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We examine the ordering, pinning, and dynamics of two-dimensional pattern-forming systems interacting
with a periodic one-dimensional substrate. In the absence of the substrate, particles with competing long-range
repulsion and short-range attraction form anisotropic crystal, stripe, and bubble states. When the system is tuned
across the stripe transition in the presence of a substrate, we find that there is a peak effect in the critical
depinning force when the stripes align and become commensurate with the substrate. Under an applied drive,
the anisotropic crystal and stripe states can exhibit soliton depinning and plastic flow. When the stripes depin
plastically, they dynamically reorder into a moving stripe state that is perpendicular to the substrate trough
direction. We also find that when the substrate spacing is smaller than the widths of the bubbles or stripes, the
system forms pinned stripe states that are perpendicular to the substrate trough direction. The system exhibits
multiple reentrant pinning effects as a function of increasing attraction, with the anisotropic crystal and large
bubble states experiencing weak pinning but the stripe and smaller bubble states showing stronger pinning.
We map out the different dynamic phases as a function of filling, the strength of the attractive interaction term,
the substrate strength, and the drive, and demonstrate that the different phases produce identifiable features in
the transport curves and particle orderings.
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I. INTRODUCTION

Particle systems with competing long-range repulsive and
short-range attractive interactions form a variety of pat-
terned states, including crystals, stripes, bubbles, and void
lattices [1–12]. For a fixed repulsion strength but increas-
ing attraction strength, these systems form a crystal, then an
anisotropic crystal, and finally stripe and bubble phases [9].
For fixed interaction strength but increasing particle densi-
ties, first bubbles, then stripes, then void lattices, and then
a uniform crystal appear [9]. Similar patterns can arise even
for systems with purely repulsive interactions if the in-
teraction potential involves multiple length scales [13–15].
Pattern formation can occur in soft-matter systems such as
colloidal assemblies, emulsions, and binary fluids [14–16],
and in hard condensed-matter systems that include electron
liquid crystals [17–24], composite fermion states [25], mul-
tiple component superconducting vortex systems [26–30],
skyrmion systems [31], and various types of charge or-
dered states [32–36]. When pattern-forming systems couple
to quenched disorder, they can exhibit pinned phases as well
as depinning transitions and sliding phases under an ap-
plied drive [3,19,22–24,30,37–41]. If the quenched disorder
is strong, then a glassy or structurally disordered state forms
that depins plastically, and for high drives the system can dy-
namically reorder into patterned states such as moving stripes
or moving bubbles [3,22,37,41]. The different dynamic states
and transitions between them are associated with multiple
steps in the transport curves [3,19,22,37,39], changes in the
noise fluctuations [37,40–43], and modifications of the struc-
ture factors [30,37].

There have been extensive studies of systems of purely
repulsive particles that form crystalline lattices under
coupling to one- or two-dimensional periodic substrates
[39,44–51]. Far less is known about how a pattern-forming
system with competing interactions would behave when cou-
pled to a periodic substrate. For particle systems with purely
repulsive interactions, such as certain types of colloidal parti-
cles [44,49,51] and superconducting vortices [46,52–55], the
relevant length scales are the average spacing between the
particles and the periodicity of the substrate. In contrast, for
stripe- or bubble-forming systems, additional length scales
arise including the spacing between adjacent stripes or bub-
bles as well as the average spacing between the particles that
compose each stripe or bubble, so a richer variety of com-
mensuration effects are possible. Additionally, the mesoscale
morphology in pattern-forming systems permits the appear-
ance of matching or pinning effects that are not possible for
repulsive point particles. For example, a stripe might show
strong commensuration effects when interacting with a pe-
riodic one-dimensional (1D) substrate since the stripe can
easily match the substrate shape. In general, if the attraction
or repulsion strength or the filling fraction of the system is
varied, then morphologies can emerge that are more strongly
pinned due to better matching with the substrate length scales
or shape, while for other morphologies, the patterns do not
match, leading to changes in the pinning configurations, slid-
ing, and transport.

In previous work on the static configurations of pattern-
forming systems on a periodic 1D substrate, several new types
of patterns were identified, such as modulated stripes and
anisotropic bubbles [56]. Recently, we studied the depinning
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of bubbles on periodic 1D substrates under a dc drive ap-
plied parallel to the substrate periodicity direction and found
that the bubbles can depin either elastically or plastically
depending on the substrate strength [57]. In addition, as the
strength of the attractive interaction term increased, the bub-
bles became smaller and better pinned since they could fit
within the substrate minima better than larger bubbles. When
the bubbles depin elastically, there is a single peak in the
differential velocity-force curves, while for plastic depinning,
multiple peaks appear when the bubbles break up and move in
various modes, such as via individual particles hopping from
bubble to bubble or via a moving bubble shedding individual
particles. At higher drives, the system can dynamically reorder
back into a moving bubble lattice through a transition similar
to the dynamic ordering found for superconducting vortices,
colloidal particles, Wigner crystals, and skyrmions moving
over random substrates [39,58–63].

In this work, we consider the pinning and dynamics of a
pattern-forming system with competing long-range repulsion
and short-range attraction interacting with a 1D periodic sub-
strate as we sweep through parameters where crystal, stripe,
and bubble states appear in a clean system. We find that the
depinning threshold shows a peak or maximum in the stripe
regime when the stripes form a commensurate state that aligns
with the substrate troughs. When the substrate is strong, the
stripes first depin plastically via the formation of running
kinks or solitons, followed by the emergence of a disordered
flowing state, while at high drives, there is a dynamical transi-
tion into a moving stripe phase where the stripes are wider
and rotate with respect to the pinned configuration so that
they are aligned with the driving direction. The anisotropic
crystal state can also exhibit soliton depinning, disordered
motion, and dynamical reordering into an anisotropic crystal
at high drives. The drive needed to induce the reordering
transition diverges near the boundary between the stripe and
anisotropic crystal states. When the substrate lattice constant
is decreased, the stripe and anisotropic crystal states remain
strongly pinned, but the bubble phases show a pronounced
depinning threshold decrease. For constant drives that are well
above the depinning threshold, the average velocity passes
through a dip in the stripe phase. When the substrate lattice
constant is considerably smaller than the width of the stripes
or bubbles, the system forms a pinned stripe or modulated
stripe aligned perpendicular to the substrate trough direction
that can depin into moving stripes or moving bubbles. When
the particle-particle interaction strengths are held fixed while
the filling fraction of the system is changed, we find that
all three phases show steplike features in the depinning thresh-
old that correlate with commensuration effects in which an
integer number of rows of particles can fit inside an individual
substrate trough. At high filling fractions, the stripes depin
into a modulated solid that remains aligned with the substrate
trough direction even at high drives. We also find that as the
substrate strength increases, there is a sharp increase in the
depinning threshold at the crossover from elastic to plastic
depinning. For strong pinning at a fixed drive, the velocity
is a nonmonotonic function of the magnitude of the attractive
interaction term. The velocities are highest at zero attraction,
pass through a minimum or reentrant pinning region in the
stripe state, increase again for large bubbles, and then decrease

until a second reentrant pinning regime for small bubbles
emerges.

