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Microscopic theory for nonequilibrium correlation functions in dense active fluids
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One of the key hallmarks of dense active matter in the liquid, supercooled, and solid phases is the so-called
equal-time velocity correlations. Crucially, these correlations can emerge spontaneously, i.e., they require no
explicit alignment interactions, and therefore represent a generic feature of dense active matter. This indicates
that for a meaningful comparison or possible mapping between active and passive liquids one not only needs
to understand their structural properties, but also the impact of these velocity correlations. This has already
prompted several simulation and theoretical studies, though they are mostly focused on athermal systems and
thus overlook the effect of translational diffusion. Here, we present a fully microscopic method to calculate
nonequilibrium correlations in two-dimensional systems of thermal active Brownian particles (ABPs). We
use the integration through transients formalism together with (active) mode-coupling theory and analytically
calculate qualitatively consistent static structure factors and active velocity correlations. We complement our
theoretical results with simulations of both thermal and athermal ABPs which exemplify the disruptive role that
thermal noise has on velocity correlations.
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I. INTRODUCTION

Bridging biology and physics, active matter has received
particular interest over the past two decades and continues
to remain at the vanguard of biophysical and soft matter
research [1–3]. Comprised of particles that convert energy
into systematic movement or mechanical work, active sys-
tems are intrinsically out-of-equilibrium and ubiquitous in
living matter. Concurrently, synthetic active materials are
also increasingly being experimentally realized providing an
interesting playground for colloidal science far away from
equilibrium. The appeal of studying and perhaps utilizing
active systems comes from their ability to showcase a wealth
of new nonequilibrium phenomena that cannot be observed
in standard passive matter. Notable examples include motil-
ity induced phase separation (MIPS) [4–7], activity-induced
crystallization [8,9], accumulation around repulsive obstacles
[10], and active turbulence [11,12].

Another key nonequilibrium hallmark is the so-called
equal-time velocity correlations [13], which primarily arise in
the context of dense active matter, a regime that has recently
seen a significant rise of interest in part due to its implica-
tions in diseases such as cancer and asthma [14–17]. These
correlations quantify local cooperative (or aligned) particle
motion and were first extracted in confluent cell monolayers
[18–20]. Since then they have also been extensively studied in
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simulations of self-propelled particles where they appear in,
e.g., MIPS [21], dense active (glassy) fluids [22–27], model
cell layers [28], and chiral active matter [29], while they
also naturally surface in mode-coupling theories (MCTs) of
dense active fluids [30,31]. Importantly, these correlations
have mostly been shown to emerge spontaneously, that is,
they in principle do not necessitate any explicit alignment
interactions, and thus represent a robust feature of any dense
active matter system.

This implies that for a meaningful comparison and perhaps
a mapping between a dense active and passive fluid, one not
only needs to understand the influence of activity on structural
and dynamic correlations, but more crucially also understand
the role of (equal-time) velocity correlations. To this end,
several theoretical approaches have already been brought for-
ward, though they primarily look at large length scales (or
equivalently small wave numbers) [13,21,28]. Moreover, to
our knowledge most studies on velocity correlations (with
Ref. [26] a notable exception) have mainly focused on ather-
mal systems, that is, systems without translational noise, and
thus do not consider the disruptive effect the latter can have
on velocity correlations.

In this work, to add to our fundamental understanding of
dense active matter, we present an entirely microscopic ap-
proach to analytically calculate nonequilibrium (equal-time)
correlations for interacting thermal active Brownian particles
(ABPs). Our method uses the integration through transients
(ITT) formalism [32] in conjunction with active MCT [33]
and is applied on the static structure factor and the so-called
longitudinal velocity correlations (as they hold particular
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relevance for active MCTs [30,31]). More specifically, we
look at the individual correlations that comprise the total
longitudinal velocity correlation function, which allows us
to better pinpoint its exact origins. To complement the the-
oretical results and rationalize the role of thermal noise, we
also perform simulations of both thermal and athermal ABPs.
We demonstrate that our theory can qualitatively describe the
nonequilibrium structure factor and active-active velocity cor-
relations, while our simulations clearly illustrate the dominant
effect thermal noise has on velocity correlations (especially
ones involving interaction forces).

II. INTEGRATION THROUGH TRANSIENTS

Given its suitability for the ITT formalism and preva-
lence in active matter, we take as our model dense active
liquid a collection of N interacting two-dimensional (2D)
ABPs (disks) at a number density ρ = N/V and tempera-
ture T . The position ri of each particle i evolves in time
according to [1,2,33]

dri

dt
= ζ−1(Fi + fi ) + ξi, (1)

where ζ is the friction coefficient, F i is the interaction force,
and ξi represents a Gaussian thermal noise with zero mean
and variance 〈ξi(t )ξ j (t

′)〉noise = 2DtIδi jδ(t − t ′) with Dt =
kBT ζ−1 the diffusion coefficient and I the unit matrix. The
self-propulsion speed v0 is assumed constant so that the active
force equals fi = ζv0ei. The orientation of the self-propulsion
velocity is in turn given by ei = [cos(θi ), sin(θi )] and its an-
gle randomly reorients with a rotational diffusion coefficient
Dr, i.e.,

θ̇i = χi, (2)

where χi denotes a Gaussian noise process with zero mean
and variance 〈χi(t )χ j (t ′)〉noise = 2Drδi jδ(t − t ′). Based on the
equations of motion one can derive the following Smolu-
chowski operator:

� =
N∑

j=1

Dt∇ j · (∇ j − βF j ) + Dr∂
2
θ j

− v0∇ j · e j, (3)

which governs the time evolution of the probability distri-
bution function (PDF) of particle positions and orientations
P(t ) via

∂P

∂t
= �P(t ). (4)

In equilibrium, that is, for v0 = 0, this equation admits a
Boltzmann solution Peq ∝ e−βU with U the total potential en-
ergy from which the interaction force F j = −∇ jU is derived,
taken to be isotropic, and β = (kBT )−1 the inverse thermal
energy.

