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Elastocapillary interaction for particles trapped at the isotropic-nematic liquid crystal interface
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We present numerical simulations on pairwise interactions between particles trapped at an isotropic-nematic
liquid crystal (Iso-N) interface. The particles are subject to elastocapillary interactions arising from interfacial
deformations and elastic distortions of the nematic phase. We use a recent model based on a phase-field approach
[see Qiu et al., Phys. Rev. E 103, 022706 (2021)] to take into account the coupling between elastic and capillary
phenomena. The pair potential is computed in a two-dimensional geometry for a range of particle separations
and two anchoring configurations. The first configuration leads to the presence of an anchoring conflict at the
three-phase contact line, whereas such a conflict does not exist for the second one. In the first case, the results
show that significant interfacial deformations and downward particle displacements occur, resulting in sizable
attractive capillary interactions able to overcome repulsive elastic forces at intermediate separations. The pair
potential exhibits an equilibrium distance since elastic repulsions prevail at short range and prevent the clustering
of particles. However, in the absence of any anchoring conflict, the interfacial deformations are very small and
the capillary forces have a negligible contribution to the pair potential, which is fully repulsive and overwhelmed
by elastic forces. These results suggest that the self-assembly properties of particles floating at Iso-N interfaces
might be controlled by tuning anchoring conflicts.
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I. INTRODUCTION

It is well established that particles trapped at fluid inter-
faces may undergo a specific interaction known as capillary
interaction [1–3]. These interactions originate from the over-
lap of interfacial deformations that may occur in the vicinity
of the floating particles due to, e.g., their buoyant weight, their
shape, or the presence of electrical charges at their surface
[3–9]. They have been extensively investigated at isotropic
fluid interfaces such as air- or oil-water interfaces and em-
ployed to control the self-assembly of particles with sizes
ranging from a few tens of nanometers up to a few millimeters
[6–9].

However, less known is the behavior of particles attached
to complex fluid interfaces such as, e.g., air- or water-liquid
crystal (LC) interfaces. Because LCs are partially ordered
media, and therefore, bear elastic properties [10], the physical
properties of such systems are expected to be mainly governed
by the interplay of capillary and elastic phenomena. In fact,
particles at LC interfaces may be viewed as the merging of two
research areas, which have been very thoroughly explored, but
in a rather independent way so far. On the one hand, we have
the aforementioned capillary interactions at isotropic fluid
interfaces and, on the other hand, we have the “LC colloids,”
which consist of colloidal particles immersed in a bulk LC
matrix, mostly in the nematic (N) phase [11]. In the latter case,
the self-assembly of particles is governed by elastic interac-
tions driven by deformations of the director field surrounding
the inclusions. Depending on the anchoring conditions of LC
molecules at the particle surface, topological defects may
nucleate as well and play an essential role [11–19].
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However, so far, only a handful of studies have attempted
to bridge the gap between these two research lines by consid-
ering particles attached to isotropic (Iso)-LC interfaces. Little
is known on how capillary and elastic interactions will com-
bine to rule the assembly of a collection of objects. On their
own, capillary and elastic interactions can be either attractive
or repulsive, long-ranged (power-law behavior), anisotropic
in nature (e.g., of dipolar or quadrupolar symmetry), and
feature energies way above the thermal energy [8,9,11]. But
what are the characteristics (e.g., range intensity, symmetry)
of pairwise elastocapillary interactions for instance? Most of
the existing works, mainly experimental, focused only on a
few special cases, often in confined geometries (e.g., thin
nematic films, nematic shells), either at the single particle
level [20–23], or involving a large collection of microparti-
cles. For example, in the latter case, two-dimensional (2D)
crystal-like structures and chain-like clusters were observed at
the air-nematic LC (NLC) [24–28] and water-NLC interfaces
[29,30]. The first study dealing with pairwise interactions
is due to Gharbi et al. [27], who used optical tweezers to
manipulate solid microbeads spread at the free surface of
nematic films. They reported the existence of an unstable
equilibrium distance rc ≈ 5R, where R is the bead radius,
beyond which the particles repelled elastically, and below
which they irreversibly aggregated due to supposed topologi-
cal defect reorganizations. However, both the nematic director
field and interfacial profile around the beads could not be char-
acterized precisely. Afterwards, only two more experimental
investigations followed up on the subject, at least with nematic
LCs. The work of Liu et al. [31] examined the influence of
particle shape on elastocapillary interactions by depositing
microcylinders at the free surface of a thin nematic film. It
was found that the particle assembly was largely dominated
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by capillary attractions, whereas elastic effects controlled the
orientation of the resulting aggregates. Within the same group,
Wei et al. [32] probed the vibrational phonon modes of 2D
crystalline packings of microspheres at the air-NLC interface
and attempted to relate the spring constant of the particle
network to their interactions. Unfortunately, no definite con-
clusion could be drawn due to a limited range in particle
separation.