II. SIMULATION

We consider a 2D system with periodic boundary condi-
tions in the x and y directions. The sample contains N particles
that have pairwise interactions composed of a long-range re-
pulsive term, which favors formation of a uniform triangular
lattice, and a competing short-range attractive term, which
favors clump or bubble formation. In our system the repulsion
dominates at very short distances, which prevents complete
collapse of the particles to a point even for strong attractive
interactions. The system is of size L × L with L = 36 and the
particle density is ρ = N/L2. The dynamics of particle i obey
the following overdamped equation of motion:

η
dRi

dt
= −

N∑

j �=i

∇V (Ri j ) + Fs
i + FD, (1)

where the damping term is set to η = 1.0. The first term on
the right-hand side describes the particle-particle interactions,
where

V (Ri j ) = 1

Ri j
− B exp(−κRi j ). (2)

Here Ri j = |Ri − R j |, and the location of particle i( j) is
Ri( j). For computational efficiency, we treat the long-range
repulsive Coulomb interaction using a real-space Lekner sum-
mation technique as in previous work [3,56]. The short-range
attraction term falls off exponentially with distance. The in-
teraction potential of Eq. (2) produces crystal, stripe, bubble,
or void lattice states depending on the values of ρ, the at-
tractive force strength B, and the inverse screening length
κ [3,4,9,37,56]. In this work we fix κ = 1.0. We focus on a
particle density of ρ = 0.44 but also consider a range of den-
sities from ρ = 0.01 to ρ = 1.2. For ρ = 0.44 in the absence
of a substrate, the system forms a crystal for B < 2.0, a stripe
state for 2.0 � B < 2.25, and bubbles for B � 2.25.

The second term on the right-hand side of Eq. (2) repre-
sents the interaction with a 1D substrate that is sinusoidal in
form with Np minima and a lattice constant of ap = L/Np.
Here

Fi
s = Fp cos(2πxi/ap)x̂, (3)

where xi is the x position of particle i. We focus on sub-
strates with Np = 8 but also consider Np = 4, 17, and 35.
The particles are subjected to a uniform driving force FD =
FDx̂. The equations of motion are integrated via overdamped
Brownian dynamics with a simulation time step of magnitude
dt = 0.0005 in dimensionless simulation units.

The initial particle configuration is obtained through
simulated annealing by placing the particles in a lattice con-
figuration, subjecting them to a high temperature and then
slowly cooling the system. The thermal forces are represented
by Langevin kicks that appear as an additional term FT in the
equation of motion, with the properties 〈F T

i 〉 = 0 and 〈FT
i (t ) ·

FT
j (t ′)〉 = 2ηkBT δi jδ(t − t ′), where kB is Boltzmann’s con-

stant. The annealing procedure starts at a temperature of
F T = 5 and lasts between 2 × 106 and 5 × 106 simulation
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time steps. The longer annealing times were necessary near
the transition between stripe and bubble or lattice states. We
tested to ensure that annealing over even longer intervals does
not produce significantly different states. After the simulated
annealing is complete, the temperature is set to zero. After
initialization, we apply a driving force to all of the particles.
We typically wait 104 or more simulation time steps after
changing the driving force to avoid any transient effects,
and then we measure the time-averaged particle velocity in
the driving direction, 〈V 〉 = ∑N

i vi · x̂, where we perform the
time average during 6 × 105 simulation time steps for each
value of the driving current. From this measure we can con-
struct a velocity-force curve.

Our selection of system size, particle densities, and inter-
action potential parameters is based on our knowledge from
previous work [9] of regimes that produce crystal, stripe, and
bubble phases in the absence of a substrate as B is varied over
the range 0 < B < 5.0. This permits us to study the dynamics
of all three phases. We varied the substrate spacings to include
cases where the width of the bubbles or stripes is less than,
comparable to, or greater than the substrate spacing in order
to explore the most important size ratio regimes. The range
of drives we selected extends from well below to well above
the maximum pinning force in order to cover the full range of
possible sliding phases.

III. RESULTS

In Fig. 1, we show the pinned particle configurations at
FD = 0 for a system with ρ = 0.44, Np = 8, and Fp = 1.0. At
B = 0.2, in the absence of a substrate a uniform crystal would
form, but as illustrated in Fig. 1(a), the presence of a substrate
produces an anisotropic crystal that has small density modu-
lations induced by the substrate potential. Figure 1(b) shows a
stripe phase at B = 2.15, where the stripes are aligned with the
substrate troughs and each trough contains two rows of parti-
cles. At B = 2.75, the bubble phase shown in Fig. 1(c) forms.
In Fig. 1(d), the stripe state with B = 2.15 from Fig. 1(b)
is placed on a substrate with Np = 17, which reduces the
substrate lattice constant. Here each substrate trough captures
a single row of particles.

We next examine the driving force Fc at which the system
depins as a function of B for the system in Figs. 1(a)–1(c)
with ρ = 0.44, Fp = 1.0, and Np = 8 by performing a se-
ries of simulations and constructing velocity-force curves. In
Fig. 2(a), we plot Fc for a range of B values that span a
pinned isotropic crystal (PAC) state, a pinned stripe (PS) state,
and a pinned bubble (PB) state. For small B, the depinning
threshold has a low value of Fc = 0.05, indicating that the
anisotropic crystal phases are weakly pinned. As B increases,
Fc increases and reaches a peak value of Fc = 0.75 in the
stripe phase, showing that the stripes are strongly pinned. For
B values above the peak in Fc, the stripes become nonuniform
and develop wider patches separated by narrower patches as
the system begins to destabilize toward the bubble state. In
this patchy regime of the stripe state, the depinning threshold
decreases with increasing B because the wider portions of
the stripe are less well pinned than the narrower portions of
the stripe, lowering the overall depinning threshold. When B
becomes sufficiently large, the system enters the bubble phase,

FIG. 1. [(a)–(c)] Particle positions (red circles) and substrate po-
tential (green shading) for a sample with particle density ρ = 0.44,
pinning strength Fp = 1.0, and number of substrate minima Np = 8
in the absence of driving, FD = 0, for different attractive interaction
strengths B. Note that here and throughout this work, the size of
the circles representing the particles is chosen purely for visual
convenience; the particles do not have a defined outer edge. (a) An
anisotropic crystal at B = 0.2. (b) A stripe state at B = 2.15. (c) A
bubble phase at B = 2.75. (d) The B = 2.15 system from panel
(b) with a higher number of substrate minima, Np = 17, where each
stripe is composed of a single row of particles.

where a local minimum of Fc = 0.39 appears at B = 2.9. As B
increases further, the bubbles shrink in size and the depinning
threshold increases again since the smaller bubbles fit better
into the pinning troughs, as shown in a previous study [57].
In Fig. 2(b) we plot the average velocity 〈V 〉 versus B at
a constant drive of FD = 1.0. In the absence of a substrate,
〈V 〉 = FD = 1.0 for this value of FD. In the presence of the
substrate, 〈V 〉 decreases with increasing B until it reaches a
local minimum in the stripe phase. The velocity then increases
with increasing B up to a local maximum value that appears
early in the bubble phase and finally decreases again with in-
creasing B for large B. If the same measurement is performed
at larger values of FD, then we find that the dip in 〈V 〉 in the
stripe phase persists but becomes flatter with increasing FD.
This dip is a signature of the peak in the the critical depinning
force that appears when the system has formed an anisotropic
stripe state.

