simulations [15,24], simulation parameters
were set to the following values: cell width d0 to 0.7 µm, cell
division length ld to 2.7 µm, cell growth rate g0 to 1 µm/h,
Young’s modulus Y to 4 MPa, drag per unit length ζ to 200
Pa h, and maximum noise η to 2 × 10−9 N. The simulations
all used a time step of 2 × 10−5 h, with data recorded at time
intervals of 2.5 × 10−2 h.

All simulations were run within a square region of side
length 40 µm. The upper and lower boundaries were periodic,
while the left and right boundaries were outlets. Cells passing
an outlet boundary were removed from the simulation. A
schematic of the simulation setup is shown in Fig. 1(b). The
system was initialized with 256 cells spaced evenly across
the area of the square in a 16 × 16 grid with random initial
orientations and lengths.

Obstacles were modeled as fixed objects within the sim-
ulation area, exerting a Hertzian force on overlapping cells
identical to the cell-cell interaction force. The obstacle simu-
lations were divided into two subsets: simulations with a fixed
circular obstacle centered at the origin and simulations with
a semicircular arc-shaped obstacle with its radial center fixed
to the origin. For the circular obstacle simulations, circles of
radius R = 2, 4, 6, and 8 µm were tested. The arc obstacles had
width 0.7 µm (the same as a cell) with semicircular end caps.
An arc’s radius was defined as the distance from its radial
center point to its center line. For the arc obstacle simulations,
arcs of radius of 4, 6, and 9 µm were tested. Arcs of radius
2 µm were omitted because their interior diameter is lower
than the maximum cell length, leading to effects unrelated
to their curvature. To avoid nonphysical interactions, cells
that would have initialized within the obstacle boundary were
removed before the simulation began.

III. RESULTS

In each simulation, the initially scattered cells grow and
divide to eventually cover the entire surface of the two-
dimensional (2D) channel [Figs. 1(c)–1(e), Supplemental
Videos SV1–3 [37]]. As the cells populate the surface, they
exert contact forces on neighboring cells, generating greater
alignment among neighbors and resulting in the formation of a
locally nematically ordered liquid crystal [15,18]. This creates
a period during which cells have fully crowded the substrate

but are still poorly aligned on the global scale [Figs. 1(c)–1(e),
middle column].

Once the monolayer has fully covered the surface, the
continued growth of the cell monolayer combined with the
periodic confinement in the y direction generates an exten-
sional flow, pushing cells from the channel center (x = 0)
towards the outlets [obstacle Supplemental Video(s)]. At long
times, all simulation geometries drive global alignment of
the monolayer in the horizontal direction producing a highly
aligned phase as seen in previous channel-like experiments
and simulations [Figs. 1(c)–1(e), right column] [17,27,28].
Unless otherwise stated, all following results are averaged
over time in the highly aligned phase (t > 16 h). We will
first investigate the alignment and stress distribution within
the highly aligned monolayer produced by circular obstacles,
followed by the alignment and velocity profiles produced by
arc obstacles.

A. Circular obstacles

At high alignment, the system forms discrete rows
of parallel, end-to-end cells, visible in simulation images
[Figs. 1(c)–1(e), right column]. These rows form anywhere
the system is highly aligned, spanning the entire system in
unobstructed or small-obstacle simulations but only forming
farther away from larger obstacles [Fig. 1(d), right column].
As seen in previous channel-geometry research [28], these
discrete rows add an element of spatial ordering to the nematic
order common in bacterial monolayers.

To track the progression of system-wide behavior in the
presence of circular obstacles, the local nematic orientational
order was calculated. The local order Si of cell i is given by
the following equation:

Si = 1

N

∑

j

2 cos2(θi − θ j ) − 1, (4)

where θ j is the orientation of each cell j whose center lies
within a search radius of cell i and N is the number of
cells within the search radius. The parameter is structured
such that S → 1 denotes perfect alignment, S → 0 denotes no
ordering, and S → −1 denotes antialigned regions. For this
analysis, the search radius was set equal to ld , the cell division
length.

At the beginning of the disordered close-packed phase for
all obstacle sizes, local order is homogeneously distributed
and low (S � 0.2) reflecting the system’s disordered state.
As cells continue to grow, local order increases and the sys-
tem eventually reaches the highly aligned state [Fig. 2(a)].
Differences in the high-alignment state can be seen between
the obstacle sizes. No obstacle (R = 0 µm) produces glob-
ally near-perfect order resulting in a laminar state. Smaller
obstacles (R = 4 µm) produce a near-laminar state inter-
rupted by a few scattered disordered cells near the obstacle’s
edge. Large obstacles (R = 8 µm) produce large regions of
disorder around the obstacle reaching to the outlets, with near-
perfect alignment appearing only farther above and below the
obstacle.