Besides nematic LCs, Gharbi et al. [33] also investigated
elastocapillary interactions between micrometer-sized solid
beads attached to free-standing smectic films. Using polar-
ized optical microscopy combined with video tracking tools,
these authors reported attractive elastocapillary interactions
arising from distortions of the smectic free surface and bulk
deformations of the smectic layers. The physical picture is
more complicated here because of the presence of focal conics
domains and edge dislocations in the meniscus around the
inclusions.

Despite the above discoveries, there is still a lack of the-
oretical understanding of the observed phenomena, even for
simple objects such as microspheres, and the modeling stud-
ies that appeared on the subject are scarce. Andrienko et al.
[34,35] performed the first numerical simulations of parti-
cles attached to an Iso-N interface, but no interfacial forces
nor three-phase contact line (CL) were taken into account in
their analysis. In order to rationalize the early observations
of Ref. [24], Oettel et al. [36] derived approximate analytical
calculations pertaining to the long-range character of pairwise
interactions. In this case, a repulsive interaction was predicted
both from capillary and elastic effects, provided that the thick-
ness of the nematic film is much larger than the particle size.
Besides the aforementioned investigations, we are not aware
of any other detailed theoretical or numerical reports on these
topics.

Recently, our group developed a model, based on a phase-
field (PF) method, capable of describing elastocapillary flows
of LCs [37,38]. In Ref. [39], we adapted this model in
numerical simulations to probe the behavior of a single par-
ticle trapped at an Iso-N interface. The results showed that
potentially large interfacial deformations and particle dis-
placements, both on the order of 0.5R , may take place as
a result of the coupling between elastic, capillary (surface
tension), and anchoring effects. Since the nematic director
field is also distorted in the vicinity of the particle, such a
configuration may serve as a good starting point to gain more
insight on pairwise elastocapillary interactions. As far as we
know, no predictions exist so far for these interactions at in-
termediate and short ranges, i.e., when the separation distance
is less than a few particle radii.

In this paper, we extend our previous work by considering
a pair of particles placed at the Iso-N interface and study their
interaction as a function of the separation distance. Using the
model designed in Refs. [37,38], we carry out 2D numerical
simulations to first derive qualitative physical trends prior to
considering more sophisticated three-dimensional computa-
tions. Our intention is to shed some light on a novel type
of colloidal interactions that clearly lacks in-depth charac-
terizations, as revealed from the above literature survey. In
particular, we wish to elucidate the relative importance of cap-
illary and elastic interactions by tuning the system parameters.

The paper is organized as follows. The model is briefly
presented in Sec. II. It is numerically solved using a finite-
element method in a 2D geometry. In Sec. III, we study
the pair interaction between particles attached to an Iso-N
interface for a range of separations and two anchoring con-
ditions of LC molecules at the particles surface and at the
fluid interface. When an anchoring conflict exists at the CL, it
is shown that a small, but non-negligible, capillary attraction
can contribute to the interaction potential in addition to an
elastic repulsion which is always dominant at short range. We
discuss our results in light of existing works before concluding
in Sec. IV.

II. THEORETICAL MODEL AND NUMERICAL METHOD

As in Ref. [39], we have used the model of Qiu et al.
[37,38] to address the pair interaction of particles floating at
the Iso-N interface. This model has two key features that make
it possible to study the coupling between elastic and capillary
phenomena: (i) a tensor order parameter Q able to account
for the LC microstructure including potential topological de-
fects and (ii) a PF formalism that accurately represents the
Iso-N interfacial tension and the nematic anchoring stress by
approximating a sharp-interface limit. All the details and val-
idation examples of the model have been reported elsewhere
[37,38]. In the following, we will only summarize the main
ideas and give the governing equations.

A. Governing equations

In the PF-based model of Qiu et al. [37,38], the Iso-N
interface is treated as having a small but finite thickness across
which the PF variable, φ, and all physical properties of the
system, change continuously. φ takes distinct values in each
phase. In our case, the N phase (respectively, Iso phase) cor-
responds to φ = −1 (respectively, φ = 1) and the interface
location may be defined by the contour level φ = 0 . The two
phases mix in the thin diffuse interfacial region and the profile
of φ is determined by a mixing free energy consisting of two
competing terms, one that promotes complete mixing of the
phases and the other that favors total phase separation [40,41].
In the so-called sharp-interface limit, the mixing energy gives
rise to an isotropic surface tension given by σ = 2

√
2λ/3ε ,

where λ [N] is the mixing energy density and ε [m] is the cap-
illary width representative of the interfacial thickness [40,41].