The starting point of the ITT approach is then to employ the
identity e�t = 1 + ∫ t

0 dt ′e�t ′
� and insert it in the formal so-

lution of the PDF, P(t ) = e�t P(0) [32–34]. Letting our ABP
system switch from an equilibrated passive state (v0 = 0) to
an active state (v0 > 0) at time t = 0 and assuming it has
reached an active steady state at t → ∞, one can retrieve
an exact expression for the active steady-state average of any

observable A [33],

〈A〉ss = 〈A〉eq − βv0

∫ ∞

0
dt

〈
N∑

j=1

e j · F je
�†t A

〉
eq

. (5)

Here, −βv0

N∑
j=1

e j · F j = �Peq/Peq. �† represents the adjoint

Smoluchowski operator, which acts on everything to its right
except the PDF and is given by

�† =
N∑

j=1

Dt (∇ j + βF j ) · ∇ j + Dr∂
2
θ j

+ v0e j · ∇ j . (6)

The appeal of this approach comes from the fact that a usually
intractable steady-state average 〈. . .〉ss is now rewritten in
terms of transient quantities 〈. . .〉eq which are averaged with
respect to the known equilibrium distribution Peq. At the same
time, the integral term in Eq. (5) remains highly nontrivial and
provides a serious obstacle for any analytical progress.

Equation (5) together with the expectation that many-body
effects on the stationary averages strongly couple to density
fluctuations, has lead to the development of an active mode-
coupling theory (MCT) for the transient time-dependent
density correlation function [33,35–38],

Sll ′ (k, t ) = 〈ρ∗
l (k)e�†tρl ′ (k)〉eq, (7)

where ρl (k) = 1√
N

il
N∑

j=1
eik·r j eilθ j depicts the density mode

(the factor il is added for technical convenience, see Ap-
pendix A for precise details). Using only the passive static
structure factor S(k) (from for instance liquid state theory or
simulations), which enters in the initial condition via

Sll ′ (k) = 〈ρ∗
l (k)ρl ′ (k)〉eq = δll ′ [1 + δl0(S(k) − 1)], (8)

one can invoke this theory to find self-consistent solutions for
Sll ′ (k, t ). Besides aiding to our fundamental understanding of
glassy active matter [33,35–38], these solutions in conjunction
with additional MCT approximations also provide an inter-
esting pathway to explicit analytical expressions for complete
steady-state correlation functions, i.e., ones that include the
integral term in Eq. (5). This has already been successfully ex-
plored in the context of the average swim velocity [37,39], but
our aim is to generalize the idea and also apply it to arguably
more complex static structure and velocity correlations.

In particular, let us first define the integral term in Eq. (5)
for any static observable A as

CA(t ) ≡
〈

N∑
j=1

e j · F je
�†t A

〉
, (9)

where, for notational convenience, we have omitted the sub-
script ‘eq’ which will be done from this point onward. In
the context of rheology MCT approximations have been suc-
cessfully applied directly to CA(t ) [32], even though more
sophisticated approximations exist [40]. However, in our case
CA(t ) does not yet lend itself to MCT approximations as it
may lead to relatively large and thus nonphysical contribu-
tions from the integral term (this has also been explicitly
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checked for the observables in this work). To avoid this prob-
lem and normalize the integral term it has been suggested in
Ref. [37] to further reduce CA(t ) by means of an irreducible
time-evolution operator, �

†
irr = �† − Pv , with

Pv = −
∑

i j

|F i · ei〉β
2Dt

N
〈F j · e j |. (10)

This definition is in part motivated by the fact that MCT
approximations are usually better suited for slow variables and
thus we want to project out the active part of the evolution
operator which is assumed to take on a fast character. Using
Dyson decomposition one then finds∫ ∞

0
dtCA(t ) =

∫ ∞
0 dtCA

irr(t )

1 + β2Dt

N

∫ ∞
0 dtCv

irr(t )
, (11)

where we have introduced the irreducible correlation of swim
velocity corrections

Cv
irr(t ) =

〈
N∑

j=1

e j · F je
�

†
irrt

N∑
i=1

ei · F i

〉
, (12)

and CA
irr, which is the same correlation function as Eq. (9) only

evolving in time with irreducible dynamics e�
†
irrt instead of full

dynamics e�†t .
Employing customary MCT approximations [41–44], that

is, two projections on density doublets, a factorization of
dynamic four-point correlations into products of two-point
correlations, and replacing irreducible by full dynamics, it has
been shown that [37] (see also Appendix B for more details)

Dtβ
2

N
Cv

irr(t ) = ρDt

4π

∫ ∞

0
dq q3c(q)2

× [(S̃11(q, t ) − S̃−11(q, t ))S̃00(q, t )

+ 2S̃01(q, t )S̃10(q, t )]. (13)

Here, we have introduced the real quantity S̃ll ′ (q, t ) =
ei(l−l ′ )θq Sll ′ (q, t ), which, due to rotational symmetry, is inde-
pendent of the orientation of the wave vector θq and only
depends on its magnitude q [37,39] (see also Appendix A).
Note that Cv

irr(t ) is now fully written in terms of transient dy-
namic density correlation functions Sll ′ (k, t ). Moreover, it is
responsible for normalizing the integral term as its magnitude
grows when one approaches denser conditions.

The final step then consists of applying the same MCT
approximations to CA

irr(t ) to end up with an explicit expres-
sion for the steady-state average 〈A〉ss that only depends on
Sll ′ (k, t ), its passive counterpart 〈A〉, and the relevant control
parameters. As such, ITT in conjunction with active MCT pro-
vides a generic framework for analytically evaluating (static)
nonequilibrium averages, though we will show that it gives
the most qualitatively consistent results when our observable
A can already be written as a sum of density doublets.

III. METHODS

A. Active-MCT and ITT numerics

To utilize the proposed ITT method and calculate steady-
state averages, we require explicit expressions for Sll ′ (k, t ).

