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Dynamical phase transition in models that couple chromatin folding with histone modifications
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Genomic regions can acquire heritable epigenetic states through unique histone modifications, which lead
to stable gene expression patterns without altering the underlying DNA sequence. However, the relationship
between chromatin conformational dynamics and epigenetic stability is poorly understood. In this paper,
we propose kinetic models to investigate the dynamic fluctuations of histone modifications and the spatial
interactions between nucleosomes. Our model explicitly incorporates the influence of chemical modifications
on the structural stability of chromatin and the contribution of chromatin contacts to the cooperative nature of
chemical reactions. Through stochastic simulations and analytical theory, we have discovered distinct steady-
state outcomes in different kinetic regimes, resembling a dynamical phase transition. Importantly, we have
validated that the emergence of this transition, which occurs on biologically relevant timescales, is robust against
variations in model design and parameters. Our findings suggest that the viscoelastic properties of chromatin and
the timescale at which it transitions from a gel-like to a liquidlike state significantly impact dynamic processes
that occur along the one-dimensional DNA sequence.
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I. INTRODUCTION

Eukaryotic cells compactly package their genome into
chromatin that consists primarily of nucleosomes formed by
DNA wrapping around histone proteins [1,2]. These core
histones are often subject to post-translational marking, in-
cluding acetylation and methylation, [3,4] which partitions
chromosomes into distinct domains with differential tran-
scription activity [5–21], providing active (euchromatic) and
inactive (heterochromatic) regions with characteristic chemi-
cal signals. The coexistence of stretches of chromatin enriched
and depleted of specific histone marks implies multistability
in epigenetic regulation [9,22].

Many theoretical models have been introduced to study
the stability of histone marks [23–33]. Positive feedback un-
derpins these models since existing marks recruit enzymes
to confer similar marks at new nucleosomes [34–38]. The
3D structure of the genome births this feedback as chro-
matin loops bringing nucleosomes far apart in sequence into
spatial proximity facilitating long-range spreading of histone
marks [39–42]. Additionally, chemical modifications also af-
fect nucleosome-nucleosome interactions, either by directly
altering the physicochemical properties of amino acids or
by recruiting additional protein molecules [43–48], impacting
chromatin organization. Therefore, chromatin is an instructive
scaffold inextricably linked to epigenetic regulation [49–51].

Explicitly accounting for chromatin organization when
studying histone marks has become increasingly important
in recent studies [52–61]. Early efforts in coupling chromatin
structure and epigenetic reaction networks primarily relied on
mean-field models, either assuming fully connected nucleo-
somal sites or incorporating power-law contact probabilities
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between sites to allow for long-range spreading of marks
[24,25,55]. Many groups expanded on these ideas by extract-
ing nucleosome contacts with explicit polymer simulations
when modeling histone modification kinetics [59–67]. Fur-
thermore, recent work has revealed that chromatin exhibits
nontrivial rheology and viscoelastic properties, with multiple,
disparate relaxation timescales, and organizes into regions
of varying mobility [68–76]. In particular, in vivo studies of
chromatin report solidlike behavior [77–79] and structural
relaxation occurring on the timescale of hours, comparable to
the rate of enzyme-mediated histone modifications [32,80,81].
However, explicit coupling between the chromatin structure
and epigenetic modifications, and a systematic interrogation
of the concomitant impact of timescale separation between
their dynamics, is underexplored in existing literature, ne-
cessitating further investigation. Furthermore, the nature of
steady states produced by existing models requires additional
deliberation. While they support the multistability of distinct
histone modification patterns, the modified states often adopt
identical, compact chromatin conformations [52–61]. How-
ever, numerous studies that probed chromatin organization
with various techniques have revealed dramatic structural dif-
ferences among chromatin with distinct modifications [82,83].
A more biologically relevant outcome would correspond to
two states that support an open, unmarked (euchromatin) and
collapsed, marked chromatin (heterochromatin). Models sup-
porting structural changes between steady states would better
represent biological systems and provide deeper insight into
chromatin stability.

II. MODEL

We present a theoretical model with explicit coupling
between chromatin conformational dynamics and histone
modifications (Fig. 1). The vector n(t ) ≡ {ni(t )} for i ∈ [1, N]
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FIG. 1. A schematic illustration of the salient features of a ki-
netic model explicitly accounting for the interdependence between
changes in histone marks and chromatin contacts. Green and grey
circles indicate marked and unmarked nucleosomes, respectively.
(a) Marks can be added (or removed) via an enzyme-mediated re-
cruited process wherein two sites that are in contact become similarly
modified [Eq. (2)]. qi j = 1 indicates a direct contact in 3D space
between two nucleosomes (i and j) separated in a linear sequence.
(b) Nucleosomes can also be marked (or unmarked) via random
conversions occurring independent of chromatin contacts [Eq. (1)].
(c) Chromatin conformational dynamics are modeled as stochastic
transitions in contact space, where contact formation (breaking) rates
depend on polymer topology and nucleosome marks.