To investigate the spatial distribution of order in the mono-
layer, average order was calculated in a series of annular bins
of width 1 µm around the obstacle [Fig. 2(b)]. Increasing

054608-3



LANGESLAY, FAHY, AND JUAREZ PHYSICAL REVIEW E 109, 054608 (2024)

μ

[μm]

= μ = μ

= μ = μ= μ

FIG. 2. (a) Sample images of cells colored by orientational order (S) around circular obstacles. (b) Average orientational order in the
steady state as a function of distance r from the origin. Error bars are standard deviation over time of the spatial average. (c) Sample images
of simulations with cells colored by anchoring angle. Light colored cells are tangent to the obstacle edge, while dark cells are perpendicular.
(d) Average anchoring angle in cells within a distance wbin of the obstacle, as a function of obstacle radius Robs. Error bars are standard
deviation over time of the spatial average.

obstacle size both decreases the local order near the obsta-
cle and increases the range of low-order regions from the
obstacle’s surface. For no obstacle and R = 2 µm, the order
remains constant close to 1 for the entire simulation area. For
R = 4 µm, there is a short-range decrease in order within a
few cell lengths of the obstacle’s boundary. For R = 6 and
R = 8 µm, the order near the obstacle is much lower and
low-order regions persist many cell lengths away.

These differences can be better understood by investigating
how well cells adjacent near the obstacle align tangent to its
curved surface due to planar anchoring. This was quantified by
the anchoring angle θA between the cell and the tangent line,
with θA = 0◦ denoting perfect planar anchoring and θA = 45◦
denoting uncorrelated alignment (no enforced anchoring). For
the smallest obstacles (R = 2 µm), cells’ global horizontal
alignment is not disrupted at all, resulting in discrete rows
extending to the right and left of the circle without any re-
sponse to its curvature [Fig. 2(c), R = 2 µm]. For the largest
obstacles, in contrast, nearly all adjacent cells exhibit planar
anchoring [Fig. 2(c), R = 8 µm].

To quantify the effect of obstacle size on alignment, the
average anchoring angle 〈θA〉 was calculated in a series of
annular bins of increasing width wbin around the obstacle’s
edge. In the closest cells (wbin = 1 µm), 〈θA〉 approaches zero
(planar anchoring) roughly linearly with increasing obstacle
radius [Fig. 2(d)]. For cells farther away from the obstacle
(wbin = 2, 3 µm), obstacles of radius 4 µm and lower do
not affect 〈θA〉. Increasing the obstacle radius past this point

results in increasing tangent alignment in these more distant
cells as well as in the nearest cells.

To quantify forces within the monolayer, the stress tensor
of each cell was calculated [15]. The stress σ i on cell i is given
by the following equation:

σ i =
∑

i

ri jFi j, (5)

where ri j is the vector from the center of cell i to the point
of contact on cell j and Fi j is the force of cell j on cell i.
The components σxx and σyy represent the stresses along and
across the channel, respectively. These components were then
averaged in a 12 × 12 grid of square bins. For each simulation,
the stresses were normalized by σm, the highest bin-averaged
value of σxx in that simulation.

In all cases, both stress components are highest near x = 0
and lowest near the channel outlets, with this variation always
greater in σxx than in σyy [Fig. 3(a)]. Above and below the
obstacle, σxx maintains a similar distribution independent of
obstacle size, but to the sides of an obstacle σxx is significantly
lower, consistent with the obstacle partially blocking exten-
sional flow toward the outlets in the x direction [Fig. 3(a), left
column]. In contrast, σyy does not depend on position relative
to the obstacle, but is globally affected by the obstacle’s pres-
ence and size [Fig. 3(a), right column]. With no obstacle σyy

barely varies in the x dimension, only slightly decreasing near
the outlets. However, with larger obstacles the difference in
stress between the center and outlets increases.
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FIG. 3. (a) Heat maps showing steady-state stress components σxx and σyy around circular obstacles, normalized by the maximum σxx for
the respective simulation. Dotted lines in upper left show bounds for the region in which stress profiles are calculated. (b) Profile of σxx along
the x axis for |y| > 12 µm [dotted lines in (a)] in each simulation. (c) Profile of σyy along the x axis for |y| > 12 µm in each simulation