Obtaining a reduced set of parameters that can describe the
behavior of Fc versus B is nontrivial since this is a many-body
system with complex interactions. We can, however, treat two
limiting cases in which the behavior is close to the single
particle limit so that the depinning force approaches the max-
imum pinning force from the substrate. The first case is in the
stripe state where the stripes are aligned with the substrate.
Here Fc/Fp = 0.8, a value that is less than 1.0 due to the fact
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FIG. 2. (a) The critical depinning force Fc vs B for the system
from Figs. 1(a)–1(c) with ρ = 0.44, Fp = 1.0, and Np = 8. (b) The
average velocity per particle 〈V 〉 vs B at fixed FD = 1.0. The dashed
lines indicate that the system forms a pinned anisotropic crystal
(PAC) for B < 1.75, a pinned stripe (PS) state for 1.75 � B � 2.25,
and a pinned bubble (PB) state for B > 2.25. In the PS state, there is
a peak in the depinning force and a dip in the velocity.

that the finite width of the stripes prevents all of the particles
from sitting at the very bottom of the substrate potential.
The second case is in the bubble state at large B where the
bubbles become so small that they act nearly like a low density
of single particles; however, the finite width of the bubbles
compared to actual single particles again suppresses the value
of Fc/Fp below 1.0. For B = 0.0, the system becomes identical
to that studied in previous simulations of repulsive particles on
a periodic 1D substrate [52,54]; however, since the parameters
we consider here do not correspond to a commensurate state,
the depinning threshold is relatively low.

In Fig. 3 we plot the velocity-force curves 〈V 〉 versus
FD along with the corresponding differential velocity curves
d〈V 〉/dFD versus FD for the system in Fig. 2 with ρ = 0.44,
Fp = 1.0, and Np = 8 at B = 2.75 in the bubble phase and
B = 2.15 in the stripe phase. For B = 2.75, the depinning
threshold is low, there is a single peak in d〈V 〉/dFD, and the
differential velocity approaches d〈V 〉/dFD = 1.0 just above
this peak. Here the bubbles depin elastically and pass directly
from a pinned bubble state to a moving bubble phase. At
B = 2.15, the stripes depin plastically, and there is a double
peak in the differential conductivity, with the initial depin-
ning producing a peak near FD = 0.74 followed by a second
peak in d〈V 〉/dFD near FD = 0.925. The differential velocity
does not approach d〈V 〉/dFD = 1 until FD > 1.3. The initial
depinning of the stripe state occurs via the sliding of kinks
or solitons, where individual particles hop out of one well
and displace a particle in the adjacent well. This is illus-
trated in Fig. 4(a) where we highlight the particle trajectories
from the stripe state in Fig. 3 at FD = 0.825, just above Fc.
For drives of 0.95 < FD < 1.2, the stripe system forms the

FIG. 3. The velocity-force curves 〈V 〉 vs FD (solid circles) and
the corresponding differential velocity d〈V 〉/dFD vs FD curves (open
squares) for the system from Fig. 2 with ρ = 0.44, Fp = 1.0, and
Np = 8. At B = 2.15 (blue curves), the system is in the stripe state
and there is a double peak in the differential velocity, while at B =
2.75 (red curves), the system is in the bubble state and there is a
single peak in d〈V 〉/dFD.

moving disordered structure shown in Fig. 4(b) at FD = 1.1,
while at FD = 1.5, a moving stripe structure that is aligned
with the driving direction and not the substrate trough direc-
tion appears, as illustrated in Fig. 4(c). Since the number of

FIG. 4. Particle positions (red circles) and substrate potential
(green shading) for the system from Fig. 3 with ρ = 0.44, Fp = 1.0,
and Np = 8. (a) The soliton flow phase at B = 2.15 and FD = 0.825.
Lines indicate the trajectories of individual particles. (b) A disor-
dered moving phase at B = 2.15 and FD = 1.0. (c) A moving stripe
phase at B = 2.15 and FD = 1.5. (d) A moving bubble phase at
B = 2.75 and FD = 1.5.
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FIG. 5. 〈V 〉 vs FD (solid circles) and the corresponding
d〈V 〉/dFD vs FD (open squares) for the system from Fig. 2 with
ρ = 0.44, Fp = 1.0, and Np = 8 in the anisotropic crystal state at
B = 1.6 (blue curves) and B = 0.2 (red curves).

stripes in the moving stripe structure is smaller than Np, each
stripe has a width of four particles. There is also a periodic
density modulation along the length of the stripe. The moving
bubble state that appears above depinning for the B = 2.75
system in Fig. 3 is illustrated in Fig. 4(d) at FD = 1.5, where
the bubbles have developed a slight anisotropy favoring the
driving direction.

In Fig. 5, we show the 〈V 〉 and d〈V 〉/dFD versus FD

curves for the system from Fig. 2 in the anisotropic crystal
state at B = 1.6 and B = 0.2. When B = 0.2, the particles
undergo weak plastic depinning from the anisotropic pinned
crystal to a flowing disordered state and then transition near
FD = 0.4 into a dynamically reordered moving crystal. The
corresponding d〈V 〉/dFD curve contains only a single peak at
the depinning transition. At B = 1.6, the depinning is strongly
plastic, and soliton-like flow occurs, corresponding to the
nonlinear segment of the 〈V 〉 versus FD curve appearing below
FD = 0.4. As the drive increases, a disordered flow regime
appears, followed by dynamical ordering into a moving crys-
tal for FD > 0.65. In Fig. 6(a) we show the particle positions

FIG. 6. Particle positions (red circles) and substrate potential
(green shading) for the system from Fig. 5 with ρ = 0.44, Fp = 1.0,
Np = 8, and B = 1.6. (a) FD = 0.6 in the partially disordered phase.
(b) FD = 1.5 in the dynamically reordered moving anisotropic crystal
phase.

FIG. 7. Dynamic phase diagram as a function of FD vs B con-
structed from the transport curves, pinned structures, and moving
structures for the system from Fig. 2 with ρ = 0.44, Np = 8,
and Fp = 1.0. There are three pinned phases: pinned anisotropic
crystal (PAC), pinned stripe (PS), and pinned bubble (PB). The
moving phases are soliton flow (So), disordered flow (D), mov-
ing anisotropic crystal (MAC), moving stripe (MS), and moving
bubble (MB).

in the disordered flowing state at B = 1.6 and FD = 0.6, and
in Fig. 6(b) we illustrate the dynamically reordered moving
anisotropic lattice at FD = 1.5. The lattice displays a small
density modulation from the substrate.