We therefore numerically solve the active-MCT equations (as
detailed in, e.g., Refs. [33,35,38]) for a monodisperse col-
loidal system of hard disks of diameter σ . We use an
equidistant wave number grid kσ = [0.3, 0.5, . . . , 39.9] (note
that we drop the smallest wave number kσ = 0.1 in favor
of numerical stability) and perform the integration over time
according to the algorithm presented in Ref. [33]. For the
latter, we calculate the first Nt/2 = 16 points in time using
a Taylor expansion with a step size �t = 10−6, numerically
integrate the equations of motion for the next Nt/2 points in
time, duplicate the timestep, and repeat the process. As input
we employ an analytical expression for S(k) attained (as a
function of the area fraction φ = ρπσ 2/4) from density func-
tional theory [45]. For computational convenience we only
consider the first two nontrivial active modes l ∈ [−1, 0, 1],
which is sufficient to calculate the correlation functions in this
work, and fix the wave vector along the x-axis, i.e., k = kex,
so that Sll ′ (k, t ) = S̃ll ′ (k, t ) is always real. We also set the area
fraction at φ = 0.6 (though we have checked that φ = 0.5
gives similar results) which is a trade-off between allowing
sufficiently dense conditions and numerical stability for small
values of k and large active speeds v0. More concretely, choos-
ing a larger value for φ (close to the one used in simulations,
see Sec. III B) yields unstable numerical results for the ITT
predictions. All results are presented in units of σ and σ 2/D
for distance and time, respectively. Finally, the time integra-
tion of the ITT equations is carried out using the trapezoidal
rule.

B. Simulation details

To complement our theoretical results and characterize
the role of translational (thermal) noise on steady-state cor-
relations in dense active matter, we perform simulations
of a slightly polydisperse mixture of N = 1000 quasi-hard
ABPs (disks). The dynamics of each particle i is gov-
erned by Eqs. (1) and (2) where the interaction force
Fi = −∑

j =i ∇iVαβ (ri j ) is derived from a quasi-hard-sphere
power-law potential Vαβ (r) = ε( σαβ

r )36 [46,47]. The inter-
action energy ε and friction constant ζ are equal to one.
For the thermal simulations we fix the temperature and
thus the diffusion coefficient at T = Dt = 1.0, whereas
they are strictly zero for the athermal simulations. To
ensure polydispersity, our mixture consists of equal frac-
tions of particles with diameters (in units of σ ) σαα =
{0.8495, 0.9511, 1.0, 1.0489, 1.1505} [48], which are addi-
tive so that σαβ = (σαα + σββ )/2 [38]. Simulations consist
of solving the Langevin equation [Eq. (1)] via a forward
Euler scheme and are carried out using LAMMPS [49]. We
fix the square box size to set the area fraction at φ = 0.75
which is slightly denser than the theoretical values. This is
done to mitigate the effects of motility-induced phase sepa-
ration (MIPS) [27] and allow for a better comparison with
the ITT results which are obtained for an assumed homoge-
neous system. Setting the persistence time and active speed,
we then run the system for approximately 200 time units
to ensure we are in a steady state, and afterwards track
the particle positions in time. In all simulation results, σ ,
ε, and ζσ 2/ε denote the units of length, energy, and time,
respectively [50].
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FIG. 1. The steady-state structure factor Sneq(k) as a function of
wave number k directly measured from simulation data of thermal
ABPs (a), (c) or obtained fully analytically via the ITT formalism
(b), (d). Results correspond to different active speeds (a), (b) and
persistence times (c), (d).

IV. RESULTS AND DISCUSSION

A. Density correlations

We begin by considering the steady-state (or nonequilib-
rium) static structure factor, i.e., we let A = ρ∗

0 (k)ρ0(k), and
define it as Sneq(k) = 〈ρ∗

0 (k)ρ0(k)〉ss. Carrying out the MCT
approximations [where we mention that, because A has the
form of a density doublet, this requires one less projection
on density doublets compared to Cv

irr(t )], one can find the
following ITT expression (see Appendix B for more details):

Sneq(k) = S(k) − 2ρv0k c(k)

∫ ∞
0 dt S̃10(k, t )S̃00(k, t )

1 + Dt β2

N

∫ ∞
0 dt Cv

irr(t )
. (14)

Note that it only depends on the magnitude k which is consis-
tent with the fact that the active steady state remains isotropic.
We also point out that the time integrals in Eq. (14) consist of
products containing at least one of the correlation functions
S̃ll ′ (k, t ), l = 0, that always exponentially decay to zero, even
in the ideal glass state [33]. Sneq(k) thus never diverges which
is to be expected. Interestingly, this feature also holds for all
other static correlation functions discussed in this work.

Based on the above equation we have calculated Sneq(k)
for different active speeds v0 and persistence times τp = D−1

r .
Concomitantly, we have extracted Sneq(k) from simulation
data for the same active control parameters. The results are
shown in Fig. 1 and upon first glance look qualitatively consis-
tent. In particular, the location of the first peak remains almost
constant at k ∼ 2π/σ , while its height decreases significantly
for increasing values of v0 and only marginally for increasing
τp (note that in simulations the peak is higher due to the

larger packing fraction φ). These features are well captured
by the theoretical predictions and are likely a result of the
(quasi-)hard nature of the particle interactions (constant first
peak location) and the system exhibiting faster dynamics upon
increased activity (decreasing first peak height). Beyond the
first minimum, which is lifted slightly upwards, the influence
of activity on Sneq(k) becomes fairly small. The only excep-
tion is the splitting of the second peak at v0 = 0 (a marker
for local crystalline order [51] and thus not captured by the
theory), which disappears when the system becomes more
active and thus more fluid.

At large enough persistence and active speed we also ob-
serve a small increase of Sneq(k) when k approaches zero
which is associated with increased compressibility and usu-
ally interpreted as a precursor for MIPS [52]. In that regard, it
is remarkable that the ITT result is able to pick up on this as in
principle it has no notion of phase separation. Finally, we have
also extracted Sneq(k) for athermal systems (see Fig. 5), but
their qualitative features are mostly similar to those of their
thermal counterparts (assuming the system is not undergoing
MIPS which dramatically changes the structure factor).