To quantify the global changes in stress distribution in-
duced by the obstacle, the profiles of average stress along
the channel away from the obstacle (|y| > 12 µm) were used
[Figs. 3(b) and 3(c)]. The distribution of σxx along the chan-
nel’s length is always parabolic [Fig. 3(b)] consistent with
previous work in both growing rod and continuum nematic
simulations [16,28]. For obstacles with R > 2 µm, σyy has
a similar profile with a lower maximum stress magnitude
[Fig. 3(c)]. However, with R = 2 µm or no obstacle, σyy varies
very little along the channel’s length.

For no obstacle and R = 2 µm, the lack of variation in
σyy with x position while σxx retains a parabolic profile im-
plies that the stress components have become decoupled [28].
Larger obstacles cause σyy to be more x dependent, implying
coupling of x and y stresses. This agrees with previous work
that showed similar stress decoupling to be a result of high
alignment and particularly of system-wide organization into
discrete rows [28].

B. Arc obstacles

To investigate the effect of concave obstacle curvature we
now turn to arc-shaped obstacles. Snapshots of the resulting
system configurations around two differently sized arcs are
shown in Fig. 4(a). Cells adjacent to the interior (right) of arc-
shaped obstacles align tangent to the arc’s curve. To the left of

the arc, cell alignment is similar to that near a circular obstacle
and elsewhere the monolayer maintains its horizontal global

= μ= μ

FIG. 4. (a) Sample images of steady-state cell alignment (colored
by local order S) of cells around arc obstacles. (b) Heat maps of time-
averaged local order and director fields around arc obstacles.
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FIG. 5. (a) Heat maps of cell velocity magnitude around differently sized arc obstacles. (b) Plot of cell velocity magnitude by y position
near the right outlet (x > 15.00 µm). (c),(d) Visualization of (c) laminar and (d) anchored arrangement of cell rows. (d) Comparison plot
between proposed laminar and anchored velocity profiles and actual profile for R = 9 µm simulation.

alignment with the same discrete-row arrangement described
earlier. The combination of arc-aligned interior alignment and
horizontal exterior alignment creates a structure reminiscent
of a cometlike +1/2 charge nematic topological defect [38].

To better understand this defectlike structure, orientational
order was averaged in a grid of square bins throughout the
highly aligned phase. Order is low within the arc’s curvature,
matching the low order in the core of a topological defect
[Fig. 4(b)]. For smaller arcs (R = 4 and R = 6 µm), the lowest
order occurs at the leftmost interior point, with order increas-
ing to the right. In contrast, for the largest arcs (R = 9 µm),
there is a band of higher order close to the arc, with the
low-order region localized several cell lengths farther right.
This band of high order corresponds to a multiple-cell-wide
region of alignment to the larger arc, in contrast to smaller
arcs where only adjacent cells align and no longer-range order
is produced. Low-order regions also appear to the left of the
arc, again matching the response to circular obstacles. As in
the circular case, smaller obstacles produce localized disorder
near the arc while larger obstacles produce more long-ranged
disorder.

Arc-shaped obstacles qualitatively change the motion of
cells in the colony. In simulations without obstacles, cells
at the center line (x = 0) have zero average velocity due to
the symmetrical nature of the extensional flow (Supplemental
Video SV1 [37]). Cells away from x = 0 move toward the
closest channel outlet with velocity magnitude increasing with
proximity to the outlet, consistent with an unobstructed active
extensional flow. The same behavior is maintained away from
obstacles when they are present (Supplemental Video SV2

[37]). This can be seen in heat maps of average velocity
magnitude for arc obstacle simulations [Fig. 5(a)]. Above and
below the arcs, the velocity magnitude is zero at the x = 0 line
and increases with distance from that center line as before, to
a maximum of about 7 µm/h at the outlets.

On the open side of the arcs (in the +x direction), they
produce jets of higher-velocity cells exiting the channel
[Fig. 5(a), Supplemental Video SV3 [37]]. The velocity pro-
files of these jets near the outlets (x > 15 µm) show that
their speed increases with increasing arc size [Fig. 5(b)]. The
smallest arcs (R = 4 µm) produce a single-peaked jet velocity
profile with a maximum velocity of 8 µm/h). In contrast,
the largest arcs (R = 9 µm) produce a double-peaked velocity
profile with maxima of v � 11 µm/h localized at y = ±9 µm,
corresponding to the arc’s edges.