From the features in the transport curves and the particle
arrangements, we can construct a dynamic phase diagram of
the different phases as a function of FD versus B for the sample
with ρ = 0.44, Np = 8, and Fp = 1.0, as shown in Fig. 7.
The pinned states consist of the PAC, PS, and PB phases.
The PS can depin into either a moving soliton (So) phase
or a disordered (D) plastic flow phase, and it dynamically
reorders into a moving stripe (MS) at high drives. The PB
phase shows a region of plastic depinning near B = 2.35,
but for larger B it elastically depins directly into the moving
bubble (MB) phase. The PAC depins into the So phase and
then transitions into the D phase before undergoing dynamic
reordering into a moving anisotropic crystal (MAC). At small
B, there is no soliton depinning and the PAC depins directly
into D flow. An interesting feature is that the drive needed
to transition to the moving stripe phase diverges near the
MAC-MS boundary. It is likely that the energy difference
between the moving anisotropic crystal and the moving stripe
state is small near this boundary, so the competition between
the two phases causes a disordered flow to emerge. Only at
very high drives is it possible to resolve the energy differ-
ence between the MAC and MS state and escape from the
disordered flow at the MAC-MS boundary. In general, we
identify the different phases using direct imaging combined
with the changes in the transport curves and in the differen-
tial resistivity. Other image-based measures are also possible,
such as obtaining the average distance to the closest neighbor
of each particle, a measure that exhibits sharp changes at
the transitions between different phases in the absence of a
substrate [9].
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FIG. 8. (a) The depinning threshold Fc vs B in samples with ρ =
0.44 and Fp = 1.0 at Np = 4 (ap = 9.0, green), Np = 8 (ap = 4.5,
blue), and Np = 17 (ap = 2.1, pink). There is a maximum in Fc in
the stripe phase. (b) The corresponding velocity 〈V 〉 vs B at FD = 1.0
has a dip in the stripe regime.

IV. CHANGING THE SUBSTRATE PERIODICITY

We next fix the particle density while changing the num-
ber Np of substrate minima, which alters the substrate lattice
constant ap. In Fig. 8(a) we plot Fc versus B in samples
with ρ = 0.44 and Fp = 1.0 at Np = 4 (ap = 9.0), Np = 8
(ap = 4.5), and Np = 17 (ap = 2.1). The Np = 8 curve was
already highlighted in Fig. 2. For Np = 4, the anisotropic
crystal phase becomes even more weakly pinned since the
particles are able to fill all of the space; however, the bubble
phase is now strongly pinned since the bubbles can easily
fit within the substrate troughs. A small peak in Fc appears
near the stripe phase. When Np = 17, the anisotropic crystal
is strongly pinned, and the pinned stripe configuration at B =
2.15, illustrated in Fig. 1(d), consists of rows that are a single
particle wide. The bubble phase for Np = 17 is weakly pinned
because an individual bubble has a radius that is much larger
than the pinning period of ap = 2.1. Figure 8(b) shows the
corresponding 〈V 〉 versus B curves at FD = 1.0, where a local
minimum in 〈V 〉 appears in the stripe phase. For Np = 17, the
bubbles at higher values of B slide at nearly the expected free
flow velocity of 〈V 〉 = 1.0.

In Fig. 9(a), we show the pinned particle configuration for
the bubble phase from Fig. 8 at B = 2.75 and Np = 17. The
bubble radius is twice as large as the substrate spacing, so
the bubbles can slide easily over the substrate. Figure 9(b)
shows the same system at Np = 4, where the bubbles easily
fit within the substrate troughs and are strongly pinned. At
B = 0.2 and Np = 4 in Fig. 9(c), the system forms a density
modulated crystal that is weakly pinned since some of the
particles are located near maxima of the substrate potential. In
Fig. 9(d), the particle configuration at B = 0.2 and Np = 17 is
an anisotropic crystal with stripelike pattern that is almost the
same as the configuration found in Fig. 2 for B = 2.15 and the

FIG. 9. Particle positions (red circles) and substrate potential
(green shading) for the system from Fig. 8 with ρ = 0.44 and
Fp = 1.0 in the pinned state. (a) Weakly pinned bubbles at B = 2.75
and Np = 17. (b) Strongly pinned bubbles at B = 2.75 and Np = 4.
(c) A weakly pinned anisotropic crystal at B = 0.2 and Np = 4. (d) A
strongly pinned anisotropic crystal structure at B = 0.2 and Np = 17.

same substrate spacing. In this case, for B = 0.2, the substrate
free system forms a crystal; however, the spacing of the sub-
strate is small enough that the particles form a chainlike state.
Figure 8(a) shows that the depinning threshold remains nearly
constant for the anisotropic crystal and stripe states over the
range 0 < B < 2.25 and only drops in the bubble phase when
B � 2.25.

For Np = 17, we observe dynamical phases similar to those
described above for the Np = 8 system. There are, how-
ever, some differences in the transport curves, as shown in
Fig. 10(a) where we plot 〈V 〉 versus FD at B = 1.0, 2.15,
and 2.75. When B = 2.15, there is a two-step depinning pro-
cess from a soliton like flow to a moving stripe state. The
second depinning transition is more discontinuous than the
first, resulting in the appearance in Fig. 10(b) of a strong
peak in d〈V 〉/dFD versus FD at the onset of the stripe phase.
For B = 1.0, there is also a two-step depinning process that
produces a double peak in d〈V 〉/dFD, but neither of the peaks
are as sharp as the peak found in the B = 2.15 sample. At
B = 2.75, there is a single peak in d〈V 〉/dFD, and the pinned
bubble phase depins elastically to a moving bubble phase.
Another interesting feature is that even though the depinning
threshold is largest for B = 2.15, the B = 1.0 and B = 2.15
velocity-force curves cross at higher drives so that, within the
moving stripe regime, the velocity is higher for B = 2.15 than
for B = 1.0, indicating that for this value of Np the stripes can
flow with less resistance than the moving anisotropic crystal.
In Fig. 11(a), we illustrate the moving stripe state for the
system from Fig. 10 with Np = 17 at B = 2.15 and FD = 1.2,
where the stripes are aligned with the driving direction and

054606-6



PEAK EFFECT AND DYNAMICS OF STRIPE- AND … PHYSICAL REVIEW E 109, 054606 (2024)

FIG. 10. (a) 〈V 〉 vs FD for a system with Np = 17, ρ = 0.44, and
Fp = 1.0 at B = 1.0 (red), 2.15 (blue), and 2.75 (green). (b) The
corresponding d〈V 〉/dFD vs FD curves.

FIG. 11. Particle positions (red circles) and substrate potential
(green shading) for the system from Fig. 10 with ρ = 0.44, Fp = 1.0,
and FD = 1.2 for varied B and Np. (a) The moving stripe state at
Np = 17 and B = 2.15. (b) The moving crystal phase at Np = 17 and
B = 1.0. (c) The moving stripe state at Np = 4 and B = 2.15, where
the stripes are more bubblelike. (d) The moving modulated solid at
Np = 4 and B = 1.0.

