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Oscillating edge current in polar active fluid
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Dense bacterial suspensions exhibit turbulent behavior called bacterial turbulence. The behavior of the bulk
unconstrained bacterial turbulence is described well by the Toner-Tu-Swift-Hohenberg (TTSH) equation for the
velocity field. However, it remains unclear how we should treat boundary conditions on bacterial turbulence
in contact with some boundaries (e.g., solid walls). To be more specific, although the importance of the edge
current, the flow along the boundary, has been demonstrated in several experimental studies on confined bacterial
suspensions, previous numerical studies based on the TTSH equation employ nonslip boundary conditions and
do not seem to properly describe the behavior of bacteria near the boundaries. In this paper, we impose a slip
boundary condition on the TTSH equation to describe the bacterial motion at boundaries. We develop a method
to implement the slip boundary condition. Using this method, we have successfully produced edge current and
discovered that the direction of the edge current temporally oscillates. The oscillation can be attributable to the
advection term in the TTSH equation. Our paper demonstrates that boundary conditions could play an important
role in the collective dynamics of active systems.
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I. INTRODUCTION

Turbulence-like behavior is observed in a wide range of
active matter systems. It is called active turbulence (for an
inclusive review, see Ref. [1]). As listed in Ref. [1], active
turbulence has been reported in various kinds of experimental
systems, such as sperm suspensions [2], self-propelled Janus
particles [3], tissue cell monolayers [4], microtubule-kinesin
suspensions [5,6], etc.

Dense bacterial suspensions also exhibit turbulent behavior
called bacterial turbulence [1,7,8]. Bacterial turbulence has a
characteristic size of vortex, larger than the size of each single
bacterium, and then exhibits a peaked energy spectrum. Such
characteristic velocity and vorticity profiles and energy spec-
trum are well-described by the Toner-Tu-Swift-Hohenberg
(TTSH) equation [1,7,8] in which the coarse-grained collec-
tive velocity field v, which is given by the sum of the velocity
of the solvent fluid and that of the swimmers with respect to
the fluid [9,10], is considered as the only field variable de-
scribing the state of the system, and other degrees of freedom
(polar order, orientational order, density) are not taken into
account (for example, orientational order is assumed to be
parallel to v). The TTSH equation is given by

(∂t + λ0v · ∇)v = − ∇p + λ1∇(v2) − (α + β|v|2)v

+ �0∇2v − �2(∇2)2v (1)

and the incompressibility condition:

∇ · v = 0. (2)

In Eq. (1), λ0, λ1, α, β, �0, and �2 are constants determined
phenomenologically and p is the Lagrange multiplier to en-
sure the incompressibility [Eq. (2)]. The TTSH model does
not explicitly take account of the solvent in which bacte-
ria swim [1], and therefore breaks the Galilean invariance,

which is reflected in the presence of the λ0 ( �= 1), λ1, α,
and β terms. The term −(α + β|v|2)v, called the Toner-Tu
term, gives a characteristic speed v0 = √|α|/β and the term
�0∇2v − �2(∇2)2v, called the Swift-Hohenberg term, gives a
characteristic length scale �0 = 2π

√
2�2/|�0|.

In recent years, control of the bacterial turbulence has been
attracting interest. More specifically, by imposing geomet-
rical confinements on bacterial suspensions (e.g., confining
bacterial suspensions in microscopic devices, locating small
obstacles in bacterial suspensions, etc.), it has been shown that
the seemingly chaotic motions of bacterial turbulence can be
rectified in many experimental systems: Wioland et al. [11]
confined bacterial suspensions into chambers connected by
channels and demonstrated the transition between ferromag-
netic and antiferromagnetic vortex order (where the directions
of the adjacent vortices are the same and different, respec-
tively) by varying the width of channels. Beppu et al. [12]
performed experiments using dumbbell-shaped devices and
showed a ferro-antiferromagnetic vortex order transition by
varying the distance between the centers of the two circles.
Nishiguchi et al. [13] realized antiferromagnetic vortex order
by locating, in bacterial suspensions, periodic arrays of micro-
scopic vertical pillars whose lateral size is comparable with
the length of a single bacterium.

To study such systems numerically, it is natural to apply
the TTSH equation to the situations where some boundaries
exist. There already exist several studies along this direction:
Reinken et al. [14,15] suggested a numerical method to im-
plement many small obstacles located in bacterial turbulence
and obtained the results consistent with experiments. Puggioni
et al. [16,17] performed TTSH simulations in confined circu-
lar domains whose radius was much larger than the typical
vortex size and showed emergence of a giant vortex whose
size was comparable with the circular domains. Shiratani et al.
[18] also performed simulations in which the radius of the
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circular domain was varied with time, and discovered a hys-
teresis of the transition between the single-vortex stationary
state and the vortex-pair oscillatory state.

As stated above, the previous TTSH simulations revealed
several interesting phenomena. However, the simulation
methods used there seem to fail to capture the behavior at
boundaries because they cannot realize edge current, i.e., the
bacterial flow along the boundaries.

Edge current emerging in various active systems (bacte-
rial suspensions [19], active nematics [20,21], active spinner
materials [22,23], etc.) has been attracting interest recently.
In this paper, we particularly focus on bacterial suspen-
sions described by the TTSH model. Several experimental
studies on confined bacterial suspensions demonstrated that
the edge current gives an essential effect on their collective
motion [11,12,19,24]. However, in all the above TTSH simu-
lations[14–18], a damping term is introduced to represent the
boundary, and then nonslip boundary condition is imposed.
As stated clearly in Ref. [18], in the simulations using nonslip
boundary condition, the magnitude of the velocity continu-
ously decays to zero at the boundaries due to the damping
terms and the edge current does not emerge. Therefore a
nonslip boundary condition does not properly describe the
bacterial motion at the boundaries.

In this paper, we investigate how the difference of bound-
ary conditions affects bacterial collective dynamics. We pro-
pose an extended TTSH model to implement the slip boundary
condition (Sec. II) and, furthermore, present a numerical
method to calculate our extended model equations (Sec. III).
As a result of simulations, we have successfully realized the
edge current (Sec. IV). Furthermore, we discovered that the
direction of the edge current temporally oscillates (Sec. IV).
Note that we consider the two-dimensional TTSH equation in
this paper.

II. MODEL

To describe the bacterial dynamics, we use the Toner-
Tu-Swift-Hohenberg (TTSH) equation [1,7,8] [Eqs. (1) and
(2)], already mentioned in Sec. I. Note that the λ1 term in
Eq. (1) can be absorbed into the p term: −∇p + λ1∇(v2) =
−∇(p − λ1v

2) ≡ −∇q, where we have introduced a new La-
grange multiplier q. Let us use the TTSH equation without the
λ1 term in the following discussions.