B. Velocity correlations

Having started from a purely structural correlation, a nat-
ural next step is now to also try to explicitly connect the
structure to the (active) velocity of individual particles. For
that, we take a closer look at the so-called longitudinal veloc-
ity correlation function which is defined as

ω(k) = 1

Nζ 2
k̂ ·

〈
N∑

i=1

(F i + f i )e
−ik·ri

N∑
j=1

(F j + f j )e
ik·r j

〉
ss

· k̂,

(15)

and has already been frequently studied in the context of
athermal dense active matter where it is shown to only depend
on the magnitude k, develop oscillations upon increasing v0

and τp, and become constant in the passive limit [13,22–24].
Its behavior for a thermal system, which includes transla-
tional diffusion, in contrast remains largely unexplored and
our aim is therefore to characterize this velocity correla-
tion function in thermal systems and make a comparison
with the better-known athermal phenomenology. Note that
besides the longitudinal, it is also possible to consider the less
well-studied transverse velocity correlations [13] (where we
emphasize that longitudinal and transverse refer to the projec-
tion onto the Fourier wave vector and bear no relation to the
direction of the velocity in real space). However, in its current
form, the ITT procedure only gives nontrivial results for the
longitudinal velocity correlations and therefore we choose to
primarily focus on those in this work. We leave an extension to
transverse velocity correlations, which would require different
approximations [40], for future work.

Since it turns out that our theoretical approach is better
equipped to deal with specific terms in Eq. (15) and to more
exactly pinpoint the role of thermal noise on this correlation
function, we have decided to separate the velocity correlations
in three distinct contributions and consider these individually.
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As such, we write

ω(k) = ωa(k) + 2ωc(k) + ωint (k), (16)

where ωa(k) represents the coupling between the active forces
(or equivalently active velocities), ωc(k) the cross correlation
between active and interaction forces, and ωint (k) the correla-
tion between interaction forces. From this point onward, we
will refer to these terms as the active-active, active-passive,
and passive-passive velocity correlations, respectively.

1. Active-active velocity correlations

Employing MCT approximations one can derive an ex-
plicit ITT expression for the active-active velocity correlation
function which is given by (see Appendix B 3 for a precise
derivation)

ωa(k)

= v2
0

2
− v3

0ρkc(k)

∫ ∞
0 dt S̃01(k, t )[S̃11(k, t ) − S̃−11(k, t )]

1 + Dt β2

N

∫ ∞
0 dt Cv

irr(t )
.

(17)

It is worth pointing out that the observable associated with
this contribution can again be rewritten in terms of density
doublets [see Eq. (B8)] and thus, similar to Sneq(k), one less
projection on density doublets is required. Moreover, within
the ITT approximation ωa(k) only depends on the magnitude
of the wave vector k and not its orientation. This is in agree-
ment with the behavior found for ω(k) in simulations and is to
be expected if the active steady state is isotropic [13,22–24].

Using Eq. (17), we have calculated ωa(k) for different
active speeds v0 and persistence times τp. Results for the same
active control parameters have also been retrieved from the
simulation data of thermal ABPs and both have been plotted
in Fig. 2. In accordance with the athermal simulation results
for ω(k) [13,22–24], we witness the emergence of oscilla-
tions around ωa(∞) = v2

0/2 whose relative size increases as
either v0 or τp is increased. The locations of the correspond-
ing peaks (approximately) coincide with the ones from the
static structure factor and reveal a clear structural signature
in this velocity correlation. Interestingly, all these qualitative
features are thus also predicted by our ITT method with even
a reasonable degree of quantitative accuracy. This is quite
remarkable as we reiterate that the whole ITT procedure has
only required an analytical passive structure factor as input
and we only consider the first non-trivial active modes. At the
same time, the ITT results fail to capture the correct behavior
at small wave numbers k, especially for large persistence and
active speed where the value of ωa from simulations is seen to
increase dramatically, whereas the theoretical results in some
cases even bend down again. It is known, however, that MCT
approximations can sometimes yield less accurate results in
the small-k limit which already occurs for passive systems
[42]. Moreover, the strong increase at small k observed for
simulations marks the onset of clustering behavior (which we
have also checked by visual inspection of particle trajectories)
[21]. It is therefore unsurprising that MCT, which assumes a
homogeneous system, fails to capture this behavior.

To place our thermal results in a broader context, we
have also extracted active-active velocity correlations from the

FIG. 2. The active-active contribution to the velocity correlation
function ωa (k) (normalized by ωa (∞) = v2

0/2) as a function of wave
number k, directly measured from simulation data (a), (c) or obtained
fully analytically via the ITT formalism (b), (d). Results correspond
to different active speeds (a), (b) and persistence times (c), (d).

simulation data of athermal ABPs (see Fig. 5). These exhibit
the same qualitative behavior as the corresponding thermal
results, though the magnitude of the oscillations is larger
indicating that thermal noise disrupts the emergence of these
correlations. Overall, the obtained results for ωa(k) clearly
demonstrate the existence of spatial active velocity correla-
tions in thermal and athermal dense active matter (which have
been checked for finite size effects). This carries an impor-
tant implication, as it has been argued for athermal systems
that such correlations only arise when one considers the total
velocity consisting of both the active and interaction forces
[21,28]. Our results instead suggest that this is not strictly
necessary.

2. Active-passive and passive-passive velocity correlations

In contrast to the active-active correlations, we find that
our current ITT approach is less fruitful in its efforts to de-
scribe the other two contributions [ωc(k) and ωint (k)] to the
total velocity correlations. This is probably a consequence of
the observables not taking the form of density doublets, so
an additional projection is needed. For the latter term, the
presence of two interaction forces hinders a direct analytical
evaluation when using the standard MCT approximations.
As such, a third projection operator seems to be necessary
to separate both interaction forces in addition to projecting
each of them on density doublets, but this has not yielded
satisfactory results. In fact, even the equilibrium-averaged
contribution that constitutes the first term in Eq. (5) does not
have a direct analytical expression. Interestingly however, by
means of a properly orthogonalized projection operator on
density doublets one can find qualitatively consistent results
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FIG. 3. The active-passive contribution to the velocity corre-
lation function ωc(k) (normalized by ωa (∞) = v2

0/2 and with a
prefactor of minus one to improve visibility) as a function of wave
number k. The results are directly measured from simulation data
for (a), (b) a thermal system at temperature T = 1.0 and (c), (d) an
athermal system, and correspond to different active speeds (a), (c)
and persistence times (b), (d).

for ωint (k) of a passive Brownian system (see Appendix D
for more details), which corresponds to taking only the first
term in Eq. (5). In comparison, due to the presence of only
one interaction force, the active-passive correlation function
ωc(k) can be directly evaluated. Though its sign and order
of magnitude are accurately captured, the qualitative behavior
we find from the theory is inconsistent with results from simu-
lations (see Appendix B 4 for more details). It thus seems that
a conventional projection on density doublets is insufficient to
fully capture the behavior of the cross term.