The energy-based formulation of the PF method allows
easy incorporation of the properties of the N phase, which
admits a natural energetic description. In our model, the bulk
elastic distortions and topological defects in the N phase
are described by the phenomenological, Q-based Landau-de
Gennes free energy, whereas a diffuse interface variant of the
well-known Rapini-Papoular anchoring energy accounts for
the finite-strength anchoring of LC molecules at the Iso-N
interface. The expressions of all free energies are omitted
here but can be found in Ref. [38]. Note that we assume
an infinitely strong anchoring of LC molecules on the solid
particle and, consequently, the anchoring energy at the N-solid
interface is not considered.

The governing equations are (i) the Cahn-Hilliard equa-
tion for the transport of the phase-field φ [40,41], (ii) an
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FIG. 1. Sketch of the simulation domain. Box size: (H, L) = (16R, 28R). Symbols: θ , contact angle; �yI , interfacial deformation; ∂	p,
particle surface; ∂	w , box wall; ∂	S , symmetry plane (see text for other symbols definitions). The blue and red arrows indicate that the
particles may interact either attractively, repulsively, or both. Insets: Initial bulk and anchoring conditions of the order parameter Q . The small
ellipsoids symbolize the LC molecules (not to scale). A homeotropic (H) or planar (P) anchoring is prescribed at the Iso-N interface, while a
homeotropic condition is imposed at the particle surface.

evolution equation for Q derived from the Beris-Edwards
(BE) theory [42,43], and (iii) the continuity and momentum
equations of the two-phase system assuming incompressible
fluids:

∂φ

∂t
+ v · ∇φ = γ λ∇2[−∇2φ + φ(φ2 − 1)/ε2], (1)

∂Q

∂t
+ v · ∇Q = S + �H, (2)

∇ · v = 0, (3)

ρ(φ)

(
∂v
∂t

+ v · ∇v
)

= ∇ · T + μ∇φ , (4)

where v is the fluid velocity. In Eq. (1), γ (m3 s/kg) is
the (constant) mobility of the diffuse interface. In Eq. (2),
� (Pa−1 s−1) is the (constant) collective rotational diffusion
coefficient of the N phase, H(φ,Q,∇φ,∇Q) is the molecular
field tensor, and S(∇v,Q) is the corotation tensor [43]. Both
tensors have been altered in our PF method to take into ac-
count the anchoring conditions (either homeotropic or planar)
at the Iso-N interface. The detailed expressions can be found
in Ref. [38]. The last body-force term in Eq. (4) (μ∇φ) is the
diffuse-interface equivalent of the interfacial tension [40,44],
where μ is the chemical potential defined from the PF mixing
free energy [38]. The density ρ(φ) = 1+φ

2 ρi + 1−φ

2 ρn is an
average between the two components, where the subscript i
(respectively, n) refers to the isotropic (respectively, nematic)
phase. The total stress tensor T can be written in the following
form:

T = −pI + (1 + φ)ηiD + (1 − φ)ηnD + T n , (5)

where p is the pressure and D = [(∇v)ᵀ + ∇v]/2 is the rate
of deformation tensor. The second term is the viscous stress
from the isotropic phase while the third term is a viscous
stress of the nematic phase with a constant effective viscosity
ηn , i.e., independent of the molecular orientation [42,43]. The
last term (T n) in Eq. (5) is the nematic stress tensor, whose
expression has been generalized from the bulk BE theory to

take into account the anchoring constraints on the moving Iso-
N interface [38]. Equations (1)–(4) must be supplemented by
initial and boundary conditions (BCs), which will be specified
below in Sec. II C.

In addition to the above fluid equations, we also need to
take into account the equations of motion of the interacting
particles attached to the Iso-N interface. As explained in
Sec. II C, only the vertical displacement (y direction) of the
particles will be allowed in the present simulations. Ignoring
gravity (Sec. II C), the particle translational velocity (Uy) is
governed by MU̇y = Fy , with the initial condition Uy|t=0 = 0 ,
the dot meaning differentiation with respect to time. M is
the particle mass and Fy is the total force exerted on the
particle along the y direction. Fy consists of viscous, elastic,
and capillary forces and can be computed from the following
contour integral:

Fy = ŷ ·
∮

∂	p

(T + T c) · m̂ ds, (6)

where ŷ is the unit normal vector along the y axis, ∂	p is
the particle contour (cf. Fig. 1), m̂ is the outward unit normal
vector to ∂	p , and T is the stress tensor defined in Eq. (5).
Note that the total force exerted on the particle along the x
direction, Fx , can be computed in a similar manner (Sec. III).
In Eq. (6), T c is the capillary stress tensor given in Ref. [41]:
T c = fmix I − λ∇φ∇φ , where fmix is the PF mixing free
energy [40,41]. Once Uy has been determined, the vertical po-
sition of the particle (yp) can be updated by solving ẏp = Uy .