Next, for the following discussions, let us rewrite the TTSH
equation [Eq. (1)] in terms of a functional derivative,

∂tv = −δF
δv

− λ0v · ∇v, (3)

where we have introduced the functional

F[v] =
∫

dr
{
−q∂ivi + α

2
vivi + β

4
viviv jv j

+�0

2
(∂ jvi )(∂ jvi ) + �2

2
(∂ j∂ jvi )(∂k∂kvi )

}
. (4)

The first term in Eq. (3), −δF/δv, drives the system to-
wards the minimization of the functional F . The second term,
−λ0v · ∇v, is the advective term and λ0 is the strength of the
advection.

To implement the slip boundary condition, we replace the
functional F with F given by

F [v] =
∫

V
dr

{
−q∂ivi + α

2
vivi + β

4
viviv jv j

+�0

2
(∂ jvi )(∂ jvi ) + �2

2
(∂ j∂ jvi )(∂k∂kvi )

}

+ ξ

2

∫
S

dS(n × v)2
z , (5)

where the body integral
∫

V dr is taken over the fluid region,
the surface integral

∫
S dS is taken over the surface (S) of

V , and n is the outward unit normal vector at the surface
S. The surface term ξ

2

∫
S dS(n × v)2

z can be regarded as the
energetic penalty for the slip velocity (n × v)z. ξ (> 0) is
the drag coefficient. When ξ = 0, no penalty arises for any
finite slip velocity and the functional F [v] gives a stress-free
slip boundary condition. On the other hand, when ξ → ∞,
an infinite penalty arises for arbitrary finite slip velocity and
the functional F [v] gives nonslip boundary condition (see
Appendix C). The boundary condition for a finite value of ξ

will be discussed in Sec. III B after specifying the shape of the
boundary.

III. NUMERICAL METHOD

A. Smoothed profile method

To solve the extended model [Eq. (3) with the functional
F [v], given by Eq. (5)] numerically, we use the smoothed
profile method (SPM) [25,26], where fluid-solid boundaries
are represented by the smoothed profile φ:

φ =
⎧⎨
⎩

0 in solid regions
varies between 0 and 1 smoothly at boundaries
1 in fluid regions.

(6)

Let us consider confining the bacterial suspensions in a closed
circular domain. To represent the circular domain whose ra-
dius is R and center is at the origin, the three regions are
defined as follows:

r < R − δ : fluid,

R − δ � r � R + δ : boundary,

r > R + δ : solid, (7)

where 2δ is the thickness of the smoothed boundary and r
is the distance from the origin. There are several candidates
satisfying the above condition [Eqs. (6) and (7)]. Let us adopt
the seemingly simplest one,

φ(r) = 1

2
tanh

R − r

d
+ 1

2
, (8)

where the thickness of the fluid-solid boundary is order d .
Note that the smoothed profile Eq. (8) is not exactly equal
to 0/1 in the solid (fluid) regions and we introduce a cutoff to
divide the three regions (see Sec. III C for details).
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Using this smoothed profile φ, we modify the integrals in
the functional F [v] [Eq. (5)] as follows:∫

V
dr →

∫
drφ, (9)

∫
S

dS →
∫

dr|∇φ|, (10)

where the integral
∫

dr is taken over the whole (fluid, solid
and their boundary) regions.

Equation (5) is now rewritten as

Fφ[v] =
∫

drφ
{
−q∂ivi + α

2
vivi + β

4
viviv jv j

+�0

2
(∂ jvi )(∂ jvi ) + �2

2
(∂ j∂ jvi )(∂k∂kvi )

}

+ ξ

2

∫
dr|∇φ|(n × v)2

z . (11)

Using the above functional Fφ[v], the basic equation of our
simulation is given by

∂tv = −δFφ[v]

δv
− λ0φv · ∇v. (12)

Note that φ is also put in the λ0 term. The above replace-
ments using the smoothed profile φ [i.e., Eqs. (9), (10), and
the λ0 term in Eq. (12)] will be justified in Sec. III B and
Appendix A.

B. The limit boundary thickness → 0

Let us identify the forms of our modified TTSH equa-
tion [Eq. (12)] in each (solid, fluid, and boundary) region in
the limit of d → 0. We show here only the outline of the
calculation and the results. For the details, see Appendix A.

In the limit d → 0, φ(r) → �(R − r) and ∇φ →
−δ(r − R)n, where �(·) is the step function and δ(·) is the
delta function. In the fluid region, Eq. (12) reduces to the
TTSH equation with no boundary [Eq. (1)]. In the solid re-
gion, Eq. (12) gives

∂tv = 0. (13)

Hence, by giving the initial condition where v = 0 in the solid
region, v = 0 is satisfied in the subsequent time steps.

At the fluid-solid boundary, we obtain

−ξ (n × v)z =
{

n ×
(

↔
σ · n − �2

1

R
∇2v

)}
z

, (14)

where
↔
σ is the stress tensor of the TTSH equation defined by

∂tvi = ∂ jσi j − (α + βv jv j )vi, (15)

σi j ≡ −qδi j − λ0viv j + �0∂ jvi − �2∂ j∂k∂kvi. (16)

Equation (14) is the Navier slip boundary condition
(−ξ (n × v)z = [n × (

↔
σ · n)]z) with a correction term

[−(�2/R)(n × ∇2v)z]. For more details on the Navier
slip boundary condition, see, e.g., Ref. [27]. The Navier slip
boundary condition states that the tangential component of
the velocity at the boundary is proportional to the tangential
component of the stress and has been used not only for
Navier-Stokes fluids but also for several active systems
[21,28].

TABLE I. Fixed parameters through all the simulations.
v0 = √|α|/β and �0 = 2π

√
2�2/|�0|.

J 256
K 85
α/(v0/�0) −0.27
β/(1/(v0�0)) 0.27
�0/(v0�0) −0.078
�2/(v0�

3
0 ) 0.00099

d/�0 0.31

C. Remarks on the simulation techniques

Let us comment on the practical techniques to calculate
Eq. (12). In our numerical simulations, Eq. (12) is rewritten in
terms of the stream function ψ , defined by vi = εi j∂ jψ , where
εi j is the two-dimensional Levi-Civita symbol, defined by
εxy = −εyx = 1, εxx = εyy = 0 (for details, see Appendix B).
By introducing ψ , the incompressibility, Eq. (2), is automat-
ically satisfied and there is no need to solve the Poisson
equation for the Lagrange multiplier q. From the stream
function ψ , we can calculate the velocity vi(= εi j∂ jψ ), the
vorticity ω(= −∇2ψ ), and their spatial derivatives.

We use a pseudospectral method and the fourth order
Runge-Kutta formula for the discretization in space and time,
respectively [29]. The cutoff wave number K of the Fourier
expansion is chosen to satisfy the 3/2 rule for K and the
number of lattice points in each direction J: J � 3K + 1 (see
Table I).

The initial velocity field is random in the region r < 0.7R
and 0 in the region r > 0.7R.