The underlying structure of these jets can be understood
with a simple model based on the fact that the system aligns
in parallel rows of end-to-end cells. Because each individual
cell is growing, when one end of the row is fixed, the other end
has a velocity proportional to the number of cells in the row,
v = g0N . When both ends of the row reach outlets, its center
can be treated as fixed as it receives equal force from both
sides and the end cells instead have velocity v = g0N/2. Two
simple models based on this velocity calculation can explain
the observed speed increase. In the laminar model [Fig. 5(c)],
cells interior to the arc retain perfect channel-parallel bulk
alignment, resulting in rows with one fixed end of length
Li = L/2 + δxi, where L is the channel length and δxi is the
arc’s depth at the height of the chosen row. In the anchored
model [Fig. 5(d)], interior cells instead align perfectly tangent
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to the curve of the arc, resulting in curved rows with two free
ends of total length Li = L + π |yi|, where yi is the vertical
position of the row.

By setting N = Li/〈l〉, where 〈l〉 is the average cell length
including end caps, we can predict the velocity profiles result-
ing from the two models. The laminar model predicts a higher
velocity exiting the arc’s center, whereas the anchored model
predicts a higher velocity exiting its upper and lower edges
[Fig. 5(e)]. The laminar model better describes the smallest
arc’s behavior, whereas the anchored model fits better with
increasing arc size.

IV. DISCUSSION

Our results show that channel-parallel laminar alignment
is robust to perturbation. Even with circular obstacles of di-
ameter nearly half the channel width, cells above and below
the obstacle retain a high degree of horizontal alignment and
form parallel rows of end-to-end cells. While previous work
has simulated global alignment in channels with a variety of
different boundary conditions [16,28], this is evidence that it
can arise with geometric constraints actively competing with
the channel confinement.

Additionally, we recapitulate the finding that pressure
anisotropy can reverse without loss of channel-parallel align-
ment [28]. With the addition of circular obstacles of any size,
cells in the channel’s center still experience higher pressure
parallel to the channel than perpendicular [Figs. 3(b) and 3(c)]
and maintain high average alignment parallel to the channel
regardless [Fig. 2(a)]. This happens even in the presence of
large obstacles that significantly disrupt order in their vicinity.
In other words, the highly aligned state with higher stress par-
allel to the channel remains stable in the presence of physical
perturbation away from perfect alignment and is not simply
an unstable equilibrium state achievable only in systems with
a global laminar state.

Cells near a circular obstacle experience competing align-
ment pressures between bulk laminar alignment and planar
anchoring to the obstacle. Bulk alignment dominates at low
obstacle sizes, while planar anchoring has increasing effect
with increasing obstacle size. For the smallest circular obsta-
cles (R = 2 µm), the system is fully laminar with no deviation
from the no-obstacle case [Figs. 2(b) and 2(c)]. For larger ob-
stacles (R = 4 µm), a few cells in contact with the obstacle are
captured by planar anchoring, but without meaningfully dis-
rupting the global laminar order. In the R = 6 and R = 8 µm
cases near-obstacle cells consistently display planar anchoring
and this more significant break from the global laminar state
produces larger disordered regions to the right and left of
the obstacle [Fig. 2(c)]. This qualitative variation in behavior
occurs in response to obstacle size variation on the scale of
only a few cell lengths.

The case of the smallest circular obstacle is particularly
interesting. Images of cell alignment near circular obstacles
with R = 2 µm show that system-spanning horizontal rows
of end-to-end cells occur adjacent to and directly above and
below the obstacle [Fig. 2(c)]. Between these rows, a fixed
number of cell rows (6) occur to the obstacle’s right and
left, ending at its surface. This configuration leads to global
horizontal alignment that is not just similar to the no-obstacle

case but slightly higher in orientational order S [Fig. 2(b)].
Similarly, this configuration exhibits a higher degree of stress
decoupling than the no-obstacle case [Fig. 3(c)]. We suggest
that the small obstacle has a stabilizing effect on the highly
aligned discrete rows, as it locks the rows above and below
it in place and prevents any vertical fluctuations in those
cells’ motion. This would explain its anomalous alignment
and pressure behavior. It also implies an interesting avenue for
further exploration in growing-cell systems whose parameters
are conducive to buckling and where the inclusion of small
fixed obstacles might suppress that buckling. Notably, this
stabilizing effect is likely based on the relationship between
obstacle diameter and cell packing. In the R = 2 µm case, the
system forms 60 parallel rows of cells with an effective width
of 2/3 µm each. This means that the 6 rows observed trun-
cating at the obstacle exactly match the obstacle’s diameter,
almost certainly contributing to the stability of this state.