of length N denotes the chemical state of chromatin at any
given time, t . The binary variable, ni ∈ {0, 1}, indicates the
presence (or absence) of a histone mark at nucleosome i.
Inspired by protein-folding literature [84–87], we adopt a
contact space representation of the chromatin conformation. A
vector of size M, q(t ) ≡ {qi j (t )} for i, j ∈ [1, N] and j − i >

1 represents the chromatin conformation at time t . qi j ∈ {0, 1}
is again a binary variable denoting the presence (or absence)
of 3D contacts between a pair of nucleosomes (i, j). Neigh-
boring nucleosomes are always assumed to be in contact
(i.e., qi,i+1 = 1). Similar to explicit polymer simulations, this
model allows the coupling of histone chemical kinetics with
instantaneous chromatin structural changes. Importantly, no
assumptions about the timescale separation are needed, and
rigorous stochastic simulation algorithms can be employed
to examine the dynamical coupling across a wide range of
timescales.

Following previous studies [24–26], two types of reactions
that drive changes in histone marks are considered. First is an
on-site, random conversion that arises from exchanging his-
tone proteins with the nucleoplasm or reactions catalyzed by
noncooperative enzymes. For example, an unmarked nucleo-
some i with ni = 0 (0i) can become marked with ni = 1 (1i) at
a basal rate cn independent of chromatin conformation and the
state of other nucleosomes. Similarly, marked nucleosomes
can be converted back to unmarked ones. The corresponding
reaction schemes are

0i
cn−→ 1i, 1i

cn−→ 0i. (1)

The second is recruited conversions, a measure of cooperativ-
ity in the system, ensuring nucleosomes in spatial proximity
are similarly marked. These reactions can arise due to the
transfer of enzymes among nucleosomes in contact. We con-
sider the cooperative effect for both addition and removal
enzymes. Therefore, for a pair of contacting nucleosomes
(i, j) in different chemical states, either the mark at site j is
removed or a new mark is introduced to site i via recruited
conversions as denoted below:

0i + 1 j
c1→0−−→ 0i + 0 j, 0i + 1 j

c0→1−−→ 1i + 1 j . (2)

Both reactions occur with rate cr unless otherwise specified.
We treat chromatin conformational dynamics analogously

as stochastic transitions in contact space. The rates of con-
tact formation and dissolution are influenced by the interplay
between the attraction among modified nucleosomes and
the entropic effects stemming from homopolymer dynamics.
However, due to the lack of precise expressions for polymer
entropy within contact space and, consequently, for these
rates, we investigate three different approximations of increas-
ing simplicity.

First, in Sec. II A, we devise an Ising-like Hamiltonian to
replicate contact statistics obtained from molecular dynamics
simulations of a homopolymer model [88–91]. This Hamil-
tonian provides a microscopic framework for describing the
stochastic transition of individual contacts, incorporating both
the entropic costs associated with contact formation and the
pairwise correlation between contacts. Using this schema, we
observe, that in transitioning from a slow to a fast chromatin
regime, the system undergoes a dynamic phase transition,
marked by three key signatures. First, the system’s steady-
state probability distribution for a fraction of contacts made
shifts from being monostable to bistable. Simultaneously, the
probability distribution for a fraction of nucleosomal sites
marked becomes skewed and asymmetric. Lastly, there is a
concomitant divergence in the average lifetimes of marked
and unmarked states. Subsequently, in Sec. II B, we introduce
a mean-field expression for polymer entropy to examine the
impact of specific parameters of the Ising Hamiltonian on
our findings. Our analysis confirms that the mean-field model
qualitatively reproduces the key results outlined in Sec. II A.
Finally, in Sec. II C, we propose a phenomenological master
equation that does not rely on explicit expressions for polymer
entropy. Here, we treat contact formation (and disruption)
akin to a birth-death process and consider the marks as a two-
level system, while explicitly addressing the interconnected
dynamics of chromatin contacts and histone modifications.
These simplifications make the model partially analytically
tractable. Using this phenomenological model, we show that
the observed dynamical phase transition in the preceding
models emerges from the coupling of structure and sequences,
rather than from specific treatments of free energy functionals
in contact space. Additionally, we estimate that the average
lifetime near the critical birth rate of contacts aligns approxi-
mately with predictions in contemporary literature [76,77,92].

A. An Ising-like Hamiltonian for chromatin contacts

To describe the microscopic dynamics of chromatin con-
formation in contact space, we introduce the following
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Hamiltonian, H (q), defined as:

H (q) =
∑
j>i

hi jqi j +
∑
j>i

∑
l>k

Ji jkl qi jqkl

+ λ
∑
j>i

qi j

∑
k �=i, j

(qik + qk j ). (3)

The linear term, hi j , accounts for the entropic penalty of bring-
ing nucleosomes i and j into contact [88]. The symmetric term
Ji jkl = Jkli j accounts for the coupling of contact formation
between distinct pairs of nucleosomes [91]. This coupling
emerges whenever the existence of contact (i, j) affects the
configurational entropy penalty associated with forming con-
tact (k, l ) as a result of polymer topological effects [89,90].
We follow a preexisting pseudolikelihood maximization ap-
proach [93] to obtain all parameters, hi j and Ji jkl , that most
likely to reproduce the statistical distribution of a set of ho-
mopolymer configurations that resemble in vivo chromatin
organization. We refer readers to Appendix A for details. The
λ term in Eq. (3) accounts for the excluded volume effect by
penalizing the formation of multiple contacts with the same
nucleosome. Similar models have been applied successfully
to study protein folding mechanisms [86,87].