As already mentioned in Sec. III A, we introduce a cutoff to
divide the three (solid, fluid, and boundary) regions as follows:

r < R − 1.5d : fluid,

R − 1.5d < r < R + 1.5d : boundary,

R + 1.5d < r : solid, (17)

where r, R, and d are the same as in Eq. (8).
To satisfy the impermeability n · v = 0 at boundaries and

v = 0 in the solid regions, we set the normal component of the
velocity at the boundary and the velocity in the solid region to
zero at each time step.

In Sec. IV, all physical quantities are nondimensionalized
using the characteristic speed of bacteria v0 and the charac-
teristic length of spacial pattern �0. The nondimensionalized
values of the fixed parameters through all the simulations are
presented in Table I.

IV. RESULTS AND DISCUSSION

A. Vorticity and velocity profiles and oscillation of edge current

Using the simulation method explained in Sec. III, we
successfully realized the edge current. Figures 1 and 2 are
typical snapshots of the vorticity and velocity fields, respec-
tively. See Ref. [30] for the time evolution of the vorticity
and velocity fields. We can observe turbulencelike behavior
in the bulk regions and unidirectional flow (edge current) at
the boundary. Focusing on the boundary region in Fig. 2, we
find the emergence of a counter-rotating double layer which is
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FIG. 1. A typical simulation snapshot of the vorticity field
ω/(v0/�0 ) = (∇ × v)z/(v0/�0 ) at the time t/(�0/v0 ) = 235.2. Pa-
rameters other than those in Table I are as follows: time increment
h/(�0/v0 ) = 0.000555, λ0 = 6.0, R/�0 = 6.3, and ξ/v0 = 2.8 ×
10−2. The black line indicates the outer edge of the smoothed
boundary.

reminiscent of the one reported in the experiment of Wioland
et al. [24]. The emergence of this counter-rotating double
layer in our simulations can be explained as follows: The
TTSH equation has a characteristic length scale �0 de-
termined by its � terms and the direction of the velocity
field switches over the distance ∼�0. Thus, if clockwise
(counterclockwise) edge current emerges at the boundary,
respectively, counterclockwise (clockwise) flow emerges in-
side, leaving the distance ∼�0 from the outer counter-rotating
layer. The inner turbulent flow appears to destroy further
counter-rotating layers that would be expected to emerge from
the same argument, leaving only the double layers in our
simulations.
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FIG. 2. A typical simulation snapshot of the velocity field v/v0 at
the time t/(�0/v0 ) = 235.2. Parameters other than those in Table I
are the same as in Fig. 1. The black line indicates the outer edge
of the smoothed boundary. Velocity arrows are drawn at intervals of
eight lattice points in each direction.

FIG. 3. A typical example of the time evolution of 〈vtan〉. Param-
eters other than those in Table I are the same as in Fig. 1. The vertical
red line indicates the time at which the snapshots (Figs. 1 and 2) are
obtained.

Now let us comment on the relevant length scales in the
experiment of Wioland et al. [24]. The thickness of the bound-
ary layer (∼4 µm) has almost the same value as the length
of each single bacterium (∼5 µm) and they argue that the
bacteria trapped in the outer layer generate the backflow and it
stabilizes the opposite-directional bulk flow. Here, recall that,
as already mentioned in Sec. I, the typical vortex size of bacte-
rial turbulence (=the spacing between counter-rotating double
layers in our simulations) is larger than the length of single
bacterium. Therefore, the mechanisms of the emergence of
the double layer in our simulations and the experiment by
Wioland et al. are different.

To determine the direction of the edge current quantita-
tively, let us introduce the following quantity:

〈vtan〉 ≡ 1

Nb

∑
i∈boundary

vtan(i), (18)

where vtan(= (n × v)z ) is the tangential component of the
velocity at the boundary, i is the lattice label, the summation∑

i∈boundary is taken over the lattice points in the boundary
region defined by Eq. (17), and Nb is the total number of
lattice points in the boundary region. 〈vtan〉 > 0 and <0 cor-
responds to the counterclockwise and clockwise edge current,
respectively.

An example of the time evolution of 〈vtan〉 is shown in
Fig. 3, which demonstrates that the sign of 〈vtan〉 periodically
changes. This means that the direction of the edge current
temporally oscillates.

B. What causes the oscillation?

Here, one simple question arises: What causes the os-
cillation? To be more specific, which term in the TTSH
equation causes the oscillation? To answer this question, let
us focus on the functional-derivative form of the TTSH equa-
tion (Eq. (3) with the functional F [Eq. (5)]:

∂tv = −δF

δv
− λ0v · ∇v. (19)
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FIG. 4. A typical example of the time evolution of 〈vtan〉
for λ0 = 0. Parameters other than those in Table I are the same as
in Fig. 1 except the value of λ0. The vertical red line indicates the
time at which the snapshots (Figs. 5 and 6) are obtained.

Without the λ0 term, Eq. (19) would become ∂tv = −δF/δv

and the velocity field would settle in a stationary state which
minimizes the functional F . Thus, oscillatory behavior is not
expected to occur without the λ0 term. Figures 4–6 show the
results of simulation with λ0 = 0 and we can confirm that
oscillation does not occur. Therefore, we should attribute the
temporal oscillation to the λ0 term. The oscillation occurs for
small but finite λ0, and the discussion on the threshold value
is given in Appendix D. Here, let us give several comments
on the vorticity and velocity field for λ0 = 0: Looking at the
vorticity field (Fig. 5), we can observe the vortices whose
linear size rescaled by �0 is order ∼1. In the velocity field
(Fig. 6), the magnitude of the velocity rescaled by v0 is order

ω/(v0/Λ0)

 0  2  4  6  8  10  12  14  16
x/Λ0
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FIG. 5. A typical simulation snapshot of the vorticity field
ω/(v0/�0) = (∇ × v)z/(v0/�0) for λ0 = 0 at the time t/(�0/v0) =
235.2. Parameters other than those in Table I are the same as in Fig. 1
except the value of λ0. The black line indicates the outer edge of the
smoothed boundary. In the bulk region, we can observe the stationary
vortex lattice which has been observed in Ref. [31].
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FIG. 6. A typical simulation snapshot of the velocity field v/v0

for λ0 = 0 at the time t/(�0/v0) = 235.2. Parameters other than
those in Table I are the same as in Fig. 1 except the value of λ0.
The black line indicates the outer edge of the smoothed boundary.
Velocity arrows are drawn at intervals of eight lattice points in each
direction.

∼1. Note that �0 and v0 are determined, respectively, by the �

terms and α, β term in F . From the above discussions, we can
confirm that, without the λ0 term, the result profiles become
ones which minimize the functional F .