B. Numerical method

As in our previous work [39], we use the finite-element
computational software COMSOL MULTIPHYSICS [45] to
solve numerically the governing equations, and their as-
sociated boundary conditions, together with the particle’s
equations of motion. Details of the numerical approximation
and validation examples can be found in Refs. [37,38]. To
resolve the vertical motion of the particle, we employ the
built-in moving mesh module of COMSOL based on an Ar-
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bitrary Lagrangian-Eulerian scheme. The amplitude of this
motion is always moderate, i.e., typically � 0.5R, and does
not incur any remeshing event. We design nonuniform tri-
angular meshes fitted with subdomains whose mesh size is
adjusted to ensure a sufficient resolution of both the fluid
interface [41,44,46,47] and the topological defects that may
nucleate and migrate in the course of simulations [39]. Out-
side of the subdomains, the mesh size is coarser to save
computational time.

C. Geometry and parameters

In this section, we specify the parameters and the geometry
employed in our 2D simulations (Fig. 1). Two solid particles
of radius R, separated by a center-to-center distance r , are
trapped at the interface between a Newtonian isotropic fluid
and a nematic LC. The whole system is confined in a box of
length L = 28R and height H = 16R . However, because of
symmetry, only half of the box may be considered and the
actual simulated domain has dimensions (H, L/2) . We find
that this box size is a reasonable trade-off between reduced
box size effects and “acceptable” computational times, i.e.,
not exceeding 1 or 2 days for a single run. Indeed, since the
fluid interface has to be finely resolved (see below), the longer
the box, the more time consuming the computations.

A homeotropic (H) anchoring condition is prescribed at
the particle surface, while either a homeotropic or planar (P)
anchoring is imposed at the Iso-N interface (see insets in
Fig. 1). These BCs result in two anchoring configurations
that will be referred to as the H-H and P-H configurations
hereafter, respectively. Notice that, in the former situation, an
anchoring conflict exists at the CL, whereas such a conflict is
absent in the latter one. Two other anchoring configurations,
i.e., the P-P and H-P setups, exist as well but they have been
disregarded here for they are expected to play a similar role
than the H-H and P-H geometries in terms of the anchoring
conflict, respectively.

The anchoring strength W [48] is tunable at the Iso-N
interface, while only a rigid anchoring is set on the parti-
cle wall, as aforesaid. For the initial condition, we require
the far-field LC molecules to be oriented along the vertical
(respectively, horizontal) direction in the H-H (respectively,
P-H) configuration with an equilibrium scalar order parameter
qe = 0.81 (Table I) [38]. For the CH equation [Eq. (1)], and
as in our previous work [39], no-flux BCs were prescribed
across all solid boundaries (∂	w,p): m̂ · ∇μ|∂	w,p = 0 , where
m̂ is the outward unit normal vector to a given boundary.
Next, the equilibrium value of the contact angle, θ , is enforced
on the particle surface at the CL, and only θ = 90◦ will be
considered here. The particle’s center of mass is allowed to
move vertically and the Iso-N interface is initially flat. We
also impose a 90◦ contact angle on ∂	w (left side) and ∂	S

(Fig. 1), meaning that the interface is kept flat there but it is
free to move up or down. Indeed, we will see later that the
interface is likely to be deformed and displaced from its initial
position because of the interplay of elastic, surface tension,
and anchoring effects.

For the continuity and momentum equations [Eqs. (3)
and (4)], the particle surface is a nonslip wall, whereas on
boundaries that mimic infinity or on ∂	S , we use either no

penetration or free slip conditions. Note that PF-based models
can naturally handle the CL dynamics thanks to intrinsic dif-
fusive processes [46,47,49–51]. Furthermore, as in Ref. [39],
we are typically simulating the behavior of micrometer-sized
particles floating at the Iso-N interface. In this case, it is well
established that the interfacial deformations arising from the
particle’s buoyant weight are negligible and can be safely
discarded (see, e.g., Ref. [3]). Thus, gravity is ignored in the
present simulations.

The pair interaction potential is computed in a static man-
ner for a range of r values. Specifically, for a given r , the
particles are allowed to equilibrate in the vertical direction
until the whole system reaches a steady state. The interac-
tion force, defined (in norm) as Fint = 2Fx , where Fx is the
total force acting on the (left) particle in the x direction, is
then computed prior to setting a new r and starting another
simulation. We use a sign convention such that the parti-
cles repel (respectively, attract) one another if Fint is positive
(respectively, negative).

Unless otherwise stated, our simulations are run with the
base parameters listed in Appendix A. When presenting the
results, we use dimensionless variables marked by an asterisk,
which will be defined as they come along in the text.