From the above Hamiltonian, we define the rate of break-
ing and forming a contact between nucleosomes i and j
as kc exp(−βεnin j�qi j ) and kc exp(−β�H ), respectively.
These terms account for the energetic and entropic costs of
contact breaking and formation, assuming contact formation
is diffusion limited [94,95]. Here kc is the basal rate constant
and is representative of thermal nucleosomal motions. β =
1/kBT and kB is the Boltzmann constant. ε = −2.5kBT mea-
sures the interaction energy between marked nucleosomes.
This attraction is meant to account for the effects of archi-
tectural proteins associated with epigenomic states that aid
3D chromatin organization [96]. The order of magnitude of
this parameter was chosen to be comparable to values es-
timated from force spectrometry experiments [97]. �H =
H (q|qi j = 1) − H (q|qi j = 0).

Without explicit chromatin conformational dynamics and
qi j = 1 ∀ i, j ∈ [1, N] ∀ t , the above model reduces to an
extensively studied mark-only version [25,26,28,57,59] which
exhibits bistability with two steady states where the fraction
of marked nucleosomes is either close to 1 or to 0 for large cr

values. Hereon, the values for all rate constants are reported
in the unit of cn. We focus on a strongly cooperative regime
wherein cr = 100.

Following contemporary literature, we first explore the
regime where chromatin conformational dynamics are fast
and choose kc = 103. We interrogate the system using
stochastic simulations performed with the the Gillespie al-
gorithm [98]. Since cn has been estimated to be around
0.6 h−1 [99], this value for kc corresponds to nucleosome
motions on the second timescale, which matches well with
experimental estimations from live cell imaging [92]. Fig-
ure 2(a) shows an example trajectory initialized with zero
chromatin contacts and marked nucleosomes. The blue and
red traces depict the time evolution of the fraction of marked
nucleosomes (n ≡ ∑

i ni/N) and the fraction of contacts
formed (q ≡ ∑

i j qi j/M), respectively. Initially, transitions
to the fully marked state are unsuccessful without sufficient
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FIG. 2. The model exhibits distinct kinetic and steady-state be-
haviors in fast and slow chromatin dynamics regimes. (a), (c) Time
evolution of the fraction of chromatin contacts (red) and the fraction
of marked sites (blue) along representative simulation trajectories
initialized from a state with zero histone marks and chromatin con-
tacts in the fast [kc = 103 (a)] and slow [kc = 10−1 (c)] chromatin
regimes. (b), (d) The negative logarithm of the steady state distribu-
tions as a function of the fraction of marked sites and the fraction of
chromatin contacts for kc = 103 (b) and kc = 10−1 (c). We hold fixed
N = 40, λ = 0.01, ε = −2.5.

contacts [Fig. 2(a)]. However, as contacts build, they en-
dow the system with greater cooperativity and facilitate the
spreading of marks through the recruited conversion pathway
[Fig. 2(a)]. Moreover, since marks confer attraction between
sites, their establishment drives further collapse of the chro-
matin structure, and both contacts and marks increase in
concert, culminating in the formation of the collapsed marked
state.

We computed the steady-state probability distributions as
a function of n and q, i.e., Pss(n, q) to examine the long-
time behaviors of this model. The negative logarithm of this
distribution, which can be interpreted as a pseudopotential
quantifying the landscape of the stochastic system [80,100–
104], is shown in Fig. 2(b). Two distinct steady states, a col-
lapsed marked state and an open unmarked state resembling
heterochromatin and euchromatin, respectively, are evident.
The bistable behavior is consistent with the two-state switch-
ing kinetics shown in Fig. 2(a). Therefore, our model produces
steady states that naturally account for changes in chromatin
organization upon changing histone modifications.

Since the precise value of chromatin dynamics is affected
by a multitude of factors, such as the specifics of the polymer
model and the environment the chromatin is embedded in, we
modulated kc from 103 to 10−1 to explore the phenomenol-
ogy of the system. Strikingly, we observed signatures of a
dynamical phase transition. Figure 3(a) shows the negative
logarithm of the steady-state probability distributions as a
function of the fraction of sites marked. The result from a
model neglecting explicit dynamics of chromatin contacts by
setting qi j = 1 ∀ i, j ∈ [1, N] ∀ t is included for comparison.
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FIG. 3. Coupling between histone marks and chromatin contacts introduces an asymmetry in the epigenetic landscape and stabilizes
euchromatin in the fast chromatin regime. (a) Negative logarithm of the steady-state distribution for the fraction of marked nucleosomes
computed with kc = 103 (red), kc = 102 (yellow), kc = 100 (purple), and kc = 10−1 (cyan). The result from a mark-only system without explicit
chromatin conformational dynamics with qi j = 1 ∀i, j is provided as a reference (black). (b) Negative logarithm of the steady state distribution
for the fraction of contacts made computed with kc = 103 (red) kc = 102 (yellow), kc = 100 (purple), and kc = 10−1 (cyan). (c) Variation in
the average lifetime of marked (cyan) and unmarked states (red) with the basal chromatin contact rate constant kc. We hold fixed N = 40,
λ = 0.01, ε = −2.5.