Next we give a simple argument on how the λ0 term causes
the oscillation: The velocity field at the boundary and the
inner counter-rotating layer can be approximately written by
v ∼ c(r)eθ , where eθ is the azimuthal unit vector of two-
dimensional polar coordinate whose origin is at the center
of the circular domain. Using this v, we can calculate the
advection term −λ0v · ∇v and obtain

−λ0v · ∇v ∼ λ0{c(r)}2

R
er, (20)

where er is the radial unit vector of the two-dimensional po-
lar coordinate. Therefore, the advection term has an outward
radial profile regardless of the sign of c(r) (i.e., the direction
of the flow) (see Fig. 7) and this term will exert the velocity
field to rotate toward the opposite direction. Here, note that
the outer flow never has a radial component because of the
boundary condition and then it cannot rotate. However, the

FIG. 7. A schematic of the velocity v (black arrow) and the ade-
vection term −λ0v · ∇v (orange arrow) at the boundary. The curved
black line indicates the outer edge of the smoothed boundary.
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FIG. 8. The radius of the fluid region R versus the characteristic angular frequency ωc for G1 geometry. All simulations are performed with
h/(�0/v0 ) = 0.000555 and parameters listed in Table I.

inner counter-rotating flow can have a radial component and
then it can rotate and switch its direction.

C. Oscillation frequency vs R, ξ, and λ0

Next, let us investigate the relations between the behav-
ior of the edge current oscillation and the parameters R, ξ ,
and λ0, with particular focus on the oscillation frequency.
To characterize the oscillation frequency, let us introduce the
characteristic angular frequency ωc defined by

ωc ≡
∑

n |FT[〈vtan〉]n|2ωn∑
n |FT[〈vtan〉]n|2 , (21)

where FT[〈vtan〉]n is the nth component of the Fourier trans-
form of 〈vtan〉 and ωn is the angular frequency of the nth
Fourier mode.

We performed simulations with all combinations of the
following R, ξ , and λ0: R/�0 = 1.0, 1.6, 3.1, 4.7, 6.3, ξ/v0 =
2.8 × 10−1, 2.8 × 10−2, 2.8 × 10−3, 2.8 × 10−4, 2.8 × 10−5,
and λ0 = 0, 2.0, 4.0, 6.0, 8.0. The results are shown in Figs. 8
and 9. When λ0 = 0 or R/�0 = 1.0, 1.6, the oscillation of
〈vtan〉 does not occur as in Fig. 4 and then we do not plot them
in Figs. 8 and 9. We can observe that ωc tends to increase
with increase of λ0, R, and ξ . Here, let us comment on the
dependence on ξ . ωc tends to increase with ξ , but is almost
constant in the small-ξ region. This is probably because, at
ξ/v0 ∼ 10−2, the boundary condition has already reduced to
the free-slip one. (Recall the discussion presented in Sec. II:

In the limit ξ → 0, the boundary condition will reduce to the
stress-free slip condition.)

Here, note that the larger the advection strength λ0 is,
the more excited the turbulent behavior in the bulk become.
Furthermore, the larger the drag coefficient ξ is, the more
subject to the bulk turbulence the edge current is. From the
above arguments, we can say that the edge current oscillation
will be related to the turbulent behavior in the bulk region.
The relations between ωc and R will be discussed after the
simulations in two more geometries in Sec. IV D.

D. Other geometries

The next question is whether the edge current oscillation
occurs in other geometries. To answer this question, we have
performed the simulations in two more geometries. Let us call
the geometry used in Figs. 1–6 G1. The first one of the two
new geometries (hereinafter called G2, see Figs. 10 and 11) is
the case where the solid and fluid regions are swapped in G1.
The second one (hereinafter called G3, see Figs. 13 and 14)
is the case where the active fluid is sandwiched by two parallel
straight walls perpendicular to the x axis and periodic bound-
ary condition is imposed in the y direction.

We can implement the above two new geometries, G2 and
G3, only by replacing the smoothed profile φ [Eq. (8)] of G1.
This is an advantage of the SPM.

The smoothed profile for G2, φ̃, is

φ̃ = 1 − φ = 1

2
− 1

2
tanh

R − r

d
, (22)
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FIG. 9. The drag coefficient ξ versus the characteristic angular frequency ωc for G1 geometry. All simulations are performed with
h/(�0/v0 ) = 0.000555 and parameters listed in Table I.
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FIG. 10. A typical simulation snapshot of the vorticity field
ω/(v0/�0) = (∇ × v)z/(v0/�0) at the time t/(�0/v0 ) = 312.9 for
G2 geometry. Parameters other than those in Table I are as follows:
time increment h/(�0/v0 ) = 0.000370, λ0 = 4.0, R/�0 = 4.7, and
ξ/v0 = 2.8 × 10−2. The black line indicates the outer edge of the
smoothed boundary.
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FIG. 11. A typical simulation snapshot of the velocity field
v/v0 at the time t/(�0/v0 ) = 312.9 for G2 geometry. Parameters
other than those in Table I are the same as in Fig. 10. The black
line indicates the outer edge of the smoothed boundary. Veloc-
ity arrows are drawn at intervals of eight lattice points in each
direction.
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FIG. 12. A typical example of the time evolution of 〈vtan〉 for G2
geometry. Parameters other than those in Table I are the same as in
Fig. 10. The vertical red line indicates the time at which the snapshots
(Figs. 10 and 11) are obtained.

where R is the radius of the circular solid domain and r, d are
the same ones already used in Eq. (8). The smoothed profile
for G3, ˜̃φ, can be made by replacing r in φ by x,

˜̃φ = 1

2
tanh

R − x

d
+ 1

2
, (23)

where 2R is the spacing of the two walls and d is the same as
in Eq. (8).

In Figs. 10, 11, 13, and 14, we can observe that the edge
current emerges again in G2 and G3. Furthermore, Figs. 12
and 15 show that the edge current oscillation also occurs
also in G2 and G3. See Ref. [30] for the time evolution of the
vorticity and velocity field. G3 geometry is also the subject of
previous studies [32,33], and their results are compared with
ours in Appendix E. Here, let us comment on what causes the
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FIG. 13. A typical simulation snapshot of the vorticity field
ω/(v0/�0 ) = (∇ × v)z/(v0/�0 ) at the time t/(�0/v0) = 274.6 for
G3 geometry. Parameters other than those in Table I are as follows:
time increment h/(�0/v0 ) = 0.000370, λ0 = 4.0, R/�0 = 4.7, and
ξ/v0 = 2.8 × 10−2. Note that the spacing of two walls is 2R/�0. The
black line indicates the outer edge of the smoothed boundary.
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FIG. 14. A typical simulation snapshot of the velocity field v/v0

at the time t/(�0/v0 ) = 274.6 for G3 geometry. Parameters other
than those in Table I are the same as in Fig. 13. The black line
indicates the outer edge of the smoothed boundary. Velocity arrows
are drawn at intervals of eight lattice points in each direction.

oscillation. In the case of G2, we can apply the same argument
as in Sec. IV B. In the geometry G3, applying the similar
argument as in Sec. IV B, we obtain the result −λ0v · ∇v ∼ 0
as follows: The velocity at the boundary and inner counter-
rotating layer can be approximately written by v ∼ c(x)ey

and −λ0v · ∇v ∼ −λ0c(x)∂/∂y(c(x)ey) = 0. However, in the
inner counter-rotating layer, the velocity is affected by the
inner turbulent flow and distorted. Therefore, the inner layer
locally has finite curvature and then we can apply the same
argument as in Sec. IV B locally.