The increase in planar anchoring with obstacle size is likely
due to a combination of two factors. First, larger circular
obstacles have lower surface curvature and therefore a pla-
nar anchored cell tangent to their surface has less rotational
freedom and is more stable. Second, if one considers a lam-
inar configuration around a larger circle, the row just below
(above) the top (bottom) locked row would be required to
contact the circle with a cell end point at a small angle to the
obstacle’s surface. This would impart a torque onto that cell
that must be countered by the horizontally aligned collective
to prevent rotation, with said torque increasing with circle
size.

Our results suggest that the critical obstacle size where
planar anchoring dominates and perfect laminar alignment
near the obstacle no longer occurs is on the scale of two cell
lengths [Fig. 2(b)]. Because the presence of laminar alignment
in unobstructed flow is already dependent on cell aspect ratio,
this length scale likely decreases for lower aspect ratio cells
with weaker alignment [28]. Similarly, the length scale associ-
ated with the size of the disordered region around the obstacle
[Fig. 2(b)] should depend on the combination of obstacle size,
cell length, and cell width. A natural choice for this length
scale would be L = Robsld/d0, but without further simulations
varying cell dimensions in addition to obstacle size, this is
limited to speculation.

Concave curved obstacles differ from convex curved obsta-
cles in that straight cells adjacent and tangent to the concave
surface are always stable with two points of contact, whereas
cells tangent to convex obstacles have only one point of con-
tact and are unstable. Because of this, cells in contact with
the interior of an arc are always planar anchored, even in
the smallest cases [Fig. 4(a)]. In combination with the global
horizontal alignment (which remains undisturbed by the arc’s
presence elsewhere), this forces a structure similar to a +1/2
nematic topological defect [Fig. 4(b)].

With channel-parallel alignment far from the arc obstacle,
the total topological charge is constrained to be zero. The
natural way to achieve this is with a −1/2 defect to the left
of the arc, resulting in a pair of +1/2 and −1/2 defects which
here are stabilized and prevented from mutually annihilating
by the presence of the arc. In practice, only the largest arcs
(R = 9 µm) show two distinct low-order defect cores sepa-
rated by a region of higher order parallel to the arc [Fig. 4(b)].
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Smaller arcs instead produce a single disordered core, indi-
cating that the anchored behavior of adjacent cells does not
extend to further curved rows of curved cells. We interpret
this to mean that the R = 9 µm case produces a well-defined
+1/2 defect, while smaller arcs produce more complicated
granular disorder in which many cells remain horizontally
aligned. This is further supported by the fact that velocity pro-
files produced by smaller arcs are better modeled by laminar
alignment, while velocity profiles produced by larger arcs are
better modeled by an anchored state [Figs. 5(b)–5(e)]. We can
describe this in the same simple terms as the circular obstacle
case: laminar bulk alignment dominates in the small obstacle
(high curvature) case, while planar anchoring becomes more
important around larger (less curved) obstacles.

We have noted that elements of the structures formed in
these simulations are better described in terms of a smec-
tic rather than a nematic liquid crystal. A smectic model
allows a better explanation of important monolayer fea-
tures like microdomains, which are inconsistent with the
nematic assumption that the director angle varies continu-
ously throughout the material (except at point topological
defects) [15,24]. The nematic-smectic distinction is particu-
larly important when considering topological defects within
the colony. These discontinuities have attracted interest as
points where cells accumulate and escape the monolayer [1].
The choice of a nematic or smectic model drastically changes
the definition of a defect—for instance, in a smectic model,
defects can have charges of ±1/4 rather than the familiar
half-integer charges seen in nematic systems [33,34].

Particle-based simulations of confined passive smectics
have shown patterns similar to the laminar and obstacle-
aligned states observed in our simulations [34]. To our
knowledge, there have been no previous particle-based simu-
lations of active smectics. Adding activity to a smectic system
is interesting because it prevents the system from reaching
equilibrium. This is generally because energy is constantly
injected at the particle scale and more specifically because
extensile activity in an aligned system produces a buckling
instability [11].