As such, we primarily focus on the results obtained from
both thermal and athermal simulations and try to scrutinize the
role of thermal noise. Let us first focus on the active-passive
velocity correlations for which the results are shown in Fig. 3.
Note that since the active-passive velocity correlation function
is always negative (implying an anticipated anti-correlation
between active and passive forces) and to allow for a good
comparison with the other velocity correlations, we have plot-
ted −ωc(k) and normalized the results with ωa(∞) = v2

0/2.
The first thing we observe is that both the thermal and ather-
mal results are mostly of the same order of magnitude as the
active-active velocity correlations and the rescaled magnitude
of their asymptotic value −ωc(∞) increases with persistence
and decreases for enhanced active speed.

In analogy to the active-active velocity correlations we
also see, provided the active speed and persistence are large
enough, a significant increase of −ωc(k) when k approaches
zero that appears to be more pronounced for the ather-
mal systems. Since the small-k regime indicates long-ranged

FIG. 4. The passive-passive contribution to the velocity corre-
lation function ωint (k) as a function of wave number k, directly
measured from simulation data for (a), (b) a thermal system at a
temperature T = 1.0 and (c), (d) an athermal system (for which it is
normalized by ωa (∞) = v2

0/2). The results correspond to different
active speeds (a), (c) and persistence times (b), (d). The dotted line is
obtained from simulations of a passive Brownian system at T = 1.0.

correlations it is sensible that these are stronger for an ather-
mal system. At the same time, it is worth noting that at a small
persistence of τp = 0.1 (and v0 = 10) the value for −ωc(k)
has already tipped over and decreases as one approaches
k → 0 (in both the thermal and athermal case). It would be
interesting to see if this also occurs for the other curves if
one probes at smaller values of k. Intuitively, there might
even exist a relationship between the so-called persistence
length lp = v0τp [53] and the wave number where such a
tipping takes place. This could explain why we only see it
at a relatively small persistence.

In comparison, for larger wave numbers the similarity
between the thermal and athermal active-passive velocity cor-
relations is less obvious with both demonstrating oscillatory
behavior (though not always with the same phase) and a
sudden peak at roughly the same location as the peak of
S(k). Moreover, these effects for larger values of k and thus
shorter length scales (on the order of a particle diameter or
smaller) are much more evident for the thermal results. They
are therefore probably enhanced by the thermal noise inducing
larger and more erratic instantaneous repulsive forces.

We finalize our results by examining the passive-passive
velocity correlations ωint (k) which are shown in Fig. 4. Upon
inspection we may immediately note that the thermal and
athermal results are significantly different, both quantitatively
and qualitatively. In particular, in the thermal case this term
is relatively big and completely dominates over all other
contributions to the velocity correlations. We expect this to
be caused by translational noise occasionally inducing large
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instantaneous repulsive forces which greatly exceed the active
force. That thermal passive motion is mostly responsible for
this correlation is also reflected in the fact that the qualitative
behavior and order of magnitude of ωint (k) are almost the
same as the one obtained from an equivalent Brownian system
without self-propulsion (see dotted line in Fig. 4). Moreover,
the oscillations of ωint (k) are out of phase with the ones
from Sneq(k) and thus the passive-passive velocity correlation
function seems anticorrelated with the structure.

The corresponding athermal values are instead much
smaller, i.e., of the same order as the active-active and active-
passive velocity correlation functions. This can be explained
by realizing that in a dense athermal system interaction forces,
on average, constantly counteract the self-propulsion forces
and are thus expected to be of the same order of magnitude.
More strikingly, the results (and thus the qualitative behavior)
for ωint (k) seem almost indistinguishable from the active-
passive velocity correlation function −ωc(k). This hints at a
possible formal equivalence (or at least strong connection) be-
tween these parameters in athermal systems, which is further
corroborated by recent results where it is in fact proved in
one-dimension that 〈Fi · Fi〉ss = −〈fi · Fi〉ss [54].

Overall, when comparing thermal and athermal velocity
correlations in dense active fluids it thus seems sensible to
focus more on active-active and active-passive correlations.
Alternatively, coarse-graining the total velocity over a clev-
erly chosen time window [55] might also mitigate the effects
of thermal noise on the velocity correlations. This can be
straightforwardly done in simulations, but is likely more te-
dious in a microscopic description such as ITT.

V. CONCLUSION

In this work we have sought to characterize nonequilibrium
(or steady-state) structure and velocity correlations in dense
active systems, with a prime focus on the often overlooked
influence of thermal (or translational) noise. We have done
so by means of both particle-based computer simulations
and a microscopic theory based on the integration through
transients (ITT) formalism in conjunction with active mode-
coupling theory. Consistent with literature, we find that for
both thermal and athermal systems enhanced active speed and
persistence diminish the structure and make the system more
compressible (the latter being manifested by an increase of the
nonequilibrium static structure factor in the limit of zero wave
number). More importantly, we also demonstrate that all these
features can be qualitatively predicted by our microscopic
theory which only takes a passive (analytical) static structure
factor as its input.

Besides structure, we have also examined all distinct con-
tributions to the equal-time longitudinal velocity correlations,
i.e., spatial correlations between active velocities, interaction
forces, and cross terms of one with the other. We show
that our theory is equally capable of making accurate qual-
itative predictions for the active-active velocity correlations.
These correlations are similar in both thermal and athermal
active systems (though weaker for the former) and become
more significant (larger oscillations and a stronger increase
at small wave number) upon increasing the active speed or
persistence. The existence of such correlations is especially

interesting considering that for athermal systems it has been
previously argued that spatial velocity correlations only arise
when one takes into account the total velocity consisting of
both the active and interaction force.

Moreover, we demonstrate that the cross correlation ex-
hibits distinct qualitative changes due to thermal noise but
only when one probes length scales on the order of a parti-
cle diameter or smaller. The correlation between interaction
forces instead is completely dominated by thermal noise
which leads to much larger values and different qualitative
behavior on all length scales.