Next, we calculate the characteristic angular frequency ωc

and investigate the relation between ωc and R, ξ , λ0 for G2
(Figs. 16 and 17) and G3 (Figs. 18 and 19). The values of
R, ξ , and λ0 are the same as in G1. In both geometries, as
expected, for λ0 = 0 edge current oscillation does not occur.

FIG. 15. A typical example of the time evolution of 〈vtan〉 for G3
geometry. Parameters other than those in Table I are the same as in
Fig. 13. The vertical red line indicates the time at which the snapshots
(Figs. 13 and 14) are obtained.
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FIG. 16. The radius of the fluid region R versus the characteristic angular frequency ωc for G2 geometry. All simulations are performed
with h/(�0/v0 ) = 0.000370 and parameters listed in Table I.

FIG. 17. The drag coefficient ξ versus the characteristic angular frequency ωc for G2 geometry. All simulations are performed with
h/(�0/v0 ) = 0.000370 and parameters listed in Table I.
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FIG. 18. Half of the spacing of two walls R versus the characteristic angular frequency ωc for G3 geometry. ωc is calculated in each (right
and left) wall. R and L in the legend indicates the right and left wall, respectively. All simulations are performed with h/(�0/v0 ) = 0.000370
and parameters listed in Table I.

Unlike in the case of G1, in G2 geometry, oscillations occur
for all R’s. In G3 geometry, for R/�0 = 1.0 oscillation does
not occur, for R/�0 = 1.6 oscillation is observed only when
λ0 = 2.0 and for other R’s oscillation occurs for all values
of λ0. As in the case of G1, we plot ωc only for the cases
where oscillation is observed. The dependence of ωc on ξ for
G2 and G3 is similar to that for G1 (see Figs. 17 and 19).
However, the dependence on R and λ0 looks different from
the one for G1 geometry. First, let us comment on the relations
between ωc and λ0. In G3 geometry (Fig. 18 or 19), ωc tends
to increase slightly with the increase of λ0 but the tendency
is not so clear as in G1 geometry. In G2 geometry (Fig. 16 or
17), ωc is insensitive to the variation of λ0. From the relations
between ωc and λ0 in the three geometries, we can say that
the more strongly confined the active fluids are , the greater
effect the λ0-term has on the edge current oscillation. Next, let
us mention the relations between ωc and R. In G2 geometry
(Fig. 16), ωc is almost constant. In G3 geometry (Fig. 18),
ωc tends to decrease slightly with R. The typical value of
ωc for G3 is ∼0.08v0/�0 (Fig. 18), close to the asymptotic
value for G1 with large R. This is natural from the fact that
the R → ∞ limit of the G1 geometry can be regarded as
the flat geometry G3. Furthermore, the typical value of ωc

for G2 is close to the one for G3. Those behaviors of ωc in
response to the variation of R suggests that the curvature of
the boundary, when positive and small enough (large-R region
in G1) or negative (G2), does not play an important role in the

oscillation of the edge current. Finally, ωc’s tendency in G3
to slightly decrease with the increasing of R can be explained
as follows: In G3 geometry, the smaller R is, the more narrow
the region the active fluids are confined in, and then the more
excited the turbulent behavior becomes. Therefore, ωc become
larger for smaller R.

V. CONCLUSION

The previous works on TTSH simulations seem to be in-
sufficient in that, although the importance of edge current in
bacterial dynamics has been reported in several experimental
studies, the previous TTSH simulations adopted a non-
slip boundary condition and did not describe such bacterial
motions.

In this paper, we focused on the bacterial behavior at the
fluid-solid boundary and adopted a slip boundary condition
to investigate the effect of the boundary condition on the
bacterial dynamics. To implement the slip boundary condi-
tion, we proposed an extended TTSH model, where a surface
term which can be regarded as an energetic penalty for the
tangential component of velocity is added to the functional
in the TTSH equation. Furthermore, we applied the smoothed
profile method to our model and performed numerical sim-
ulations in three boundary geometries. Our extended TTSH
model successfully realized the edge current in three dif-
ferent boundary geometries. Furthermore, we unexpectedly
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FIG. 19. The drag coefficient ξ versus the characteristic angular frequency ωc for G3 geometry. ωc is calculated in each (right and left)
wall. R and L in the legend indicates the right and left wall, respectively. All simulations are performed with h/(�0/v0 ) = 0.000370 and
parameters listed in Table I.

discovered the temporal oscillation of the direction of the edge
current. The edge current oscillation is observed in all three
boundary geometries. By a simple argument based on the
functional-derivative form of the TTSH equation, the origin of
the oscillation was identified as the λ0 term (advection term)
in the TTSH equation. Note that our argument identifies only
the cause of the oscillation and its detailed mechanism is still
an open question.

To determine the direction of the edge current, we intro-
duced 〈vtan〉, the average of the tangential component of the
velocity in boundary regions, and we traced its time evolution.
To characterize the oscillation of 〈vtan〉 quantitatively, we cal-
culate the power spectrum of the time evolution of 〈vtan〉 and
then the characteristic angular frequency ωc. We investigated
the dependence of ωc on three parameters R, ξ and λ0.

We revealed the behavior of bacterial turbulence in contact
with a slip boundary and our work indicates that the boundary
condition could play an important role in bacterial dynamics.

To our knowledge, oscillating edge current of active fluids
has never been observed. In our simulations, only the ve-
locity field in two dimensions is considered, and the factors
not taken into account in our study, say, the third dimen-
sion, the spatial variation of the density, or other degrees of
freedom, might suppress the oscillation. How the oscillation
could be promoted or suppressed could be an interesting di-
rection of future studies. We also hope that the oscillating
edge current may be observed in a carefully performed future
experiment.
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APPENDIX A: DETAILS OF THE CALCULATION
IN SEC. III B

This Appendix is devoted to proving that in the limit d →
0, our extended TTSH equation [Eq. (12) with Fφ[v] given
by (11)] reduces to Eq. (1) in the fluid region, Eq. (14) at the
fluid-solid boundary and Eq. (13) in the solid region.