FIG. 12. Dynamic phase diagram as a function of FD vs Fp for
a stripe-forming system at ρ = 0.44, B = 2.15, and Np = 8 showing
the pinned stripe (PS), soliton flow (So), disordered flow (D), moving
stripe (MS), and moving floating solid (MFS). For Fp � 0.35, the PS
depins elastically to a MFS. For Fp > 0.35 the PS depins plastically
to the So state, then transitions into a D phase and finally a MS state.

are four particles wide. Figure 11(b) shows the moving crys-
tal phase at B = 1.0 and FD = 1.2. When Np = 4, a similar
set of phases occurs but the features in the transport curves
are not as sharp. In Fig. 11(c) we show the Np = 4 stripe
phase at B = 2.15 and FD = 1.2, where the stripes are more
bubblelike. Figure 11(d) shows the modulated moving solid
at B = 1.0 and FD = 1.2 in the Np = 4 system.

V. EFFECT OF SUBSTRATE STRENGTH

In general, changing the substrate strength does not modify
which dynamic phases are present, but it shifts the bound-
aries between the phases. As a function of increasing pinning
strength, for the bubble phases we find a transition from elastic
to plastic depinning at a critical pinning force that is accom-
panied by a noticeable increase in Fc [57]. For the anisotropic
crystal, we observe a similar step up in Fc at an elastic to
plastic depinning transition, but it is not as pronounced as in
the bubble phases. In Fig. 12 we plot a dynamic phase diagram
as a function of FD versus Fp for the stripe state at B = 2.15,
ρ = 0.44, and Np = 8. For Fp � 0.35, the stripes depin elas-
tically and do not rotate to align with the driving direction
but instead enter what we term a moving floating solid state.
For Fp > 0.35, the system depins plastically. There is a small
jump up in the depinning threshold at the elastic-to-plastic
depinning transition, and Fc increases linearly with increasing
Fp in the plastic depinning regime. As the drive increases
above the plastic depinning transition, the system first passes
through a soliton flow phase and then into a disordered flow
state before reaching a moving stripe state in which the stripes
are aligned with the driving direction.

When Np = 17, the transition from elastic to plastic depin-
ning as a function of increasing Fp is much sharper than in the
Np = 8 system. In Fig. 13 we plot Fc versus Fp for a system
with ρ = 0.44 and Np = 17 at B = 1.6 in the anisotropic
crystal state, B = 2.15 in the stripe state, and B = 2.35 in the
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FIG. 13. Fc vs Fp for a system with ρ = 0.44 and Np = 17 at B =
1.6 (anisotropic crystal, red squares), B = 2.15 (stripe, blue circles),
and B = 2.35 (bubble, green triangles).

bubble state. The depinning threshold is largest for the stripe
system at all Fp, and the stripe state undergoes an elastic-
to-plastic depinning transition near Fp = 0.35. For B = 2.35,
the bubbles depin elastically up to Fp = 1.0, and then a large
increase in the depinning threshold occurs at the transition to
plastic depinning. For B = 1.6, the transition from elastic to
plastic depinning appears at Fp = 0.9 and is accompanied by
a large increase in Fc. Within the plastic depinning regime, the
depinning threshold increases linearly with increasing Fp as is
found for other interacting particle systems [39], while in the
elastic depinning regime, Fc is a nonlinear function of Fp. Our
results are not accurate enough to give the exact fitting func-
tion, but systems that depin elastically often have a depinning
threshold that increases quadratically with increasing pinning
force [39].

When B > 2.0, another effect we observe is that for
stronger substrates and higher Np, the system forms pinned
stripes or modulated stripes that are perpendicular to the
substrate troughs. In Fig. 14(a), we illustrate the pinned con-
figuration for a system with Np = 35, Fp = 2.5, and B = 1.6,
where a distorted crystal state appears. Figure 14(b) shows the
same system at B = 2.15, where a pinned stripe appears that
is aligned in the x direction, perpendicular to the substrate
troughs. At Np = 17, Fp = 3.0, and B = 2.75 in Fig. 14(c),
we find a more discontinuous modulated stripelike pattern
aligned with the x direction, while a stripelike pinned pattern
appears for Np = 35, Fp = 1.5, and B = 2.75 in Fig. 14(d).
For either value of Np, when B = 2.15, the system can still
depin plastically via solitons that run along the stripe, but
as the drive increases, the entire stripe structure depins and
remains aligned in the direction of the drive. For B = 2.75,
the moving state forms bubbles, and depinning occurs via the
formation of a bubble along the modulated stripe that picks
up particles as it travels along the stripe as if the stripe is
providing a track for motion. In Fig. 15 we illustrate the time
evolution of the depinning of the stripe state into a moving
bubble state for a sample with Fp = 3.0, B = 2.75, Np = 35,
ρ = 0.44, and FD = 2.0. At early times in Fig. 15(a), the
depinning occurs via the formation of bubbles that move along

FIG. 14. Particle positions (red circles) and substrate potential
(green shading) showing pinned configurations at FD = 0 and ρ =
0.44. (a) A distorted crystal at Np = 35, Fp = 2.5, and B = 1.6. (b) A
pinned stripe aligned with the x direction at Np = 35, Fp = 2.5, and
B = 2.15. (c) A pinned modulated stripe aligned with the x direction
at Np = 17, Fp = 3.0, and B = 2.75. (d) A stripelike structure at
Np = 35, Fp = 1.5, and B = 2.75.

the stripe structures. The number of bubbles grows at later
times, as shown in Figs. 15(b) and 15(c), and at long times
all of the particles are contained by moving bubbles as in
Fig. 15(d).

VI. VARIED FILLING

We next consider the effect of holding B, the substrate
strength, and the substrate lattice constant fixed while varying
the particle density ρ. In Fig. 16, we plot Fc/Fp versus ρ

for samples with Fp = 1.0 and Np = 8.0 at B = 2.15 in the
stripe state, B = 2.75 in the bubble state, and B = 1.0 in
the anisotropic crystal state. The stripe state has the highest
depinning threshold across the entire range of ρ and shows
some plateaus with Fc/Fp = 1.0 for ρ < 0.1, Fc/Fp ≈ 0.75
for 0.25 < ρ < 0.5, Fc/Fp = 0.47 for 0.55 < ρ < 0.85, and
a decrease in Fc/Fp at higher values of ρ. These plateaus
correspond to stripes that are composed of different numbers
of particles per row. In Fig. 17(a) we plot the pinned particle
configurations for B = 2.15 at ρ = 0.093, where Fc/Fp = 1.0.
Here the system forms a stripelike bubble state where each
bubble is only a single particle wide and the disordered bub-
bles are arranged in a rough lattice configuration. Figure 17(b)
shows the pinned configuration at ρ = 0.262 on the second
plateau in Fc/Fp, where a continuous stripe structure appears
in which some regions of the stripe are two particles wide. It
is the regions of greater width that depin first. In general, the
second plateau in Fc/Fp for the B = 2.15 system corresponds
to values of ρ for which portions of the stripe are two particles
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FIG. 15. Particle positions (red circles) and substrate potential
(green shading) showing the time evolution of the pinned stripe
into a moving bubble for Fp = 3.0, B = 2.75, Np = 35, ρ = 0.44,
and FD = 2.0. (a) At early time, nascent bubbles begin translating
along the stripe structures and collecting additional particles. (b) At
early intermediate time, more of the pinned stripe particles become
incorporated into the moving bubbles. (c) At late intermediate time,
very few of the particles are still in pinned stripe structures. (d) At
late time, all of the particles have joined moving bubbles.

wide. On the third plateau in Fc/Fp, as shown in Fig. 17(c)
at ρ = 0.67, portions of the stripes are three particles wide.
Figure 17(d) shows the pinned stripe configuration at ρ =
0.938, where the stripes now have a width of four particles.
In general, we expect that there should be a series of plateaus

FIG. 16. The critical depinning force Fc/Fp vs particle density
ρ for a system with Fp = 1.0 and Np = 8 at B = 2.15 (stripes, blue
circles), B = 2.75 (bubbles, red squares), and B = 1.0 (anisotropic
crystal, green triangles).