Less specific to the particular smectic nature of the
growing-rod model, it is intriguing that fixing a +1/2 defect
within an arc obstacle produces backflow [Figs. 5(a) and
5(b)]. As +1/2 defects in extensional active nematics are
motile [38], it seems natural that preventing their movement
would consistently result in an equal and opposite active force
repelling cells behind them. While we have explained this
behavior in terms of the specific configurations of growing
bacteria systems, it would be interesting to see a more gen-
eral investigation of concave obstacles in continuum active
nematics, either in theory or in experimental systems such
as kinesin-driven microtubules. This is an especially exciting
idea in the context of other work on controlling the flow of
active nematics [39,40].

Our simulations have extended previous work on growing
bacteria in channel geometries to show that global laminar
alignment and reversal of stress anisotropy are robust under
the perturbation of confinement geometry. Additionally, we
have shown that increasing obstacle size (decreasing obsta-
cle curvature) induces a transition from laminar alignment to
states where planar anchoring disrupts said laminar alignment.
This behavior has a striking similarity to the behavior of pas-
sive smectics around obstacles [34,35], further supporting the
proposition that a smectic description of a growing bacterial
monolayer has value. These simulations are a step toward ex-
tending the channel geometry understanding of cell alignment
to more complicated environments, whether modeling cell
behavior on naturally occurring rough substrates or designing
custom surfaces to control cell behavior.

ACKNOWLEDGMENTS

This work used Bridges-2 at the Pittsburgh Supercomput-
ing Center through allocation phy210132 from the Advanced
Cyberinfrastructure Coordination Ecosystem: Services &
Support (ACCESS) program, which is supported by National
Science Foundation Grants No. 2138259, No. 2138286, No.
2138307, No. 2137603, and No. 2138296 [41,42].

There are no conflicts of interest to declare.

[1] K. Copenhagen, R. Alert, N. S. Wingreen, and J. W. Shaevitz,
Topological defects promote layer formation in myxococcus
xanthus colonies, Nat. Phys. 17, 211 (2021).

[2] K. Kawaguchi, R. Kageyama, and M. Sano, Topological defects
control collective dynamics in neural progenitor cell cultures,
Nature (London) 545, 327 (2017).

[3] T. B. Saw, A. Doostmohammadi, V. Nier, L. Kocgozlu, S.
Thampi, Y. Toyama, P. Marcq, C. T. Lim, J. M. Yeomans, and
B. Ladoux, Topological defects in epithelia govern cell death
and extrusion, Nature (London) 544, 212 (2017).

[4] J. Dunkel, S. Heidenreich, K. Drescher, H. H. Wensink, M. Bär,
and R. E. Goldstein, Fluid dynamics of bacterial turbulence,
Phys. Rev. Lett. 110, 228102 (2013).

[5] T. Sugi, H. Ito, and K. H. Nagai, Collective pattern formations
of animals in active matter physics, Biophys. Physicobiol. 18,
254 (2021).

[6] T. Sanchez, D. T. N. Chen, S. J. DeCamp, M. Heymann, and Z.
Dogic, Spontaneous motion in hierarchically assembled active
matter, Nature (London) 491, 431 (2012).

[7] A. Doostmohammadi, S. P. Thampi, T. B. Saw, C. T. Lim,
B. Ladoux, and J. M. Yeomans, Celebrating soft matter’s 10th
anniversary: Cell division: A source of active stress in cellular
monolayers, Soft Matter 11, 7328 (2015).

[8] Y. Ye and J. Lin, Fingering instability accelerates population
growth of a proliferating cell collective, Phys. Rev. Lett. 132,
018402 (2024).

[9] F. Maleki and A. Najafi, Instabilities in a growing system of
active particles: Scalar and vectorial systems, Soft Matter 19,
8157 (2023).

[10] Y. I. Yaman, E. Demir, R. Vetter, and A. Kocabas, Emergence
of active nematics in chaining bacterial biofilms, Nat. Commun.
10, 2285 (2019).

054608-8

https://doi.org/10.1038/s41567-020-01056-4
https://doi.org/10.1038/nature22321
https://doi.org/10.1038/nature21718
https://doi.org/10.1103/PhysRevLett.110.228102
https://doi.org/10.2142/biophysico.bppb-v18.028
https://doi.org/10.1038/nature11591
https://doi.org/10.1039/C5SM01382H
https://doi.org/10.1103/PhysRevLett.132.018402
https://doi.org/10.1039/D3SM00880K
https://doi.org/10.1038/s41467-019-10311-z


STRESS AND ALIGNMENT RESPONSE TO CURVED … PHYSICAL REVIEW E 109, 054608 (2024)

[11] Y. Liu, B. Li, and X.-Q. Feng, Buckling of growing bacterial
chains, J. Mech. Phys. Solids 145, 104146 (2020).