As the reactions for histone marks are symmetric by design,
the steady-state distribution is symmetric in the mark-only
model. In Fig. 3(a), we note an asymmetry in the landscape
at high kc = 103, and the entire landscape is tilted towards
the unmarked state. Strikingly, this asymmetry vanishes below
a critical value for kc, denoted as ko

c . Similarly, we plot the
negative logarithm of the steady-state probability distributions
as a function of the fraction of contacts made in Fig. 3(b) and
note that the landscape transitions from a bistable regime at
high kc to monostable at low kc.

After the transition, the system’s kinetic behavior deviates
significantly from those shown in Figs. 2(a) and 2(b). As an il-
lustrative example, we show a simulation trajectory with kc =
10−1 in Figs. 2(c) and 2(d), but similar trends can be expected
for other values below ko

c . While the histone marks transition
between completely marked and unmarked states, as in the
fast chromatin case, chromatin contacts vary much slower.
Consequently, the intimate coupling between structure and
sequence has disappeared. This is clear at the beginning of the
trajectory, where the formation of even only a handful of non-
backbone contacts seeds the spread of marks and supports co-
operative transitions [Fig. 2(c)]. After the initial equilibration
(≈103 τ ), the dynamics occur on a network with relatively
fixed connectivities for the duration of the simulated trajectory
(≈105 τ ). This is reflected in the steady-state behavior plotted
in Fig. 2(d), as the slow chromatin regime exhibits a partially
collapsed marked and a partially collapsed unmarked state.

To further our understanding of the dynamical system,
we determined the lifetime of both marked and unmarked
states by partitioning the simulation trajectories into the two
states. As shown in Fig. 3(c), while the lifetime of marked
states remains largely unchanged, the lifetime of unmarked
states increases significantly as kc increases. For small kc, tran-
sitions between marked and unmarked states happen at rates
much faster than the chromatin structural relaxation and are
dictated mainly by the symmetric reaction network, producing
comparable average lifetimes for both states. As chromatin
contacts become more responsive to histone modifications at
larger kc, fewer contacts are expected for the unmarked states.
In contrast, more will form for the marked one, driving the
monostability to bistability transition [Fig. 3(a)]. The decrease

in contacts makes transitioning out of the unmarked state
harder due to a lack of recruited conversions, leading to the
observed increase in lifetime. On the other hand, the enhanced
presence of contacts for the marked state facilitates coopera-
tive reactions that erase the marks. The imbalance between
the lifetimes of steady states produces the asymmetry in the
landscape seen in Fig. 3(a). We point out that the existence
of the dynamical phase transition and the qualitative behavior
of the steady states in the two regimes are insensitive to the
parameters of the model, including ε [Figs. 4(a)–4(c)] and λ

[Figs. 5(a)–5(c)].

B. A mean-field expression for the contact space Hamiltonian

In the previous section, we used an Ising-like Hamiltonian
to describe the stochastic transition of various contacts in
chromatin. To examine whether our findings are sensitive to
the functional form and parameters in the Hamiltonian, we
next introduce a mean-field expression for the free energy of
total contacts in the system, F (q). We designed the mean-
field expression to capture two prominent features of polymer
systems: (1) In the absence of marks, the free energy has a
singular minima which corresponds to entropically favored
configuration with few contacts (low q). (2) As we titrate
marks into the system the self-attraction between marked sites
results in a secondary minima in the free energy correspond-
ing to a more collapsed configuration (high q). A simple
example would be to construct F (q) as a quartic polynomial
over [0,1], where F = ∑4

r=0 arqr + εi jqi j , where ar are the
polynomial coefficients of qr , and εi j is a small attraction
between two marked sites (i, j). One choice of parameters
for this quartic polynomial is a0 = 0, a1 = 150.0, a2 =
664.043, a3 = −6312.1, a4 = 15000.0, ε = −0.55. How-
ever, we do not anticipate our results to be sensitive to these
specific parameter values as long as conditions (1) and (2)
outlined previously are met.