Overall, our results further establish ITT as a promising
route to evaluate nonequilibrium averages in active matter and
suggest that correlations between active velocities might carry
more information than previously anticipated. They also show
that thermal noise strongly influences velocity correlations
that involve the instantaneous interaction force. A possible
remedy for this could be to coarse-grain the total velocity over
an astutely chosen time window, which could be done straight-
forwardly in simulations, less so in a microscopic description
such as ITT.

As a follow up, it would be highly interesting to extend
our approach to transverse velocity correlations and study the
small wave number behavior of the individual contributions
to the velocity correlations in greater detail to possibly ex-
tract scaling relations that can be compared for athermal and
thermal systems [13]. This, however, requires (especially for
thermal ABPs) extensive simulation efforts and is therefore
left for future work.
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APPENDIX A: SYMMETRY PROPERTIES

In this Appendix we formally show, basing ourselves on
the derivation of the symmetry properties of the ISF in
Ref. [39], how the inclusion of a factor il in our density mode
ρl (k) in combination with choosing the wave vector k along
the x-axis ensures that the transient density correlations are
always real. It has been shown that if we rotate k by an
angle δθ , the transient density correlation is modified in the
following way [39]:

Sll ′ (k+δθ , t ) = e−i(l−l ′ )δθSll ′ (k, t ). (A1)

In particular, taking δθ = π , one finds

S∗
ll ′ (k, t ) = (−1)l−l ′S−l,−l ′ (k, t ), (A2)

while if we let δθ = −θk, we have

S̃ll ′ (k, t ) ≡ Sll ′ (kex, t ) = ei(l−l ′ )θk Sll ′ (k, t ). (A3)

Next, let us define the linear transformation T⎛
⎝rx

ry

θ

⎞
⎠ →

⎛
⎝ rx

−ry

−θ

⎞
⎠, (A4)
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which represents a symmetric transformation with respect
to the x-axis, and thus leaves absolute distances invariant.
Therefore, the interaction potential U is unchanged, mean-
ing Peq is invariant under T . It is straightforward to prove
that �† is also invariant. This implies that Sll ′ (kex, t ) =
(−1)l−l ′S−l,−l ′ (kex, t ), which combined with Eq. (A2) yields

S̃ll ′ (k, t ) = (−1)l−l ′ S̃−l,−l ′ (k, t ) = S̃∗
ll ′ (k, t ), (A5)

and proves that S̃ll ′ (k, t ) is always real.

APPENDIX B: ANALYTICAL DETAILS

In this Appendix we will present more detailed deriva-
tions of several analytical expressions shown throughout the
main text.

1. Correlation of swim velocity corrections

The irreducible correlation of swim velocity corrections,
i.e., Cv

irr(t ), serves to normalize the ITT quantities we compute
[see Eq. (11)]. To find an analytical expression for this term
we employ standard MCT approximations. In particular, we
insert two projections onto density doublets,

P2 = 1

2

∑
q1q2

∑
l1l2

|ρl1 (q1)ρl2 (q2)〉S−1
l1l1

(q1)S−1
l2l2

(q2)

× 〈ρ∗
l1 (q1)ρ∗

l2 (q2)|, (B1)

such that

Cv
irr(t ) ≈

〈
N∑

j=1

e j · F j P2e�
†
irrtP2

N∑
i=1

ei · F i

〉
. (B2)

Note that, in contrast to conventional MCT, one could have
also used a projection on density singlets but it can be shown
that these yield vanishing contributions. Indeed, if we consider
〈e j · F jρl (k)〉, then k = 0 by translational invariance. Since
Peq is independent of orientation angles, we can isolate the
integral over positions from the one over orientations, leaving
us with 〈e jρl (0)〉{θi} · 〈F j〉{ri}. The second term is zero because
F jPeq ∝ ∇ jPeq and the equilibrium probability vanishes at
infinity. As a result the singlet projection will not contribute
and we therefore use the next-leading doublet projection. For
the so-called left vertex we then have (as has been previously
calculated in Ref. [39])

VL ≡ 1

2

N∑
j=1

〈
e j · F jρl1 (q1)ρl2 (q2)

〉
S−1

l1l1
(q1)S−1

l2l2
(q2)

= −ρ(l1 + l2)

4β
δq1,−q2

δ|l1+l2|,1q1c(q1)

× (eil2θq1 δl1,0 − eil1θq1 δl2,0), (B3)

where we have used partial integration to rewrite the inter-
action force. We emphasize that the left vertex also naturally
arises when applying MCT approximations to CA

irr (t ) (for any
observable A). Moreover, due to the symmetry of Cv

irr (t ), one
can show that the right vertex is the complex conjugate of the
left one. The other MCT approximation consists of factoriz-
ing the four-point density correlation function and replacing

irreducible with full dynamics, i.e.,

〈ρ∗
l1 (q1)ρ∗

l2 (q2)e�
†
irrtρl3 (q3)ρl4 (q4)〉 ≈ Sl1l3 (q1, t )

Sl2l4 (q2, t ) δq1,q3δq2,q4 + Sl1l4 (q1, t )Sl2l3 (q2, t ) δq1,q4δq2,q3 .

(B4)

Combining these results and taking the thermodynamic limit
one finally arrives at

Dtβ
2

N
Cv

irr(t ) = ρDt

8π

∫ ∞

0
dq q3c(q)2

∑
λ,λ′=±1

λλ′

× (S̃λλ′ (q, t )S̃00(q, t ) + S̃0λ′ (q, t )S̃λ0(q, t )),

(B5)

which is consistent with the expression shown in
Refs. [37,39].

2. Nonequilibrium static structure factor

For the static structure factor we take A = ρ∗
0 (k)ρ0(k). The

reference contribution to the steady-state average is thus sim-
ply 〈A〉 = S(k). For the integral term we again use a projection
on density doublets, but since A is already of the form of a
density doublet we only require one projection, i.e.,

CA
irr (t ) ≈

〈
N∑

j=1

e j · F j P2e�
†
irrtρ∗

0 (k)ρ0(k)

〉
. (B6)

Invoking the expression for the left vertex [Eq. (B3)], the
factorization approximation [Eq. (B4)], and the symmetry
properties of S̃ll ′ (k, t ) [Eq. (A5)] one can then find that

CA
irr (t ) ≈ 2ρβ−1kc(k)S̃10(k, t )S̃00(k, t ) (B7)

which leads to Eq. (14) in the main text.