III. RESULTS AND DISCUSSION

A. H-H configuration

We first present the results on the interaction of two
nearby floating particles at the Iso-N interface in the H-H
configuration (Fig. 1). As aforesaid, the H-H configuration is
characterized by an anchoring conflict at the CL, which makes
it suitable to study the interplay of elastic and capillary phe-
nomena in particle interactions since both the order parameter
field and the interface are distorted. As explained in Sec. II C,
the particles are initially placed at a given center-to-center
distance r and the Iso-N interface is flat at time t = 0 . The
particles are free to move up or down, depending on the forces
acting on them. In turn, the shape of the fluid interface is
likely to be altered by the particle motion. For all r , we only
consider the case θ = 90◦ for which the anchoring conflict is
the strongest at the CL.

Figure 2 shows typical steady-state contour plots of Q2
22

(grayscale) computed for r∗ = r/2R = 6.2 [Fig. 2(a)] and
r∗ = 2 [Fig. 2(b)]. A close-up view of Fig. 2(b) near the
particle is displayed in Fig. 2(c). The isotropic phase displays
as black (Q = 0), whereas in the nematic phase, bright areas
(large values of Q2

22) correspond to LC molecules pointing
upwards, which is the bulk initial condition for Q (Sec. II C).
On the other hand, dark regions (small values of Q2

22) indi-
cate Q-field distortions and we see that, in Fig. 2(a), they
are symmetrically located on either side of the lower part
of the particle. Furthermore, close to the CL, a thorough
inspection of the director field reveals the formation of tiny
topological defects located in the immediate vicinity of the
particle surface [Fig. 2(d)]. This texture is consistent with
the imposed BCs on Q at the interface and at the particle
surface (Sec. II C). Note that, in three dimensions, the elastic
distortions surrounding the particle in Fig. 2(a) would have a
quadrupolar symmetry, and thus, from an elastic viewpoint,
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FIG. 2. H-H configuration. [(a)–(c)] Contour plots of Q2
22

(grayscale) at steady state. (a) r∗ = r/2R = 6.2 and (b) r∗ = 2 .
The red dot-dashed line to the right indicates the symmetry plane.
The full width of the simulation box is displayed in (a) and (b),
but only a part of the domain is shown in the vertical direction.
(c) Zoomed-in view of (b) near the particle. The gray dashed line and
circle represent the initial positions of the interface and the particle,
respectively. (d) Blown-up view of (c) near the contact line. The
grayscale shows the concentration-weighted scalar order parameter
1−φ

2 q , with qe = 0.81 (Table I). The tiny dark blurry area located
inside the dashed circle signals a topological defect. The curve φ = 0
marks the fluid interface. θ = 90◦.

such a particle would be expected to behave as an elastic
quadrupole [11].

In Fig. 2(a), both interfacial deformations and particle
displacement have occurred with respect to the initial state.
If we define the interfacial deformation �yI = yw − yCL as
the difference between the y location of the interface at the
bounding wall (yw) and that at the CL (yCL) (Fig. 1), then
we find �y∗

I = �yI/R � 0.16 and a particle displacement
y∗

p = yp/R � −0.24 for the data of Fig. 2(a). As shown in
Ref. [39], these results can be rationalized by the presence
of an anchoring conflict at the CL, which drives the response
of the system in terms of particle motion and interfacial dis-
tortion. In Fig. 2(a), the values of �y∗

I and y∗
p do not differ

much from those computed for a single particle at the Iso-N
interface for the same parameter set and box size. This is not
too surprising since the particles are several radii away from
one another and hardly interact or only weakly so.

However, bringing the particles closer at r∗ = 2 leads
to more enhanced interfacial deformations and particle dis-
placement, as revealed in Fig. 2(b). The departure from

FIG. 3. H-H configuration. Interaction force (F ∗
int = Fint/Fs) as a

function of the center-to-center distance (r∗ = r/2R) for two values
of the elastic constant (L∗

1 = L1/Fs). The shaded areas around the
data points represent the typical uncertainty interval in the simu-
lations (see text for details). A small attractive well develops at
intermediate range (r∗ < 3) for L∗

1 = 0.5 , whereas an all-repulsive
force is computed for L∗

1 = 1 . Inset: Snapshot obtained for L∗
1 = 1

and r∗ = 1.5 . The red dot-dashed line symbolizes the symmetry
plane. Grayscale: Q2

22. θ = 90◦.

the initial state is best visualized in the zoomed-in view of
Fig. 2(c). Here �y∗

I � 0.41 and y∗
p � −0.4, i.e., the perturba-

tions amount to a significant fraction of the particle radius. At
short range, the particle sinks more into the nematic phase,
and in the narrow space between the particles, the interface
profile is almost flat due to the strong overlap of interfacial de-
formations. These features are typical of capillary interactions
(see, e.g., Ref. [52]) and indicate that the particles actually
undergo a capillary attraction [53]. Note that, because of their
negligible buoyant weight (Sec. II C), the particles under con-
sideration would not produce any interfacial deformations if
adsorbed at isotropic fluid interfaces. Thus, the occurrence
of interfacial distortions and particle motions are specific to
the Iso-N interface and arise from the coupling of elastic,
capillary, and anchoring effects [39].