We again performed stochastic simulations for the reaction
network using an implementation of the Gillespie stochastic
simulation algorithm [98]. The rate for contact breaking and
formation for a pair of nucleosomes (i, j) was again defined
as kc exp(−βεnin j ) and kc exp(−β�H ), respectively. Now
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FIG. 4. The existence of the dynamical phase transition and the qualitative behavior of the steady states in the two regimes is insensitive to
the parameters of the model. For N = 40 bead system and fixed λ = 0.01, qualitatively similar results to Fig. 3 can be recovered for different
ε values. (a) Negative logarithm of the steady-state distribution for the fraction of marked nucleosomes computed with (kc, ε) = (102, −1.5)
(yellow), (kc, ε) = (10−1, −1.5) (purple), (kc, ε) = (102, −2.5) (red), (kc, ε) = (10−1, −2.5) (cyan), (kc, ε) = (102,−3.5) (orange), and
(kc, ε) = (10−1,−3.5) (blue). (c) Negative logarithm of the steady-state distribution for the fraction of contacts made computed with (kc, ε) =
(102, −1.5) (yellow), (kc, ε) = (10−1, −1.5) (purple), (kc, ε) = (102, −2.5) (red), (kc, ε) = (10−1, −2.5) (cyan), (kc, ε) = (102,−3.5) (or-
ange), and (kc, ε) = (10−1, −3.5) (blue). (c) Variation in the average lifetime of marked states for ε = −1.5 (purple), ε = −2.5 (cyan),
ε = −3.5 (blue), and unmarked states for ε = −1.5 (yellow), ε = −2.5 (red), ε = −3.5 (orange), with the basal chromatin contact rate
constant kc.

H (q) is defined as H (〈q〉) ≡ ∑4
r=0 arqr + ln

(( M
qM

))
. The

second term is needed in the microscopic model to account
for the degeneracy in different configurations that yield the
same q so the macroscopic expression for F simplifies to
a simple quartic polynomial. Simulations were carried out
for N = 40 (M = 741) sites. In Fig. 6, we recover qualita-
tively similar results to the ones demonstrated in Figs. 2–5.
Therefore, the dynamical phase transition in this paper is also
insensitive to the explicit form of the Hamiltonian defined in
Eq. (3), indicating that the results presented are both robust
and of general interest.

C. An analytically tractable phenomenological model
with coupled structure and sequence changes

In the full kinetic model, we found that the transition
from the monostable to bistable regime in the probability of

steady-state distribution of contacts and the concomitant
emergence of asymmetry in the average lifetimes of the
marked and unmarked state begins to emerge around ko

c ∼ 1,
which corresponds to a timescale of 1 h for nucleosome dif-
fusion. While this number may seem too slow compared to
experimental values on the order of seconds [92], it does not
immediately exclude the biological relevance of the dynami-
cal phase transition. Though the existence of this transition is
insensitive to model details, the numerical value for ko

c is not.
For example, as shown in Fig. 7, ko

c can increase by order of
magnitude as we change the system size, N , from 40 to 100.
Furthermore, the specific Hamiltonian chosen here, parame-
terized with homopolymer simulations, may be insufficient
for reproducing complex viscoelastic behavior of chromatin
in vivo, underestimating ko

c . To provide more insight into the
determining factors of the dynamical phase transition, in this
section, we introduce a phenomenological model that captures

FIG. 5. The dynamical phase transition and the qualitative behavior of the stead state persists if we hold ε = −2.5 fixed and vary λ and
for N = 40 bead system, qualitatively similar results to Fig. 3 can be recovered for different λ values. (a) Negative logarithm of the steady
state distribution for the fraction of marked nucleosomes computed with (kc, λ) = (102, 0.01) (red), (kc, λ) = (10−1, 0.01) (cyan), (kc, λ) =
(102, 0.02) (orange), and (kc, λ) = (10−1, 0.02) (blue). (c) Negative logarithm of the steady-state distribution for the fraction of contacts made
computed with (kc, λ) = (102, 0.01) (red), (kc, λ) = (10−1, 0.01) (cyan), (kc, λ) = (102, 0.02) (orange), and (kc, λ) = (10−1, 0.02) (blue).
(c) Variation in the average lifetime of marked states for λ = 0.01 (cyan), λ = 0.02 (blue) and unmarked states forλ = 0.01 (red), λ = 0.02
(orange) with the basal chromatin contact rate constant kc.
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FIG. 6. A minimal mean-field model recapitulates the main re-
sults presented in Figs. 2–5 for N = 40 bead system. Steady state
probability distributions for the (a) slow chromatin regime with
kc = 10−1 and (b) fast chromatin regime with kc = 103. (c) −ln(Pss )
for marks plotted as a function of the fraction of marked sites for
kc = 103 (red) and kc = 10−1 (cyan). (d) Variation in average lifetime
of marked (cyan) and unmarked states (red) with kc.

the essence of the full kinetic model but is now analytically
tractable.