Substituting Eq. (11) into Eq. (12) and executing the func-
tional derivative, we obtain

∂tv = − (∇φ)q − φ∇q − αφv − βφ|v|2v
+ �0(∇φ) · ∇v + �0φ∇2v − �2(∇2φ)∇2v

− 2�2(∇φ) · ∇∇2v − �2φ(∇2)2v

− ξ |∇φ|−1((∇φ) · ↔
ε )((∇φ) × v)z − λ0φv · ∇v,

(A1)
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where
↔
ε ((

↔
ε )i j = εi j) is the two-dimensional Levi-Civita

symbol, whose definition has already been given in Sec. III C.
As discussed in Ref. [26], in the limit d → 0,

φ(r) → �(R − r) =
{

1 for r < R
0 for r > R

, (A2)

∇φ → −δ(r − R)n, (A3)

|∇φ| → δ(r − R), (A4)

∇φ

|∇φ| → −n. (A5)

Hence, in the limit d → 0, Eq. (A1) becomes

∂tv = �(R − r)
{ − ∇q − (α + β|v|2)v+�0∇2v − �2(∇2)2v

− λ0v · ∇v
} + δ(r − R)

{
nq − �0n · ∇v

+ 2�2n · ∇∇2v − ξ (n · ↔
ε )(n × v)z

}
+ �2{∇ · (δ(r − R)n)}∇2v. (A6)

In the fluid region (r < R), �(R − r) = 1, δ(r − R) = 0.
Hence, Eq. (A6) reduces to the TTSH equation with no bound-
aries, Eq. (1). In the solid region (r > R), �(R − r) = 0,
δ(r − R) = 0. Thus, Eq. (A6) reduces to

∂tv = 0. (A7)

Therefore, by preparing the initial condition where v = 0 in
the solid region, v = 0 is satisfied at the subsequent time
steps. The equation at the fluid-solid boundary is obtained by
integrating Eq. (A6) with respect to r from R − ε to R + ε,
where ε > 0:∫ R+ε

R−ε

dr∂tv =
∫ R+ε

R−ε

dr�(R − r)
{ − ∇q − (α + β|v|2)v

+ �0∇2v − �2(∇2)2v − λ0v · ∇v
}

+
∫ R+ε

R−ε

drδ(r − R)
{
nq − �0n · ∇v

+ 2�2n · ∇∇2v − ξ (n · ↔
ε )(n × v)z

}

+
∫ R+ε

R−ε

dr�2{∇ · (δ(r − R)n)}∇2v. (A8)

The left-hand side and the first term of the right-hand side
of Eq. (A8), whose integrand has a finite value, go to zero
as ε → 0. It is quite easy to execute the integral of the second
term of the right-hand side. The third integral of the right-hand
side can be evaluated as follows:∫ R+ε

R−ε

dr �2{∇ · (δ(r − R)n)}∇2v

=
∫ R+ε

R−ε

dr �2

{
1

r

∂

∂r
(rδ(r − R))

}
∇2v

=
∫ R+ε

R−ε

dr �2
∂

∂r

{
rδ(r − R)

1

r
∇2v

}

−
∫ R+ε

R−ε

dr �2rδ(r − R)
∂

∂r

(
1

r
∇2v

)

= −
∫ R+ε

R−ε

dr �2δ(r − R)

{
−1

r
∇2v + ∂

∂r
∇2v

}

= �2
1

R
∇2v

∣∣∣
r=R

− �2n · ∇∇2v

∣∣∣
r=R

. (A9)

Therefore, Eq. (A8) reduces to

0 = nq − �0n · ∇v + �2n · ∇∇2v

− ξ (n · ↔
ε )(n × v)z + �2

1

R
∇2v for r = R. (A10)

To obtain the condition on the tangential component, taking
the cross product of Eq. (A10) with n, we obtain

−ξ (n × v)z =
[

n ×
(

↔
σ · n − �2

1

R
∇2v

)]
z

for r = R.

(A11)

This is the Navier slip boundary condition with a correction
term: −(�2/R)n × ∇2v.

By taking the dot product of Eq. (A10) with n, we can
obtain one more boundary condition:

0 = q − �0n · ∇(n · v)

+ �2n · ∇(n · ∇2v) + �2
1

R
n · ∇2v for r = R.

(A12)

In the previous studies using the TTSH equa-
tion (Refs. [14,15,18]), the zero-vorticity boundary condition
(ω = 0) is imposed in addition to the zero-velocity condition
(v = 0). Equation (A12) can be regarded as a boundary
condition for the derivatives of v. Note that the zero-vorticity
boundary condition, together with the zero velocity, also
corresponds to imposing a boundary condition for the
derivative of v. Adding an appropriate surface term regarding
the vorticity to the functional F yields a boundary condition
imposed directly on the vorticity. The introduction of such
boundary conditions could be the subject of future study.

APPENDIX B: STREAM-FUNCTION REPRESENTATION
OF THE TTSH EQUATION

In our calculations, the basic equation is rewritten in terms
of the stream function ψ , defined by vi = εi j∂ jψ . Substituting
vi = εi j∂ jψ into Eq. (A1) and operating εik∂k on both sides of
the equation, we obtain the stream-function representation of
the TTSH equation,

∂t∇2ψ = − α{(∇φ) · ∇ψ − φω} − β{(∇φ) · (∇ψ )v2

+ 2φ(∇ψ ) · (∇v) · v − φv2ω}
+ �0{(∇∇φ) : (∇∇ψ ) − 2(∇φ) · ∇ω − φ∇2ω}
+ �2{(∇∇2φ) · ∇ω + (∇2φ)(∇2ω)

+ 2(∇∇φ) : (∇∇ω)

+ 3(∇φ) · (∇∇2ω) + φ(∇2)2ω}
+ ξ{|∇φ|−3(∇φ) · (∇∇φ) · (∇φ)(∇φ) · ∇ψ

− |∇φ|−1(∇φ) · (∇∇φ) · ∇ψ

− |∇φ|−1(∇φ) · (∇∇ψ ) · ∇φ
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FIG. 20. Time evolution of 〈vtan〉 for large values of ξ . Pa-
rameters other than those in Table I are as follows: h/(�0/v0) =
0.000555, λ0 = 4.0, and R/�0 = 6.3.

− |∇φ|−1(∇2φ)(∇φ) · ∇ψ}
− λ0{(∇φ) · (∇∇ψ ) · v

+ φ(∇v) : (∇∇ψ ) − φv · ∇ω}, (B1)

where we have introduced the following notation:

↔
T :

↔
U ≡ Ti jUi j . (B2)

As already mentioned in Sec. III C, we used a pseudospectral
method to calculate Eq. (B1). In this method, the stream
function ψ is expanded in Fourier series:

ψ =
∑

k

ψ̂keik·r. (B3)

Substituting Eq. (B3) into Eq. (B1), we obtain

dψ̂k

dt
= − 1

k2

∫ 2π

0

×
∫ 2π

0

dxdy

(2π )2
(r.h.s. of Eq. (B1)) e−ik·r. (B4)

APPENDIX C: NONSLIP LIMIT

To confirm that our model gives the nonslip boundary
condition when ξ → ∞, we performed simulations in G1
geometry with large values of ξ and typical values of other
parameters. The result (the time evolution of 〈vtan〉) is shown
in Fig. 20. The amplitude of 〈vtan〉 decreases as the drag
coefficient ξ increases. For sufficiently large values of ξ/v0

(�1.0), the slip velocity becomes almost zero, i.e., the bound-
ary condition reduces to (almost) nonslip.