As for the nematic field, we may notice a slight left-right
asymmetry of the two dark lobes surrounding the particle
[Fig. 2(c)]. From the symmetry of these distortions, we rather
expect an elastic repulsion of the particles at close range (see
below).

To know whether the particles tend to attract or repel one
another due to the interplay of elastic, capillary, and anchor-
ing effects, we have computed the interaction force, F ∗

int =
Fint/Fs , exerted on the particle, as explained in Secs. II A and
II C, for a range of r and two values of the elastic constant
L∗

1 = L1/Fs . Fs is an arbitrary force scale derived from char-
acteristic pressure (105 Pa) and length (10 nm) scales. It is
similar to that used, e.g., in Ref. [54]. The resulting data are
compiled in Fig. 3. Note that, for each data point, we carried
out several simulations by slightly varying the size of the
subdomains that were finely meshed to resolve the Iso-N inter-
face (Sec. II B), including the contact line region. The results
showed that the computed force values featured an averaged
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uncertainty of about ±1.8 × 10−3, which is represented by the
shaded areas around the data points.

Next, we focus on the results obtained for L∗
1 = 1 . In

this case, we see that the interaction force remains always
positive and is therefore repulsive, according to our conven-
tion. Hence, despite sizable interfacial deformations (�y∗

I �
0.1–0.3), which trigger attractive capillary interactions, the
particles tend to stay apart. Furthermore, the closer the par-
ticles, the stronger the repulsion, as is evidenced by the sharp
increase of the force for r∗ < 2 . This repulsion has an elas-
tic origin, as anticipated, and it can be directly visualized
from the asymmetry of the distorted director field around the
particle (see inset in Fig. 3): close to contact, the right dark
lobe appears less extended and more “compressed” towards
the particle surface than its left counterpart. Extrapolating to
3D, our results would be consistent with the fact that elas-
tic quadrupoles repel each other when approaching head-on
[55–57].

A similar conclusion holds at short range (r∗ = 1.5) for
the data presented with L∗

1 = 0.5 since the interaction force is
also repulsive (Fig. 3). However, a striking difference is that
the force becomes negative for intermediate separations up to
r∗ ≈ 3.5 before nearing zero at larger distances. In this region,
the dipping of the force is larger than the aforementioned
uncertainty interval on the force calculation. Hence, the parti-
cles should attract one another for r∗ � 3 until an elastically
dominant repulsion takes over at short range. Incidentally,
this result implies the existence of an equilibrium distance
between the particles located at the minimum of the well, here
at r∗ � 2 .

Of course, it is natural to think that the aforementioned
attraction is of capillary origin and that changing the value of
the elastic constant L1 must have altered the intensity of both
the elastic and capillary parts of the interaction. Actually, the
idea of tuning L1 in Fig. 3 was guided by a simple scaling
argument derived in Ref. [39], which is based on the com-
petition between the bulk elastic energy and surface energies
(surface tension and anchoring). This argument predicts that
�yI ∼ L−1/2

1 , and therefore, decreasing the value of L1 should
enhance interfacial deformations, which, in turn, should boost
the intensity of attractive capillary interactions. The numer-
ical data exhibited on Fig. 4 agree with this prediction. On
these plots, we have reported the interfacial deformations �y∗

I
[Fig. 4(a)], the particle displacement y∗

p [Fig. 4(b)], and the
capillary interaction force F ∗

cap = Fcap/Fs [Fig. 4(c)], taken
here to be positive for convenience) as a function of r for
the two L∗

1 values. In Fig. 4(a), it is clear that the interfacial
deformations are larger for L∗

1 = 0.5 than those recorded for
L∗

1 = 1 , and the closer the particles, the more important the
difference between the two values. Furthermore, the inset
plot in Fig. 4(a) shows that �yI (L∗

1 = 0.5) � √
2 �yI (L∗

1 =
1), i.e., the aforementioned scaling relation (�yI ∼ L−1/2

1 ) is
actually quantitatively verified in a satisfying manner. Cor-
relatively, the particle sinks more into the nematic phase for
L∗

1 = 0.5 than for L∗
1 = 1 , i.e., the particle displacement yp

is more negative in the former case than in the latter, as
illustrated in Fig. 4(b). This phenomenon would be consistent
with the fact that decreasing L∗

1 softens the nematic matrix,
which allows a deeper immersion of the particle. Finally, the

FIG. 4. H-H configuration. Interfacial deformation �yI (a), par-
ticle displacement yp (b), and capillary interaction force Fcap (c) as a
function of the center-to-center distance r for two values of the elastic
constant L∗