The model presented herein captures the stochastic fluctu-
ations in chromatin contacts and histone marks as in the full
kinetic model presented prior and also accounts for the cou-
pling between changes in chromatin structure and sequence
(Fig. 8). We treat contact formation (and breaking) like a
birth-death process. Furthermore, we approximate the marks
as a two-state system, transitioning between fully marked
(s = 0) and fully unmarked (s = 1) states. The dynamics of
this analytical model can be described by the following master
equation:

∂t P(nq, t ) = g1{P(nq − 1, t ) − P(nq, t )}

+
(

k1 0
0 k0

)
{(nq + 1)P(nq + 1, t )−nqP(nq, t )}

+
(−h f

h − f

)
P(nq, t ), (4)

where P(nq, t ) =
(

P1(nq, t )
P0(nq, t )

)
represents the probability of

finding the system in fully marked (s = 1) or unmarked
(s = 0) states with total nq number of chromatin contacts. ks

and g represent the rate of contact breaking or formation. The
transition rates between marked and unmarked states, h and
f , are assumed equal to km exp(−�V (n, q)). V (n, q) acts as a
pseudopotential and is derived based on an analytical theory
of epigenetic stability [24]. The pseudopotential accounts for
both stochastic fluctuations of histone marks and the impact
of chromatin structures.

The transition from s = 0 to s = 1 occurs with
rate h(n, q) = km exp(−(V (n = 0.5, q) − V (n = 1, q))),
while the transition from s = 1 to s = 0 occurs with rate

f (n, q) = km exp(−(V (n = 0.5, q) − V (n = 0, q))). We
estimate km ∼ N−1cn, where cn is the rate for random removal
of histone modifications as introduced in the text prior.

Following Ref. [24], we derive the pseudopotential V (n, q)
(5). The details of the derivation are outlined in Appendix B:

V (n) = 2Nn(1 − n) +
(

1 − 4N
Fq2

)
ln[Fq2n(1 − n) + 1].

(5)

Following a second quantization approach [15,20], we
rewrite the master equation as an imaginary time Schrödinger
equation:

∂t |�(t )〉 = 	|�(t )〉. (6)

Here, the state vector |�(t )〉 =
(

�1(t )
�0(t )

)
is a superposition

of all possible configurations weighted with their correspond-
ing probabilities such that �i(t ) = ∑

nq
Pi({nq}; t )|nq〉 for s =

0, 1. The Hamiltonian operator 	 is defined as

	 = g(a† − 1) + k(a − a†a) +
(−h(n, q) f (n, q)

h(n, q)) − f (n, q)

)
.

(7)

The operator a† serves to create a contact, i.e., it acts on
a state with nq contacts (|nq〉), a†|nq〉 = |nq + 1〉. Similarly,
a serves to decrement contacts, a|nq〉 = nq|nq − 1〉. Corre-
spondingly, a†a|nq〉 ≡ n̂q|nq〉 = nq|nq〉, simply returning the
number of contacts in a given state.

We note that the imaginary time Schrödinger equation is
equivalent to the functional variation of the following action 


with respect to �, i.e., δ

δ�

= 0, where 
 = ∫
dt〈�|∂t − 	|�〉.

Thus, for appropriate trial functions for � and � parame-
terized with αL = α1

L, α2
L, · · · , αK

L and αR = α1
R, α2

R, · · · , αK
R ,

minimizing the action leads to a set of ordinary differential
equations:

K∑
l=1

[〈
∂�

∂αm
L

∣∣∣∣ ∂�

∂αl
R

〉
dαl

R

dt
−

〈
∂�

∂αm
L

|	|�
〉]

αm
L =0

= 0. (8)

Using a variational ansatz we obtain the following set of
variational equations:

dc1

dt
= c0〈 f (n̂q)〉0 − c1〈h(n̂q)〉1, (9a)

dc1

dt
q1 + dq1

dt
c1 = c1g1 − c1k1q1 + c0〈 f (n̂q)n̂q〉0 (9b)

− c1〈h(n̂q)n̂q〉1, (9c)

dc0

dt
q0 + dq0

dt
c0 = c0g0 − c0k0q0 − c0〈 f (n̂q)n̂q〉0 (9d)

+ c1〈h(n̂q)n̂q〉1.
(9e)

The angular brackets represent averaging over number of con-
tacts using a Poisson distribution, i.e., 〈·〉s = ∑

nq
· e−qs

nq! q
nq
s . We

also make a simplifying assumption that 〈F (x)〉 ≈ F (〈x〉). We
assume steady-state solutions of Eqs. (9) take the form q1 =
qh + δ and q0 = qh − δ, where qh = 2g/(k1 + k0). Plugging
this into Eqs. (9), we obtain

g − k1(qh + δ) + 2〈h(qh + δ)〉δ = 0. (10)
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FIG. 7. ko
c increases with system size. We plot the the average lifetimes in the marked (red) and unmarked states (cyan) against kc for

systems of size (a) N = 40, (b) N = 60, and (c) N = 100. We note that at kc = 10, the smaller (N = 40) system is already asymmetric,
however, there is no appreciable difference in the average lifetimes at at kc = 10 for the larger (N = 100) system. Simulations performed using
the mean-field approach to the polymer model discussed in Sec. II B and Fig. 6.