APPENDIX D: THRESHOLD VALUE OF λ0 BELOW
WHICH EDGE CURRENT OSCILLATION

DOES NOT OCCUR

In Sec. IV C, we confirmed the absence of edge current os-
cillation when λ0 = 0 and its presence when λ0 � 2.0. Here,
one question arises: Is there a finite threshold value of λ0,
λth

0 , below which the edge current oscillation does not occur?

FIG. 21. Time evolution of 〈vtan〉 for smaller values of λ0. Pa-
rameters other than those in Table I are as follows: h/(�0/v0 ) =
0.000555, R/�0 = 6.3, and ξ/v0 = 2.8 × 10−3.

Let us identify λth
0 for a typical set of parameter values in

this Appendix. To identify λth
0 , we performed simulations in

G1 geometry, varying the value of λ0 from 0.1 to 1.9 at 0.1
intervals. The result (the time evolution of 〈vtan〉) is shown in
Fig. 21. Although we plot the results only for 0.1 � λ0 � 1.0
for clarity, we confirmed the oscillation for 1.1 � λ0 � 1.9.
From Fig. 21, we can identify the threshold value as

0.3 < λth
0 < 0.4. (D1)

APPENDIX E: THE BEHAVIOR IN A NARROW CHANNEL

In Refs. [32,33], active nematics are confined in G3 geome-
try. In these studies, when the distance between parallel walls
is larger than the orientation correlation length, the particles
near the edge align parallel with the wall while particles in
the bulk have different directions. On the other hand, when
the distance between walls is equal to or smaller than the
orientation correlation length, the particles in the whole region
have the direction parallel with the walls, which is called
perfect order.

In our simulations, when the distance between the walls
is large, the bulk region exhibits a turbulent behavior (see
Figs. 13 and 14). This behavior is similar to the ones in
Refs. [32,33]. When the distance between the walls is small,
vortices line up at regular intervals (∼�0) in the y direc-
tion (see Figs. 22 and 23) and the perfect order observed in
Refs. [32,33] does not emerge.

This difference can be explained as follows. In the simula-
tions in Ref. [33], the emergence of perfect order is attributed
to the nematic interaction between the constituent rodlike
particles, which allows the orientational order near the walls
to propagate into the channel center. On the other hand, in
the TTSH simulation, the Swift-Hohenberg term that dictates
the typical length scale of the spatial pattern destroys the
uniform profile of v, which results in the alternate distri-
bution of clockwise and counter-clockwise vortices in the y
direction. Thus, the difference in the behavior of order men-
tioned above is associated with the difference in how the order
is generated.
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FIG. 22. A typical simulation snapshot of the vorticity field
ω/(v0/�0 ) = (∇ × v)z/(v0/�0 ) at the time t/(�0/v0) = 274.6 for
G3 geometry. Parameters other than those in Table I are as follows:
time increment h/(�0/v0) = 0.000370, λ0 = 4.0, R/�0 = 1.6, and
ξ/v0 = 2.8 × 10−2. Note that the spacing of two walls is 2R/�0. The
black line indicates the outer edge of the smoothed boundary.
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FIG. 23. A typical simulation snapshot of the velocity field v/v0

at the time t/(�0/v0 ) = 274.6 for G3 geometry. Parameters other
than those in Table I are the same as in Fig. 22. The black line
indicates the outer edge of the smoothed boundary. Velocity arrows
are drawn at intervals of eight lattice points in each direction.

[1] R. Alert, J. Casademunt, and J.-F. Joanny, Active turbulence,
Annu. Rev. Condens. Matter Phys. 13, 143 (2022).

[2] A. Creppy, O. Praud, X. Druart, P. L. Kohnke, and F.
Plouraboué, Turbulence of swarming sperm, Phys. Rev. E 92,
032722 (2015).

[3] D. Nishiguchi and M. Sano, Mesoscopic turbulence and local
order in Janus particles self-propelling under an ac electric field,
Phys. Rev. E 92, 052309 (2015).

[4] S.-Z. Lin, W.-Y. Zhang, D. Bi, B. Li, and X.-Q. Feng, Energetics
of mesoscale cell turbulence in two-dimensional monolayers,
Commun. Phys. 4, 21 (2021).

[5] P. Guillamat, J. Ignés-Mullol, and F. Sagués, Taming active
turbulence with patterned soft interfaces, Nat. Commun. 8, 564
(2017).

[6] B. Martínez-Prat, R. Alert, F. Meng, J. Ignés-Mullol, J.-F.
Joanny, J. Casademunt, R. Golestanian, and F. Sagués, Scaling
regimes of active turbulence with external dissipation, Phys.
Rev. X 11, 031065 (2021).

[7] H. H. Wensink, J. Dunkel, S. Heidenreich, K. Drescher, R. E.
Goldstein, H. Löwen, and J. M. Yeomans, Meso-scale turbu-
lence in living fluids, Proc. Natl. Acad. Sci. USA 109, 14308
(2012).

[8] J. Dunkel, S. Heidenreich, K. Drescher, H. H. Wensink, M. Bär,
and R. E. Goldstein, Fluid dynamics of bacterial turbulence,
Phys. Rev. Lett. 110, 228102 (2013).

[9] S. Heidenreich, J. Dunkel, S. H. L. Klapp, and M. Bär, Hydro-
dynamic length-scale selection in microswimmer suspensions,
Phys. Rev. E 94, 020601(R) (2016).

[10] H. Reinken, S. H. L. Klapp, M. Bär, and S. Heidenreich,
Derivation of a hydrodynamic theory for mesoscale dynam-
ics in microswimmer suspensions, Phys. Rev. E 97, 022613
(2018).

[11] H. Wioland, F. G. Woodhouse, J. Dunkel, and R. E. Goldstein,
Ferromagnetic and antiferromagnetic order in bacterial vortex
lattices, Nat. Phys. 12, 341 (2016).

[12] K. Beppu, Z. Izri, J. Gohya, K. Eto, M. Ichikawa, and Y. T.
Maeda, Geometry-driven collective ordering of bacterial vor-
tices, Soft Matter 13, 5038 (2017).

[13] D. Nishiguchi, I. S. Aranson, A. Snezhko, and A. Sokolov,
Engineering bacterial vortex lattice via direct laser lithography,
Nat. Commun. 9, 4486 (2018).