3. Active-active velocity correlations

To derive an expression for the active-active velocity corre-
lations we start by noticing that the product of an active force
and the zeroth density mode can be rewritten as a combination
of higher-order density modes, i.e.,

1√
Nζ

N∑
j=1

k̂ · f je
iK·r j = v0

2

∑
ε=±1

iεeiεθkρ−ε (K ). (B8)

Thus, we have for the reference contribution to the active-
active velocity correlation

〈A〉 = 1

Nζ 2

〈
N∑

i=1

k̂ · f ie
−ik·ri

N∑
j=1

f j · k̂eik·r j

〉

= v2
0

4
(S11(k) + S−1−1(k)) = v2

0

2
, (B9)

while for the contribution inside the integral we again only
require one projection on density doublets,

CA
irr (t ) ≈ 1

Nζ 2

〈
N∑

m=1

em · Fm P2e�
†
irrt

×
∑
i, j

k̂ · f ie
−ik·ri f j · k̂eik·r j

〉
. (B10)
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Invoking the expression for the left vertex [Eq. (B3)], the
factorization approximation [Eq. (B4)], and the symmetry
properties of S̃ll ′ (k, t ) [Eq. (A5)] one may find

CA
irr(k, t ) = v2

0β
−1ρkc(k)S̃01(k, t )[S̃11(k, t ) − S̃−11(k, t )].

(B11)

Using these results in combination with Eqs. (5) and (11) then
yields Eq. (17) in the main text.

4. Active-passive velocity correlations

Despite not giving fully satisfying results, one can find
(with standard MCT approximations) an explicit expression
for the active-passive velocity correlations. Let us first recall
the definition of this correlation,

ωc(k) = 1

2Nζ 2

∑
K=±k

〈
N∑

i, j=1

k̂ · F j k̂ · f ie
iK·(r j−ri )

〉
ss

, (B12)

where we mention that one can also compute the two cross-
correlations separately then sum them, but this gives the same
result as presented below. We choose to evaluate the sum
directly as it allows for simplifications much earlier in the
computation.

Because Peq does not depend on the angles θi, the refer-
ence contribution to the active-passive velocity correlations
is simply zero, i.e., 〈A〉 = 0. For the contribution inside the
integral we now require two projections on density doublets.
This introduces a right vertex of the form

1

2Nζ 2

〈
ρ∗

l3 (q3)ρ∗
l4 (q4)

N∑
i, j=1

k̂ · F j k̂ · f ie
iK·(r j−ri )

〉
. (B13)

Performing integration by parts to remove the interaction
force and summing over K = ±k, we end up with two types
of terms, which contain either averages of three (Sa) or four
(Sb) density modes. For the latter, we can use a Gaussian
approximation, which immediately fixes (q3, l3) and (q4, l4) to
the pair (−K,−ε), (K, 0) (or vice versa), and for the former,
we can use the convolution approximation [33], which will
only fix (q3 + q4, l3 + l4) to (0,−ε), and leave one degree of
freedom in momentum and in angular mode.

One can then show that the two respective contributions
yield for the product of the four-point dynamic density corre-
lation with the right vertex the following expressions:

Sa = Dtv0

4N

∑
ε=±1

εeiεθk
∑
q3,l3

(−k̂ · q3)

× 〈
ρ∗

1ρ∗
2 e�

†
irrtρl3 (q3)ρ−l3−ε (−q3)

〉
× S−1

l3l3
(q3)

[
Sl3l3 (|k − q3|) + Sl3l3 (|k + q3|)

]
,

Sb = Dtv0

4
k

∑
ε=±1

εeiεθk [〈ρ∗
1ρ∗

2 e�
†
irrtρ−ε (−k)ρ0(k)〉

− 〈ρ∗
1ρ∗

2 e�
†
irrtρ−ε (k)ρ0(−k)〉], (B14)

where ρ1 ≡ ρl1 (q1) is defined for convenience. Finally,
introducing the left vertex [Eq. (B3)], the factorization ap-
proximation [Eq. (B4)], and the symmetry properties of

FIG. 5. (a), (b) The static structure factor and (c), (d) active-
active contribution to the velocity correlation function ωa (k)
(normalized by ωa (∞) = v2

0/2) as a function of wave number k,
directly measured from simulation data for an athermal system. The
results correspond to different active speeds (a), (c) and persistence
times (b), (d).

S̃ll ′ (k, t ) [Eq. (A5)] we find for the total contribution of each
term (after a change of variables),

CA,a
irr (k, t ) = Dtv0

8π2β

∫
dqq2 c(q) cos(θk − θq)2

× (1 − S(|k − q|)S−1(q))(S̃0,0(q, t )S̃1,1(q, t )

− S̃0,0(q, t )S̃1,−1(q, t ) + 2S̃01(q, t )S̃10(q, t )),

CA,b
irr (k, t ) = Dtv0

2β
ρc(k)k2

× (S̃0,0(k, t )(S̃1,1(k, t ) − S̃1,−1(k, t ))

+ 2S̃0,1(k, t )S̃1,0(k, t )), (B15)

where CA
irr = CA,a

irr + CA,b
irr . With the help of the above re-

sult one can calculate the active-passive velocity correlation
function but this turns out to give qualitatively inconsistent
results such as a vanishing contribution at large length scales,
though the negative sign and order of magnitude are correctly
captured. It is therefore likely that the second projection on
density doublets introduces a new error and requires refine-
ment to allow for a better prediction.

APPENDIX C: ADDITIONAL DATA
FOR ATHERMAL SYSTEMS

In Fig. 5 we have plotted results for Sneq(k) and ωa(k)
obtained from simulations of athermal ABPs. Overall, these
show similar behavior as their thermal counterparts with one
notable exception, i.e., v0 = 10.0, τp = 10.0, where the peak
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of Sneq(k) is seen to increase again. This, as well as the
very steep rise at vanishing wave number, can be explained
by realizing that for such large values of the active control
parameters the system has undergone MIPS. We mention that
the nonmonotonic behavior of the first peak height has also
been reported in previous work [52].