FIG. 17. Particle positions (red circles) and substrate potential
(green shading) showing the pinned particle configurations for the
system from Fig. 16 with Fp = 1.0, Np = 8, and B = 2.15 in the
stripe state at (a) ρ = 0.093, (b) ρ = 0.262, (c) ρ = 0.67, and
(d) ρ = 0.938.

whenever N rows of particles can fit inside one of the substrate
troughs.

In Fig. 18(a), we show the pinned particle configurations
for the system from Fig. 16 in the B = 1.0 anisotropic crystal
state at ρ = 0.093, where the particles form a rectangular
array. Here triangular ordering is suppressed by the attrac-
tive interaction term; if the particle interactions were purely
repulsive, then the particles would try to move as far away
from each other as possible and would adopt a triangular
configuration, but the attractive term causes square or rect-
angular configurations to be favored. Figure 18(b) shows
the same system at ρ = 0.262, where stripes containing two
rows of particles have formed. The pattern is more zigzag in
nature compared to the B = 2.15 system, and there are no
regions where the stripes are strictly 1D like. At ρ = 0.518
in Fig. 18(c), there are now three rows of particles in each
substrate minimum. For the even higher density of ρ = 0.67,
there is not enough space in the substrate minima to accom-
modate all of the particles, so the system becomes partially
disordered and the depinning threshold drops considerably.

Figure 19(a) shows the particle configurations in the pinned
bubble state for the system from Fig. 16 at B = 2.75 and
ρ = 0.093, where a series of small bubbles appear. For this
filling, the depinning threshold is smaller than in the stripe
and anisotropic crystal states, where the particle arrangements
were strictly 1D. At ρ = 0.208 in Fig. 19(b), the depinning
threshold has dropped onto the next plateau, and the bubbles
have a width of three particles. On the next plateau of the
depinning threshold, illustrated in Fig. 19(c) at ρ = 0.37, the
bubbles are much larger. Finally, for ρ = 0.76 in Fig. 19(d),
there are even larger bubbles.
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FIG. 18. Particle positions (red circles) and substrate potential
(green shading) showing the pinned anisotropic crystal system from
Fig. 16 with Fp = 1.0, Np = 8, and B = 1.0 at (a) ρ = 0.093, (b) ρ =
0.262, (c) ρ = 0.518, and (d) ρ = 0.67.

In Figs. 20(a) and 20(b) we plot 〈V 〉 and d〈V 〉/dFD versus
FD for the stripe system from Fig. 16 at B = 2.15 and ρ =
0.093. The depinning has the character of a single-particle
process, and the system transitions from a pinned 1D bubble

FIG. 19. Particle positions (red circles) and substrate potential
(green shading) showing the pinned particle configurations for the
B = 2.75 bubble-forming system from Fig. 16 with Fp = 1.0 and
Np = 8. (a) ρ = 0.093. (b) ρ = 0.208. (c) ρ = 0.37. (d) ρ = 0.76.

FIG. 20. [(a) and (c) ]〈V 〉 vs FD and [(b) and (d)] d〈V 〉/dFD vs
FD for the system from Fig. 16 with Fp = 1.0, Np = 8, and B = 2.15.
[(a) and (b)] ρ = 0.093. [(c) and (d)] ρ = 0.26, where there is a two
step depinning process.

state to a moving dilute bubble phase. Here the depinning
threshold falls slightly below FD/Fp = 1.0. At these low den-
sities, there are not enough particles present to permit a stripe
phase to form, but there are still some bubblelike features in
the moving state. Figure 21(a) illustrates the moving clump
phase for the system in Fig. 20(a) at FD = 1.5. The plots of
〈V 〉 and d〈V 〉/dFD versus FD in Figs. 20(b) and 20(c) for a
sample with B = 2.15 and ρ = 0.26 indicate that there is a

FIG. 21. Particle positions (red circles) and substrate potential
(green shading) in a series of moving states at FD = 1.5 in samples
with Fp = 1.0, Np = 8, and B = 2.15. (a) The moving clump phase
for the system from Figs. 20(a) and 20(b) with ρ = 0.093. (b) The
moving stripe phase for the system in Figs. 20(c) and 20(d) with
ρ = 0.26. (c) The moving stripe state at ρ = 0.578 for the system
in Figs. 22(a) and 22(b) with ρ = 0.578. (d) The moving modulated
solid at ρ = 0.938 for the system in Figs. 22(c) and 22(d).
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FIG. 22. [(a) and (b)] 〈V 〉 vs FD and [(c) and (d)] d〈V 〉/dFD vs
FD for the system from Fig. 16 with Fp = 1.0, Np = 8, and B = 2.15.
[(a) and (b)] ρ = 0.578. [(c) and (d)] ρ = 0.938, where there is a
single elastic depinning process.

two-step depinning process accompanied by a double peak
feature in the differential velocity-force curve. The system
first depins into a soliton motion state in which the soli-
tons translate through the regions containing two rows of
particles. At higher drives, all of the particles depin and the
system forms a moving stripe phase, as shown in Fig. 21(b) at
FD = 1.5.

In Figs. 22(a) and 22(b) we plot 〈V 〉 and d〈V 〉/dFD versus
FD for the system from Fig. 20 with B = 2.15 at ρ = 0.578.
Here we observe a soliton depinning process, a second depin-
ning transition into a disordered flow state, and a dynamical
reordering transition into a moving stripe state, visible as a
peak in the differential mobility near FD = 1.25. Figure 21(c)
shows the particle configuration in the moving stripe state at
FD = 1.5 for ρ = 0.578, where each stripe has a width of
five particles. The plots of 〈V 〉 and d〈V 〉/dFD in Figs. 22(c)
and 22(d) for the same sample at ρ = 0.938 exhibit a single
peak in the differential mobility produced when the system de-
pins elastically from a modulated solid to a moving modulated
solid. Here the stripes do not reorient into the direction of driv-
ing and remain parallel to the substrate troughs. Figure 21(d)
illustrates the moving modulated solid state for FD = 1.5 at
ρ = 0.938.