[14] H. Reinken, D. Nishiguchi, S. Heidenreich, A. Sokolov, M.
Bär, S. H. L. Klapp, and I. S. Aranson, Organizing bacterial
vortex lattices by periodic obstacle arrays, Commun. Phys. 3,
76 (2020).

[15] H. Reinken, S. Heidenreich, M. Bär, and S. H. L. Klapp, Ising-
like critical behavior of vortex lattices in an active fluid, Phys.
Rev. Lett. 128, 048004 (2022).

[16] L. Puggioni, G. Boffetta, and S. Musacchio, Giant vortex dy-
namics in confined bacterial turbulence, Phys. Rev. E 106,
055103 (2022).

[17] L. Puggioni, G. Boffetta, and S. Musacchio, Flocking turbu-
lence of microswimmers in confined domains, Phys. Rev. E
107, 055107 (2023).

[18] S. Shiratani, K. A. Takeuchi, and D. Nishiguchi, Route to
turbulence via oscillatory states in polar active fluid under con-
finement, arXiv:2304.03306.

[19] K. Beppu, Z. Izri, T. Sato, Y. Yamanishi, Y. Sumino, and Y. T.
Maeda, Edge current and pairing order transition in chiral bac-
terial vortices, Proc. Natl. Acad. Sci. USA 118, e2107461118
(2021).

[20] L. Yamauchi, T. Hayata, M. Uwamichi, T. Ozawa, and K.
Kawaguchi, Chirality-driven edge flow and non-Hermitian
topology in active nematic cells, arXiv:2008.10852.

054604-14

https://doi.org/10.1146/annurev-conmatphys-082321-035957
https://doi.org/10.1103/PhysRevE.92.032722
https://doi.org/10.1103/PhysRevE.92.052309
https://doi.org/10.1038/s42005-021-00530-6
https://doi.org/10.1038/s41467-017-00617-1
https://doi.org/10.1103/PhysRevX.11.031065
https://doi.org/10.1073/pnas.1202032109
https://doi.org/10.1103/PhysRevLett.110.228102
https://doi.org/10.1103/PhysRevE.94.020601
https://doi.org/10.1103/PhysRevE.97.022613
https://doi.org/10.1038/nphys3607
https://doi.org/10.1039/C7SM00999B
https://doi.org/10.1038/s41467-018-06842-6
https://doi.org/10.1038/s42005-020-0337-z
https://doi.org/10.1103/PhysRevLett.128.048004
https://doi.org/10.1103/PhysRevE.106.055103
https://doi.org/10.1103/PhysRevE.107.055107
https://arxiv.org/abs/2304.03306
https://doi.org/10.1073/pnas.2107461118
https://arxiv.org/abs/2008.10852


OSCILLATING EDGE CURRENT IN POLAR ACTIVE … PHYSICAL REVIEW E 109, 054604 (2024)

[21] V. Yashunsky, D. J. G. Pearce, C. Blanch-Mercader, F. Ascione,
P. Silberzan, and L. Giomi, Chiral edge current in nematic cell
monolayers, Phys. Rev. X 12, 041017 (2022).

[22] B. C. van Zuiden, J. Paulose, W. T. M. Irvine, D. Bartolo, and
V. Vitelli, Spatiotemporal order and emergent edge currents in
active spinner materials, Proc. Natl. Acad. Sci. USA 113, 12919
(2016).

[23] V. Soni, E. S. Bililign, S. Magkiriadou, S. Sacanna, D. Bartolo,
M. J. Shelley, and W. Irvine, The odd free surface flows of a
colloidal chiral fluid, Nat. Phys. 15, 1188 (2019).

[24] H. Wioland, F. G. Woodhouse, J. Dunkel, J. O. Kessler, and
R. E. Goldstein, Confinement stabilizes a bacterial suspension
into a spiral vortex, Phys. Rev. Lett. 110, 268102 (2013).

[25] Y. Nakayama and R. Yamamoto, Simulation method to resolve
hydrodynamic interactions in colloidal dispersions, Phys. Rev.
E 71, 036707 (2005).

[26] M. Kanke and K. Sasaki, Equilibrium configuration in a ne-
matic liquid crystal droplet with homeotropic anchoring of
finite strength, J. Phys. Soc. Jpn. 82, 094605 (2013).

[27] J. Neustupa and P. Penel, The Navier-Stokes equation with
slip boundary conditions (Mathematical Analysis in Fluid and
Gas Dynamics), RIMS Kôkyûroku 1536, 46 (2007), http://hdl.
handle.net/2433/59018.

[28] R. Ramaswamy and F. Jülicher, Activity induces traveling
waves, vortices and spatiotemporal chaos in a model acto-
myosin layer, Sci. Rep. 6, 1 (2016).

[29] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spec-
tral Methods in Fluid Dynamics (Springer, Berlin, Heidelberg,
1988).

[30] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.109.054604 for the time evolution of the
vorticity and velocity field. G1_vorticity.gif and G1_velocity.gif
show the time evolution of the vorticity and velocity field,
respectively, in G1 geometry. The same applies to G2 and G3
geometries. Parameters used for G1, G2, and G3 geometries are
the same as in Figs. 1, 10, and 13, respectively.

[31] J. Dunkel, S. Heidenreich, M. Bär, and R. E. Goldstein, Min-
imal continuum theories of structure formation in dense active
fluids, New J. Phys. 15, 045016 (2013).

[32] G. Duclos, S. Garcia, H. G. Yevick, and P. Silberzan, Perfect
nematic order in confined monolayers of spindle-shaped cells,
Soft Matter 10, 2346 (2014).

[33] X. Li, R. Balagam, T.-F. He, P. P. Lee, O. A. Igoshin, and H.
Levine, On the mechanism of long-range orientational order of
fibroblasts, Proc. Natl. Acad. Sci. USA 114, 8974 (2017).

Correction: The previously published Figures 8, 9, 16, 17, 18,
and 19 contained incorrect labels on the vertical axes and have
been replaced. Correspondingly, the value given for ωc for G3
in the last paragraph of Sec. IV D has been fixed. A minor
error in the seventh sentence of the penultimate paragraph of
Sec. IV C has been rectified.

054604-15

https://doi.org/10.1103/PhysRevX.12.041017
https://doi.org/10.1073/pnas.1609572113
https://doi.org/10.1038/s41567-019-0603-8
https://doi.org/10.1103/PhysRevLett.110.268102
https://doi.org/10.1103/PhysRevE.71.036707
https://doi.org/10.7566/JPSJ.82.094605
http://hdl.handle.net/2433/59018
https://doi.org/10.1038/s41598-016-0001-8
http://link.aps.org/supplemental/10.1103/PhysRevE.109.054604
https://doi.org/10.1088/1367-2630/15/4/045016
https://doi.org/10.1039/C3SM52323C
https://doi.org/10.1073/pnas.1707210114