1 . Insets in (a) and (c): verification of the scaling relations
�yI ∼ L−1/2

1 and Fcap ∼ L−1/2
1 , respectively (see text for details).

plot in Fig. 4(c) reveals that the capillary interaction force is
enhanced for the smaller L∗

1 value, which is expected since
Fcap ∝ �yI (see Fig. 6 in Appendix B). Incidentally, we also
have Fcap ∼ L−1/2

1 , as shown in the inset of Fig. 4(c), where it
is seen that Fcap(L∗

1 = 0.5) � √
2 Fcap(L∗

1 = 1) .
In light of the above findings, we may reasonably surmise

that the appearance of the attractive well in Fig. 3 for L∗
1 = 0.5

originates from an enhanced capillary attraction driven by
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FIG. 5. P-H configuration. Interaction force (F ∗
int = Fint/Fs) as a

function of the center-to-center distance (r∗ = r/2R). The interaction
potential is repulsive for all separations. As in Fig. 3, the shaded areas
around the data points represent the typical uncertainty interval in the
simulations (see text for details). Insets: Snapshots obtained for r∗ =
4 (a) and r∗ = 1.1 (b). The topological defect located underneath the
particle is slightly shifted towards the symmetry plane at very close
range (b). The interfacial deformations and particle displacement are
negligible here. The red dot-dashed lines symbolize the symmetry
plane. Grayscale: Q2

11. θ = 90◦, L∗
1 = 1 .

larger interfacial distortions. We wish to point out here that
instead of tuning the value of L∗

1 in Fig. 3, we could have just
as well adjust the value of the anchoring strength W at the
Iso-N interface. In fact, it was shown in Ref. [39] that �yI

is an increasing function of W . Thus, there are two ways of
amplifying interfacial deformations: Either increase W while
keeping L1 constant or decrease L1 at constant W as we did in
the present work. Actually, in either case, we decrease the so-
called anchoring extrapolation length LW = L1/W , meaning
that the LC molecules are more and more forced to point along
the prescribed anchoring direction at the interface. This gen-
erates a situation of higher anchoring conflict at the CL and
the system responds to that by deforming more the interface
and pushing the particle further into the nematic bulk as we
showed.

B. P-H configuration

To emphasize the differences with the H-H configuration,
we now consider the P-H configuration (cf. Fig. 1) for which
there is no anchoring conflict at the CL provided the contact
angle is equal to 90◦, which is the case here. We employ a
similar procedure and the same physical parameters as those
used in the H-H setup. As expected, the equilibrium director
field differs from that computed in the H-H configuration,
and a topological defect of winding number −1/2 now forms
underneath the particle at a finite distance from its surface
as shown in snapshot (a) of Fig. 5. The dark lobes located
on either side of the defect signal areas of sizable elastic
distortions.

The results of the pair interaction potential are displayed
in Fig. 5 for a range of separation distances. As in Fig. 3, the
shaded area around the data points represents the uncertainty

interval on the total force computation, which amounts to
±1.2 × 10−3 here. We see that the interaction potential is
exclusively repulsive with a sharp increase of the repulsion
at short range. Whatever the separation, and whether we use
L∗

1 = 1 or L∗
1 = 0.5 , both the interfacial deformations and

particle displacement are extremely small, with typical values
�yI ≈ 0.002R and yp ≈ 0.003R . This is in stark contrast with
the values obtained in the H-H setup, where �yI , yp ∼ 0.4R
[cf. Fig. 4(a)]. Thus, in the P-H configuration, the interaction
potential is completely dominated by elastic effects with a
negligible contribution from capillary forces.

Interestingly, an unexpected phenomenon appears at very
short range, as illustrated in Fig. 5(b): The defect located
below the particle, which is usually aligned with the particle
center as in Fig. 5(a), gets a bit shifted towards the other
nearby particle. This defect motion only occurs for a small-
enough separation distance and is a direct consequence of
the symmetry BC prescribed on this plane (Fig. 1). We have
checked that it is not correlated to the presence of the other
nearby particle for it is indeed well known that topological de-
fects with equal winding numbers repel one another elastically
[10,58]. At close range, and with the imposed BCs, we may
rather conjecture that the system finds a way of minimizing
elastic distortions in the squeezed space between the particle
by bringing slightly the defects closer to the symmetry plane.