We linearize h(qh + δ) around δ, and then solve for δ:

δ =
2gk1

k1+k0
− g

−k1 + 2eN/2
(
1 + Fg2

(k1+k0 )2

) N (k1+k0 )2

Fg2 −1
km

. (11)

Finally, we observe δ → 0 as g/km → 0 and δ → ∞ as
g/km → ∞. In the former case, when the rate of contact cre-
ation is low relative to mark turnover, we are in the monostable
regime. However, as the rate of contact formation is apprecia-
bly large then we transition to a bistable regime.

Therefore, the phenomenological model reproduces the
dynamical phase transition as well. Importantly, it clarifies
that the rate of contact formation (birth rate g) deter-
mines the transition between the two regimes. g can be
impacted by nucleosome diffusion (kc), polymer topology,
and the nucleoplasm. Using the condition qh/δ � 1, we can

FIG. 8. A schematic illustration of the salient features of a phe-
nomenological model described by Eq. (4). The system can transition
between fully marked (green) and fully unmarked (grey) states with
rate f (nq ), h(nq ), respectively. In either state, precise topological,
polymeric effects are ignored, and the number of contacts (nq) is
incremented at rate g. Furthermore, nq is decremented at rate k1, k0

in the fully marked and unmarked states. k1 < k0 accounts for the
attraction conferred between marked nucleosomes.

bound the transition birth rate, (go)2 � 4eN/2(k0+k1 )2km

F (3k1−k0 ) . For a
birth-death process with nq contacts, the probability of P(nq −
1|nq ) ∼

( k1+k0
2

go+ k1+k0
2

)
. We approximate k1 ∼ e−2.5, k0 ∼ 1, N ∼

40, km ∼ N−1cn, F ∼ 102. We estimate cn ∼ 0.6 h−1. Using
these, we estimate the lifetime of contacts for near the critical

point
( k1+k0

2

go+ k1+k0
2

)−1
∼ 10 s.

III. CONCLUSIONS

In summary, our paper has demonstrated that incorporat-
ing the interplay between chromatin structural dynamics and
histone modification kinetics can give rise to a dynamical
phase transition. We verified the validity of this transition
by reproducing it in multiple models: a comprehensive ki-
netic model encompassing microscopic chromatin contacts,
a mean-field model, and a phenomenological model. This
extensive validation underscores the robustness of our find-
ings. Moreover, the behavior observed in the fast chromatin
dynamics limit aligns with well-established observations re-
garding the influence of histone modifications on chromatin
structure. Additionally, experimental evidence for slow chro-
matin relaxation further highlights the significance of our
results in the opposite limit [79,105]. By introducing the
concept of a dynamical phase transition, we provide a cohe-
sive framework that reconciles observations across different
limits. Future experiments specifically designed to explore
chromatin viscoelasticity under various conditions hold the
potential to validate our theoretical predictions further. More-
over, some of the methods and ideas are broadly applicable
to the study of dynamical processes and problems, in general,
where there exists a coupling between 3D network structure
and 1D sequence information, and where there is the presence
of dynamical asymmetry in the relaxation rates for the two.

The computer code for carrying out the simulations dis-
cussed in this paper has been made available on GitHub [106].
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APPENDIX A: PARAMETERIZING THE FREE ENERGY
FUNCTIONAL OF CHROMATIN CONFORMATIONS

IN THE CONTACT SPACE

For efficient simulations across a wide range of timescales,
we consider chromatin conformational dynamics in the con-
tact space. For a chromatin segment with N nucleosomes,
the total set of contacts is represented with a vector of size
M, q(t ) ≡ {qi j (t )} for i, j ∈ [1, N] and j − i > 1. The binary
variables qi j ∈ {0, 1} denote the presence (or absence) of 3D
contacts between a pair of nucleosomes (i, j). We assume that
neighboring nucleosomes are always in contact, i.e., qi,i+1 ≡
1 and M = N(N − 1)/2 − (N − 1).

Recall that the free-energy functional in contact space is
given by

H (q) =
∑

i j

hi jqi j +
∑
i jkl

Ji jkl qi jqkl

+ λ
∑

i j

qi j

⎛
⎝∑

t �=i, j

qit +
∑
t �= j,i

qt j

⎞
⎠. (A1)

The linear terms hi j incorporate the entropic penalty of
loop formation. We enforce translational symmetry such that
contacts with the same sequence separation share identical
penalties [88], i.e., hi j = hkl whenever j − i = l − k. The cor-
relation between contacts (i, j) and (k, l ), which is caused
by the polymer’s topology, is accounted for by Ji jkl . With-
out loss of generality, the J indices are ordered such that
k1 ≡ j − i � l − k ≡ k2. Whenever k1 = k2, we additionally
require l > j. Topologically equivalent contact pairs can be
identified by also defining L ≡ l − j [89,90]. Naturally, the
topology-driven correlations are identical for topologically
equivalent contact pairs. Therefore, we assign identical J
values to all contact pairs with identical k1, k2, and L val-
ues [89,90]. Furthermore, we set Ji jkl = 0 for contacts with
nonoverlapping loops, which occur whenever j � k or l � i,
because the polymer’s topology has no effect on these con-
tacts’ correlation [89,90]. The third term accounts for the
excluded volume effect that limits the number of contacts a
given nucleosome can form.