From the features in the transport curves and the particle
configurations, in Fig. 23 we construct a dynamic phase dia-
gram as a function of FD vs ρ for the system with B = 2.15,
Fp = 1.0, and Np = 8 where we highlight the pinned regime,
moving So state, disordered motion (D) phase, MS state,
MB phase, and moving modulated crystal. The system cannot
form a moving stripe when ρ < 0.25 and instead enters the
moving bubble phase. The moving stripe phase occurs in a
window of density ranging from 0.25 � ρ < 0.8. In a portion
of this density window, we find that the system first passes
through a moving modulated solid state before transitioning
to the moving stripe configuration.

VII. REENTRANT PINNING PHASES

We have demonstrated above that the stripe state is the
most strongly pinned phase; however, for large B the smaller

FIG. 23. Dynamic phase diagram as a function of FD vs ρ for a
system with B = 2.15, Fp = 1.0, and Np = 8. The distinct pinned
states are not resolved and are marked as a Pinned region. The
moving states are soliton motion (So), disordered (D) flow, moving
bubble (MB), moving stripe (MS), and moving modulated crystal
(ModC).

bubbles are also very strongly pinned, suggesting that it
should be possible to observe multiple reentrant pinning ef-
fects under the right conditions. We consider a sample with
Np = 8 and strong pinning of Fp = 5.0 under a constant driv-
ing force of FD = 4.0. In Fig. 24, we plot 〈V 〉 versus B for
this system at ρ = 0.129, 0.208, 0.262, 0.322, 0.44, 0.67, and
1.16. For ρ = 0.129, the system is pinned for all values of B,
while for ρ = 0.262, 0.322, and 0.44, the system is initially
flowing at very small B, enters a pinned stripe state near

FIG. 24. 〈V 〉 vs B for a system with Np = 8, Fp = 5.0, and FD =
4.0 for ρ = 0.129 (violet circles), 0.208 (dark blue squares), 0.262
(light blue diamonds), 0.322 (green up triangles), 0.44 (yellow left
triangles), 0.67 (orange down triangles), and 1.16 (red right trian-
gles). Two distinct pinned phases appear. Near B = 2.15 is the pinned
stripe regime, and in the region above B = 4.75 is the pinned small
bubble regime. At very small B is the weakly pinned crystalline state,
and there is a window of large bubble states in between the stripe and
small bubble states that is also weakly pinned. As a result, there can
be a doubly reentrant pinned state as a function of increasing B.
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B = 2.15, and develops a finite velocity again in the bubble
phase for B > 2.3. There is a local maximum in the velocity
near B = 3.0; however, as B increases further, the bubbles
shrink in size and become pinned again for sufficiently large
B, reaching a second reentrant pinned state. For ρ > 0.44,
there is a dip in 〈V 〉 near B = 2.15 in the stripe phase but the
system does not become reentrantly pinned; this is followed
by a local maximum in 〈V 〉 in the large bubble phase and a
reentrant pinning of the small bubble state for large B. Going
to large values of B has an effect on the transport that is
similar to going to low particle density, since the increase of
B causes the average spacing between adjacent bubbles to get
larger as the bubble radius becomes smaller. In particular, the
depinning threshold approaches Fc/Fp = 1.0 for both large B
and small ρ. In Fig. 24, we have fixed FD/Fp = 0.8, so once
Fc/Fp exceeds this value either by decreasing ρ or increasing
B in the small bubble phase, the velocity drops to zero and a
pinned state emerges.

VIII. DISCUSSION

The results we obtain with the present model can be com-
pared to those found in previous studies of particles on 2D
periodic substrates. In general, in the previous works, the
interactions between particles were purely repulsive, such
as for superconducting vortices, charged particles, screened
Coulomb interactions, or hard disks. In purely repulsive sys-
tems for fixed density, the critical depinning force decreases
monotonically when the interaction strength of the particles
increases, and varies as a function of particle density depend-
ing on whether the particle configuration is commensurate or
incommensurate with the substrate. In a commensurate state,
the particles can form a triangular lattice that fits into the
substrate in such a way that no kinks are present. In this case,
the system behaves almost like a single particle, so that the
depinning threshold is maximized and becomes independent
of the particle-particle interaction strength. Commensurate
conditions only occur for certain fillings or densities, as
studied for superconducting vortices [52,54] and colloidal
particles [47–49,64]. For incommensurate conditions, the de-
pinning threshold monotonically decreases with increasing
particle-particle interaction strength since the particles form
an ever-stiffer lattice that couples less and less well to the
substrate [52,54].

In our pattern-forming system, we find a nonmonotonic
change in the depinning force that is correlated with the
formation of different patterns. When the strength B of the
attractive component of the particle-particle interaction is in-
creased, there is a peak in the depinning threshold when the
system forms a stripe state that can align with the substrate.
The depinning threshold decreases with increasing attraction
in the crystal phase because increasing the attraction effec-
tively lowers the strength of the repulsion, softening the lattice
and allowing it to interact more strongly with the substrate.
For particles with purely repulsive interactions, similar lat-
tice softening occurs when the particle-particle interaction
strength is decreased. At the onset of the bubble phase, we find
that the depinning threshold initially drops with increasing
B because the bubbles are unable to fit inside the potential

wells in the same way as the stripe state could; however,
for higher attraction values the depinning threshold increases
with increasing B because the bubbles begin to shrink and
the behavior of the system becomes similar to that of purely
repulsive point particles. We observe two important effects
that are not found for purely repulsive particles: changes in
the morphology, and the impact of the finite width of the
quasi-point-like particles. These effects produce new types of
dynamics that do not appear for purely repulsive particles,
including the hopping of individual particles from one stripe
to another or from one bubble to another. Additionally, the
stripes have an orientational degree of freedom, so that we
can observe a transition from stripes that are parallel to the
substrate troughs to stripes that are perpendicular to the sub-
strate troughs as a function of drive. The internal degrees of
freedom of the stripes and bubbles also make it possible for
distinct types of plastic flow phases to arise that are absent in
the purely repulsive particle limit.

Pattern-forming systems on a 1D substrate exhibit a vari-
ety of additional effects that would be interesting to explore
in future studies, such as thermal or creep effects, where
it would be possible to compare stripe creep to bubble or
anisotropic crystal creep, as well as differences between creep
in the elastic depinning regime and creep in the plastic depin-
ning regime. Several previous studies of particles with purely
repulsive interactions coupled to a 1D periodic substrate
demonstrated reentrant melting or smectic phases as a func-
tion of increasing substrate strength or filling [44,45,47,64].
In this work we considered purely dc driving, but if ac driving
were applied, then we would expect to observe Shapiro step
phenomena [39], and it would be possible to explore whether
the Shapiro steps are enhanced in the stripe phase compared
to the bubble phase. Another direction would be to consider a
2D substrate that could break apart the stripes or lock the flow
of the stripe phase into particular directions. Other interesting
effects to explore include the effect of adding a small amount
of random point disorder or a random shift to the substrate.
Our results should be general to the broader class of stripe or
bubble-forming systems, including those that have different
kinds of interactions, such as a purely repulsive interaction
potential with two length scales.