[12] V. Hickl and G. Juarez, Tubulation and dispersion of oil by
bacterial growth on droplets, Soft Matter 18, 7217 (2022).

[13] B. Maier, How physical interactions shape bacterial biofilms,
Annu. Rev. Biophys. 50, 401 (2021).

[14] F. D. C. Farrell, O. Hallatschek, D. Marenduzzo, and B.
Waclaw, Mechanically driven growth of quasi-two-dimensional
microbial colonies, Phys. Rev. Lett. 111, 168101 (2013).

[15] Z. You, D. J. G. Pearce, A. Sengupta, and L. Giomi, Geometry
and mechanics of microdomains in growing bacterial colonies,
Phys. Rev. X 8, 031065 (2018).

[16] Z. You, D. J. G. Pearce, and L. Giomi, Confinement-induced
self-organization in growing bacterial colonies, Sci. Adv. 7,
eabc8685 (2021).

[17] D. Volfson, S. Cookson, J. Hasty, and L. S. Tsimring, Biome-
chanical ordering of dense cell populations, Proc. Natl. Acad.
Sci. USA 105, 15346 (2008).

[18] D. Dell’Arciprete, M. L. Blow, A. T. Brown, F. D. C. Farrell,
J. S. Lintuvuori, A. F. McVey, D. Marenduzzo, and W. C. K.
Poon, A growing bacterial colony in two dimensions as an
active nematic, Nat. Commun. 9, 4190 (2018).

[19] D. Boyer, W. Mather, O. Mondragón-Palomino, S. Orozco-
Fuentes, T. Danino, J. Hasty, and L. S. Tsimring, Buckling
instability in ordered bacterial colonies, Phys. Biol. 8, 026008
(2011).

[20] M. A. A. Grant, B. Wacław, R. J. Allen, and P. Cicuta, The
role of mechanical forces in the planar-to-bulk transition in
growing Escherichia coli microcolonies, J. R. Soc. Interface 11,
20140400 (2014).

[21] M.-C. Duvernoy, T. Mora, M. Ardré, V. Croquette, D.
Bensimon, C. Quilliet, J.-M. Ghigo, M. Balland, C. Beloin, S.
Lecuyer, and N. Desprat, Asymmetric adhesion of rod-shaped
bacteria controls microcolony morphogenesis, Nat. Commun.
9, 1120 (2018).

[22] M. Krajnc, P. Stefanic, R. Kostanjšek, I. Mandic-Mulec,
I. Dogsa, and D. Stopar, Systems view of bacillus subtilis pelli-
cle development, npj Biofilms Microbiomes 8, 25 (2022).

[23] M. Basaran, Y. I. Yaman, T. C. Yüce, R. Vetter, and A. Kocabas,
Large-scale orientational order in bacterial colonies during in-
ward growth, eLife 11, e72187 (2022).

[24] B. Langeslay and G. Juarez, Microdomains and stress distribu-
tions in bacterial monolayers on curved interfaces, Soft Matter
19, 3605 (2023).

[25] A. Donev, S. Torquato, F. H. Stillinger, and R. Connelly, Jam-
ming in hard sphere and disk packings, J. Appl. Phys. 95, 989
(2004).

[26] R. Kishore, S. Das, Z. Nussinov, and K. K. Sahu, Kinetic
instability, symmetry breaking and role of geometric constraints
on the upper bounds of disorder in two dimensional packings,
Sci. Rep. 6, 26968 (2016).

[27] S. Orozco-Fuentes and D. Boyer, Order, intermittency, and
pressure fluctuations in a system of proliferating rods, Phys.
Rev. E 88, 012715 (2013).

[28] J. Isensee, L. Hupe, R. Golestanian, and P. Bittihn, Stress
anisotropy in confined populations of growing rods, J. R. Soc.
Interface 19, 20220512 (2022).

[29] D. Demus, J. Goodby, G. W. Gray, H. Spiess, and V. Vill,
Physical Properties of Liquid Crystals (Wiley, New York, 1999).

[30] D. Frenkel, Onsager’s spherocylinders revisited, J. Phys. Chem.
91, 4912 (1987).

[31] V. Narayan, N. Menon, and S. Ramaswamy, Nonequilibrium
steady states in a vibrated-rod monolayer: tetratic, nematic,
and smectic correlations, J. Stat. Mech.: Theory Exp. (2006)
P01005.