IV. CONCLUDING REMARKS

In this work, we have carried out numerical simulations
on the pair interaction of solid micrometer-sized particles
trapped at the Iso-N interface. The particles are subject to
elastocapillary interactions driven by both elastic and inter-
facial deformations. To capture such phenomena, we have
used a model that combines a diffuse interface method (PF) to
account for the properties of the Iso-N interface with a tensor
order parameter description of the nematic phase, including
topological defects. Such a model is well suited to describe
the coupling between elasticity and capillarity, as shown in
previous studies [37–39]. We have primarily focused our at-
tention to the particular situation where there is an anchoring
conflict at the CL. Such a conflict can be achieved by pre-
scribing, e.g., a homeotropic anchoring of the LC molecules
at both the particle surface and the Iso-N interface. In this
configuration, it was demonstrated that significant interfacial
deformations and particle displacements, on the order of the
particle radius, occur in the vicinity of the floating object
[39]. With these anchoring conditions, we have computed
the interaction force acting on a pair of particles for several
separation distances. Among the salient results, we have found
that, although the interaction potential is always repulsive at
short range, attractive capillary forces may dominate their
repulsive elastic counterparts at intermediate distances, pro-
vided the anchoring is strong enough at the Iso-N interface. In
this case, the anchoring conflict is enhanced, leading to larger
interfacial distortions and attractive capillary forces. However,
in the absence of an anchoring conflict at the CL, there is
no interfacial deformation nor particle displacement. In this
case, the interaction potential is repulsive for all separation
distances and dominated by elastic effects.
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TABLE I. Definitions and base values of the parameters used in the simulations. The subscript “n” (respectively, “i”) denotes nematic
(respectively, isotropic). “PF” denotes phase field.

Parameter Symbol Value Unit

Elastic constant L1 5–10 pN
Scalar order parameter at equilibrium qe 0.81 [38] —
Nematic rotational viscosity γ1 = 1/� 0.04 Pa s
Density ρn , ρi 103 kg m−3

Viscosity ηn , ηi 0.07 Pa s
Surface tension σ 2.25 × 10−3 N m−1

Anchoring strength Ws 10−3 N m−1

Particle radius R 1 µm
Contact angle θ 90◦ deg
Capillary width (PF) ε 20 nm
Mobility (PF) γ 4 × 10−15 m2/(Pa s)
Box dimensions (height,length) (H, L) (16R, 28R) µm

Overall, our results highlight the importance of having
an anchoring conflict at the CL in order to generate sizable
interfacial deformations and, thereby, large-enough attractive
capillary forces able to compete with their elastic counter-
parts. Thus, a key finding is that anchoring conflicts appear to
be of primary importance to control the self-assembly proper-
ties of particles adsorbed at Iso-N interfaces. This prediction
brings about new insight on a topic for which there is a dearth
of modeling and numerical studies. We hope that the trends
derived here in two dimensions hold as well in three dimen-
sions, where a more direct comparison to existing experiments
can be made [24,27,32].

In this study, we have only considered a 90◦ contact angle
because it is for this value that the anchoring conflict at the
CL is the strongest in the H-H configuration. In this case, we
can anticipate that any other θ value will dwindle capillary
forces because of smaller interfacial deformations. However,
the opposite trend is expected in the P-H configuration for
which capillary effects should have a growing influence as
θ deviates more and more from 90◦. Exploring these new
configurations is part of ongoing simulation efforts to com-
plement and strengthen our findings.

So far, most investigations in the field focused on the
nematic phase. But, as mentioned in the Introduction, elasto-
capillary interactions also occur with more ordered LC phases
such as smectics in the free-standing film geometry [33]. In
such systems, the physical picture is more complex as the
meniscus surrounding solid inclusions contains a high den-
sity of (edge) dislocations and usually takes the shape of a
corona that is often decorated with stripes and/or focal conics
domains [59,60]. The detailed structure of smectic mesnici
is still not yet fully understood despite recent progress [61].
Understanding the inner workings of elastocapillary interac-
tions in these systems is a challenging and potentially exciting
research prospect.
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APPENDIX A: SIMULATION PARAMETERS

The parameters characterizing the nematic LC are close to
those of the widely used compound 5CB and can be found
in Ref. [38]. The numerical parameters for the CH dynamics
(capillary width ε, mobility γ ) are chosen according to the
guidelines reported in Refs. [41,44,46]. The dimensional base
values of all simulation parameters are listed in the Table I.

FIG. 6. Proportionality relationship between the capillary inter-
action force Fcap and the interfacial deformation �yI for two values
of the elastic constant L∗

1 .
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APPENDIX B: CAPILLARY FORCE VS INTERFACIAL
DEFORMATIONS

Figure 6 exhibits the variations of the capillary interaction
force Fcap as a function of the interfacial deformation �yI for
the two L∗

1 values explored in this work. In both cases, if we

discard the first data point corresponding to a very small force,
i.e., the particles are far away from each other, then we see that
Fcap ∝ �yI , as shown by the linear fits. Since �yI ∼ L−1/2

1 , it
follows that Fcap ∼ L−1/2

1 , as mentioned in the main text and
illustrated in the inset of Fig. 4(c).
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