The closest experimental realization of the system we con-
sider here could be achieved by adding a 1D substrate to a
2D electron gas, which forms crystal, stripe, and bubble states
as a function of an applied magnetic field. Here the pinning
resonance or transport curves could be measured under chang-
ing magnetic field as the system is tuned from the stripe to
the bubble phase. Another possibility is to use low-κ super-
conductors, which can form bubble and stripe states, coupled
to periodic one-dimensional substrates similar to those em-
ployed in previous studies [52]. For soft-matter systems, one
could study colloidal particles on 1D substrates [44,45,47,64]
where the colloids have an additional longer-range repulsion
and short-range attraction. Recently, there has been an ex-
perimental realization of magnetic particles on an interface
that interact via a combination of longer-range repulsion and
short-range attraction, where crystal, stripe, and bubble pat-
terns can form [65]. The dynamic phases that we observe
could be produced by placing such a system on a periodic 1D
substrate and subjecting it to a driving force.
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IX. SUMMARY

We have numerically investigated the pinning and dynam-
ics of a two-dimensional pattern-forming system consisting of
particles with long-range repulsion and short-range attraction
interacting with a periodic one-dimensional substrate. In the
absence of a substrate, this system forms a crystal for very low
attraction strength, an anisotropic crystal at weak attraction
strength, a stripe lattice for intermediate attraction strength,
and a bubble lattice for strong attraction. When a one-
dimensional substrate is added to the sample, we find that the
stripe state is the most strongly pinned overall and is particu-
larly strongly pinned whenever the stripes are commensurate
with the substrate spacing and can align with the sub-
strate minima. In the bubble phase, when the bubbles are
large they do not fit into a single substrate minimum and are
weakly pinned; however, small bubbles that can fit inside the
substrate minima are strongly pinned. The anisotropic crystal
and stripe states can depin plastically either via the motion of
solitons or directly into a disordered flow phase, and at higher
drives, the system can dynamically order into a moving crystal
state or moving stripes that have rotated with respect to the
pinned state and are aligned with the driving direction. We
show that this system exhibits a wide variety of dynamical
phases, and that transitions between the different phases are
observable as multiple steps or peaks in the velocity-force

curves and differential velocity curves. For small substrate
lattice constants, the stripe and bubble phases are replaced
by pinned modulated stripe phases with stripes that are per-
pendicular to the substrate troughs, in contrast to the case
of large substrate spacing where the stripes are aligned with
the substrate troughs. We map out the dynamic phases as a
function of substrate strength, attraction strength, density, and
driving force. At high densities, the stripes remain oriented
with the substrate trough direction and not with the driving
direction even in the moving state. Our results are relevant
for a wide variety of similar pattern-forming systems in both
soft- and hard-matter systems that are coupled to a periodic
one-dimensional substrate.
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Dobrosavljević, Glassy dynamics in geometrically frustrated
Coulomb liquids without disorder, Phys. Rev. Lett. 115, 025701
(2015).

[37] C. Reichhardt, C. J. O. Reichhardt, I. Martin, and A. R. Bishop,
Dynamical ordering of driven stripe phases in quenched disor-
der, Phys. Rev. Lett. 90, 026401 (2003).

[38] H. J. Zhao, V. R. Misko, and F. M. Peeters, Dynamics of self-
organized driven particles with competing range interaction,
Phys. Rev. E 88, 022914 (2013).

[39] C. Reichhardt and C. J. O. Reichhardt, Depinning and nonequi-
librium dynamic phases of particle assemblies driven over
random and ordered substrates: A review, Rep. Prog. Phys. 80,
026501 (2017).

[40] K. Bennaceur, C. Lupien, B. Reulet, G. Gervais, L. N. Pfeiffer,
and K. W. West, Competing charge density waves probed by
nonlinear transport and noise in the second and third Landau
levels, Phys. Rev. Lett. 120, 136801 (2018).

[41] J. Sun, J. Niu, Y. Li, Y. Liu, L. N. Pfeiffer, K. W. West, P.
Wang, and X. Lin, Dynamic ordering transitions in charged
solid, Fund. Res. 2, 178 (2022).

[42] Q. Qian, J. Nakamura, S. Fallahi, G. C. Gardner, and M. J.
Manfra, Possible nematic to smectic phase transition in a two-
dimensional electron gas at half-filling, Nat. Commun. 8, 1536
(2017).

[43] P. T. Madathil, K. A. Villegas Rosales, Y. J. Chung, K. W. West,
K. W. Baldwin, L. N. Pfeiffer, L. W. Engel, and M. Shayegan,
Moving crystal phases of a quantum Wigner solid in an ultra-
high-quality 2D electron system, Phys. Rev. Lett. 131, 236501
(2023).

[44] A. Chowdhury, B. J. Ackerson, and N. A. Clark, Laser-induced
freezing, Phys. Rev. Lett. 55, 833 (1985).

[45] J. Chakrabarti, H. R. Krishnamurthy, A. K. Sood, and S.
Sengupta, Reentrant melting in laser field modulated colloidal
suspensions, Phys. Rev. Lett. 75, 2232 (1995).

[46] K. Harada, O. Kamimura, H. Kasai, T. Matsuda, A. Tonomura,
and V. V. Moshchalkov, Direct observation of vortex dynamics
in superconducting films with regular arrays of defects, Science
274, 1167 (1996).

[47] E. Frey, D. R. Nelson, and L. Radzihovsky, Light-induced melt-
ing of colloidal crystals in two dimensions, Phys. Rev. Lett. 83,
2977 (1999).

[48] Q.-H. Wei, C. Bechinger, D. Rudhardt, and P. Leiderer, Ex-
perimental study of laser-induced melting in two-dimensional
colloids, Phys. Rev. Lett. 81, 2606 (1998).

[49] C. Bechinger, M. Brunner, and P. Leiderer, Phase behavior of
two-dimensional colloidal systems in the presence of periodic
light fields, Phys. Rev. Lett. 86, 930 (2001).

[50] C. Reichhardt and C. J. Olson, Novel colloidal crystalline states
on two-dimensional periodic substrates, Phys. Rev. Lett. 88,
248301 (2002).

[51] M. Brunner and C. Bechinger, Phase behavior of colloidal
molecular crystals on triangular light lattices, Phys. Rev. Lett.
88, 248302 (2002).

[52] P. Martinoli, Static and dynamic interaction of superconducting
vortices with a periodic pinning potential, Phys. Rev. B 17, 1175
(1978).

[53] C. Reichhardt, C. J. Olson, and F. Nori, Dynamic phases of
vortices in superconductors with periodic pinning, Phys. Rev.
Lett. 78, 2648 (1997).

[54] Q. Le Thien, D. McDermott, C. J. O. Reichhardt, and C.
Reichhardt, Orientational ordering, buckling, and dynamic
transitions for vortices interacting with a periodic quasi-one-
dimensional substrate, Phys. Rev. B 93, 014504 (2016).

[55] G. R. Berdiyorov, M. V. Milošević, and F. M. Peeters, Novel
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