[32] P. A. Monderkamp, R. Wittmann, M. te Vrugt, A. Voigt,
R. Wittkowski, and H. Löwen, Topological fine structure of
smectic grain boundaries and tetratic disclination lines within
three-dimensional smectic liquid crystals, Phys. Chem. Chem.
Phys. 24, 15691 (2022).

[33] P. A. Monderkamp, R. Wittmann, L. B. G. Cortes, D. G. A. L.
Aarts, F. Smallenburg, and H. Löwen, Topology of orientational
defects in confined smectic liquid crystals, Phys. Rev. Lett. 127,
198001 (2021).

[34] R. Wittmann, L. B. G. Cortes, H. Löwen, and D. G. A. L.
Aarts, Particle-resolved topological defects of smectic colloidal
liquid crystals in extreme confinement, Nat. Commun. 12, 623
(2021).

[35] R. Wittmann, P. A. Monderkamp, J. Xia, L. B. G. Cortes, I.
Grobas, P. E. Farrell, D. G. A. L. Aarts, and H. Löwen, Colloidal
smectics in button-like confinements: Experiment and theory,
Phys. Rev. Res. 5, 033135 (2023).

[36] H. Hertz, On the Contact of Rigid Elastic Solids and on Hardness
(MacMillan, New York, 1882).

[37] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.109.054608 for videos SV1, SV2, and
SV3.

[38] L. Giomi, M. J. Bowick, P. Mishra, R. Sknepnek, and M.
Cristina Marchetti, Defect dynamics in active nematics, Philos.
Trans. R. Soc. A 372, 20130365 (2014).

[39] M. M. Norton, P. Grover, M. F. Hagan, and S. Fraden, Opti-
mal control of active nematics, Phys. Rev. Lett. 125, 178005
(2020).

[40] K. Thijssen, D. A. Khaladj, S. A. Aghvami, M. A. Gharbi, S.
Fraden, J. M. Yeomans, L. S. Hirst, and T. N. Shendruk, Sub-
mersed micropatterned structures control active nematic flow,
topology, and concentration, Proc. Natl. Acad. Sci. USA 118,
e2106038118 (2021).

[41] S. T. Brown, P. Buitrago, E. Hanna, S. Sanielevici, R. Scibek,
and N. A. Nystrom, Bridges-2: A platform for rapidly-evolving
and data intensive research, in Practice and Experience in Ad-
vanced Research Computing, PEARC’21 (ACM, New York,
2021).

[42] T. J. Boerner, S. Deems, T. R. Furlani, S. L. Knuth, and J.
Towns, Access: Advancing innovation: Nsf’s advanced cyber-
infrastructure coordination ecosystem: Services & support, in
Practice and Experience in Advanced Research Computing,
PEARC’23 (ACM, New York, 2023).

054608-9

https://doi.org/10.1016/j.jmps.2020.104146
https://doi.org/10.1039/D2SM00813K
https://doi.org/10.1146/annurev-biophys-062920-063646
https://doi.org/10.1103/PhysRevLett.111.168101
https://doi.org/10.1103/PhysRevX.8.031065
https://doi.org/10.1126/sciadv.abc8685
https://doi.org/10.1073/pnas.0706805105
https://doi.org/10.1038/s41467-018-06370-3
https://doi.org/10.1088/1478-3975/8/2/026008
https://doi.org/10.1098/rsif.2014.0400
https://doi.org/10.1038/s41467-018-03446-y
https://doi.org/10.1038/s41522-022-00293-0
https://doi.org/10.7554/eLife.72187
https://doi.org/10.1039/D2SM01498J
https://doi.org/10.1063/1.1633647
https://doi.org/10.1038/srep26968
https://doi.org/10.1103/PhysRevE.88.012715
https://doi.org/10.1098/rsif.2022.0512
https://doi.org/10.1021/j100303a008
https://doi.org/10.1088/1742-5468/2006/01/P01005
https://doi.org/10.1039/D2CP00060A
https://doi.org/10.1103/PhysRevLett.127.198001
https://doi.org/10.1038/s41467-020-20842-5
https://doi.org/10.1103/PhysRevResearch.5.033135
http://link.aps.org/supplemental/10.1103/PhysRevE.109.054608
https://doi.org/10.1098/rsta.2013.0365
https://doi.org/10.1103/PhysRevLett.125.178005
https://doi.org/10.1073/pnas.2106038118