APPENDIX D: PASSIVE-PASSIVE VELOCITY
CORRELATIONS FOR A BROWNIAN SYSTEM

As mentioned in the main text, the passive-passive ve-
locity correlations ωint (k) cannot be directly evaluated when
employing the standard set of MCT approximations. This is
primarily due to the presence of two interaction forces which
necessitates the use of at least one additional projection oper-
ator. Adding such a projection makes the evaluation of CA

irr (t )
rather intractable (or requires even more approximations). If
we instead only focus on a passive system [for which the
integral term in Eq. (5) is simply zero], analytical progress
can in fact be made.

We thus seek to calculate the passive-passive velocity cor-
relations for a Brownian system which are defined as

ω
eq
int (k) = 1

Nζ 2

〈
N∑

i=1

k̂ · F ie
−ik·ri

N∑
j=1

F j · k̂eik·r j

〉
. (D1)

Assuming that forces are primarily mediated via direct in-
teractions between two particles, we introduce the following
orthogonalized projection on density doublets for a non-trivial
sum of their wave vectors (i.e., q1 + q2 = k)

P⊥
2 =

∑
q1,q2

(
|ρ1ρ2〉 − 1√

N
S1S2|ρ1+2〉

)

× S−1
1 S−1

2

2

(
〈ρ∗

1ρ∗
2 | − 1√

N
S1S2〈ρ∗

1+2|
)

, (D2)

where we have defined ρ1 ≡ ρ(q1) and S1 ≡ S(q1) for con-
venience (note that the angular indices are dropped entirely
since our system is passive). Before proceeding we empha-
size that orthogonalizing the projection operator is crucial to
obtain meaningful results. Using this projection we can then
approximate

ω
eq
int (k) ≈ 1

Nζ 2

〈
N∑

i=1

k̂ · F ie
−ik·ri P⊥

2

N∑
j=1

F j · k̂eik·r j

〉
, (D3)

FIG. 6. The passive-passive contribution to the velocity correla-
tion function ωint (k) as a function of wave number k. The results are
obtained by employing an orthogonalized projection on density dou-
blets using (a) an analytical structure factor for monodisperse passive
hard spheres at packing fraction φ = 0.6 and (b) a structure factor
measured from simulation data of a passive system at temperature
T = 1.0 and packing fraction φ = 0.75. The projection introduces
an integral over k for which different cutoffs kc have been chosen.

which in turn can be evaluated to give (after taking the ther-
modynamic limit)

ω
eq
int (k) = D2

t ρ

8π2

∫
dqS(q)S(|k − q|)

× [k̂ · q c(q) + k̂ · (k − q) c(|k − q|)]2, (D4)

and only depends on the structure factor S(k) (and the relevant
control parameters).

Equation (D4) can be numerically solved employing a
standard scheme in MCT where the wave vector integral is
rewritten in terms of q and p = |k − q| [56]. We have ex-
tracted the solutions to this equation using structure factors
obtained from density functional theory [45] (φ = 0.6) and
from our simulations with v0 = 0. The results are plotted for
different wave number cutoffs kc in Fig. 6. Interestingly, it
can be seen that the qualitative behavior is fully consistent
with the results obtained directly from simulations (see dotted
line in Fig. 4). We may also note that the results start to
fall off for large wave numbers if one chooses a cutoff that
is too small. Finally, increasing the cutoff radius shifts the
curves based on the analytical S(k) whereas it is seen to have
converged at small k for the simulation S(k). This is likely a
result of the hard sphere nature which should lead to diverging
forces if one probes small enough length scales, that is, large
enough k [57].

[1] C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G.
Volpe, and G. Volpe, Rev. Mod. Phys. 88, 045006 (2016).

[2] S. Ramaswamy, Annu. Rev. Condens. Matter Phys. 1, 323
(2010).

[3] M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool,
J. Prost, M. Rao, and R. A. Simha, Rev. Mod. Phys. 85, 1143
(2013).

[4] I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger,
and T. Speck, Phys. Rev. Lett. 110, 238301 (2013).

[5] F. Ginot, I. Theurkauff, F. Detcheverry, C. Ybert, and C. Cottin-
Bizonne, Nat. Commun. 9, 696 (2018).

[6] J. Palacci, S. Sacanna, A. P. Steinberg, D. J. Pine, and P. M.
Chaikin, Science 339, 936 (2013).

[7] M. N. van der Linden, L. C. Alexander, D. G. A. L. Aarts, and
O. Dauchot, Phys. Rev. Lett. 123, 098001 (2019).

[8] G. Briand and O. Dauchot, Phys. Rev. Lett. 117, 098004 (2016).
[9] R. Ni, M. A. Cohen Stuart, M. Dijkstra, and P. G. Bolhuis,

Soft Matter 10, 6609 (2014).

054605-10

https://doi.org/10.1103/RevModPhys.88.045006
https://doi.org/10.1146/annurev-conmatphys-070909-104101
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1103/PhysRevLett.110.238301
https://doi.org/10.1038/s41467-017-02625-7
https://doi.org/10.1126/science.1230020
https://doi.org/10.1103/PhysRevLett.123.098001
https://doi.org/10.1103/PhysRevLett.117.098004
https://doi.org/10.1039/C4SM01015A


MICROSCOPIC THEORY FOR NONEQUILIBRIUM … PHYSICAL REVIEW E 109, 054605 (2024)

[10] A. P. Berke, L. Turner, H. C. Berg, and E. Lauga, Phys. Rev.
Lett. 101, 038102 (2008).

[11] L. Giomi, Phys. Rev. X 5, 031003 (2015).
[12] R. Alert, J. Casademunt, and J.-F. Joanny, Annu. Rev. Condens.

Matter Phys. 13, 143 (2022).
[13] G. Szamel and E. Flenner, Europhys. Lett. 133, 60002 (2021).
[14] L. M. C. Janssen, J. Phys.: Condens. Matter 31, 503002 (2019).
[15] L. Berthier, E. Flenner, and G. Szamel, J. Chem. Phys. 150,

200901 (2019).
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