We determined the parameters in Eq. (A1) such that
the free-energy functional accurately describes the confor-
mational distribution of polymers. As detailed below, the
conformational distribution was produced with molecular
dynamics simulations, and we used the pseudolikelihood ap-
proach for efficient parameter inference.

Note that each Ji jkl parameter affects the total energy only
when both of its corresponding contacts are formed. There-
fore, negative J values favor contact formation. Meanwhile,
the optimization scheme discussed in Appendix A 2 yields
a model with many more negative than positive J values.
Additionally, the negative J values are larger in magnitude
than the positive J values. This biases the system towards
states in which many beads are involved with an unphysically
large number of contacts. The third term of the Hamiltonian
corrects this effect. This second-order correction term penal-
izes individual beads forming multiple contacts. Physically,
this represents the excluded volume effect. A λ value of 0.01
was sufficient to prevent the polymer collapse.

FIG. 9. For most loop sizes relevant to this study, the loop size-
averaged contact probabilities associated with the three polymer
models agree with Hi-C data representing the first chromosome of
(a) human foreskin fibroblasts (HFF) and (b) human embryonic stem
cells (hESC) cells at 5 and 500 kb resolution. Plotting the contact
probabilities against their loop size, | j − i|, highlights the influence
of topological constraints in each system.

1. Polymer conformations from molecular dynamics simulations

We performed three independent molecular dynamics
simulations to produce three conformational ensembles of
polymers. The monomers are connected to nearest neighbors
with the finite extensible nonlinear elastic (FENE) potential:

ubond(ri,i+1) = −1

2
KR2

0ln

[
1 −

(
ri,i+1

R0

)2
]
,

Kb = 30ε, R0 = 1.5σ. (A2)

The Lennard-Jones (LJ) potential was applied between all
monomer pairs

Uwall(r) =
{

4εLJ
[(

σ
r

)12 − (
σ
r

)6] + Ecut, r < rc

0, otherwise,
(A3)

where Ecut is the energy of the LJ potential at the cutoff
distance rc = 2.6σ . We chose εLJ as 0.35 for the LJ potential
because it creates a sequence separation dependence for con-
tact probabilities similar to that expected in chromatin systems
in vivo [91]. Figure 9 illustrates this, showing the relationship
between contact probability and sequence separation for each
of the homopolymer models and for Hi-C data from (a) human
foreskin fibroblasts (HFFs) and (b) human embryonic stem
cells (hESCs). Each Hi-C contact probability represents the
average of all contact probabilities in the first chromosome
with the same sequence separation, so the plot illustrates
nonspecific effects; similarly, homopolymer contact probabil-
ities were averaged for monomer pairs separated by the same
number of bonds. In addition, we simulated homopolymer
models using εLJ = 0.3 and εLJ = 0.4 to obtain two additional
sets of homopolymer conformations that remain biologically
plausible while being qualitatively distinct; these sets improve
the result of our pseudolikelihood maximization procedure
discussed in the next subsection. The simulated polymer is
500 beads in length, and only the conformations of the central
40 beads were recorded. Simulating a longer polymer avoids
potential edge effects that might produce different statistics
for polymer beads at the boundary.

The LAMMPS software package [107] was used to per-
form the simulations using reduced units and shrink-wrapping
boundary conditions with a time step of 0.005. Langevin
dynamics with a damping parameter of 10 were used to main-
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tain the temperature. Temperature replica exchange was used
with seven temperatures evenly spaced from 0.7 to 1.3, and
data was collected from the replica with T = 1.0. Exchanges
were performed every 100th timestep, and configurations
were collected once every 5000 time step over one billion total
time steps. This yields 200 000 configurations for each of the
three homopolymers.

2. Parameter optimization with the pseudolikelihood approach

The model parameters hi j and Ji jkl were learned using a
pseudolikelihood maximization approach developed in pre-

vious work [93]. This approach adjusts the parameters to
optimize the probability, or likelihood, of the conformations
from a reference ensemble. From the 3D structures in Carte-
sian space obtained using molecular dynamics simulations,
we obtained a list of contacts between monomer pairs using
a distance cutoff of 1.707σ . This conversion produces three
ensembles of polymer conformations in the contact space, de-
noted as B1, B2, and B3, which were used in pseudolikelihood
optimization.

The function used for parameter optimization is defined as

�pseudo,B(h, J,�h) =
∑
b∈B1

∑
(i, j)

ln

[
1

1 + exp
(
(2qi j − 1)(hi j + �h1 + ∑

kl Ji jkl q
(b)
kl )

)
]

+
∑
b∈B2

∑
(i, j)

ln

[
1

1 + exp
(
(2qi j − 1)(hi j + �h2 + ∑

kl Ji jkl q
(b)
kl )

)
]

+
∑
b∈B3

∑
(i, j)

ln

[
1

1 + exp
(
(2qi j − 1)(hi j + �h3 + ∑

kl Ji jkl q
(b)
kl

)
)

]
(A4)

Here, h (J) is the model’s full set of hi j (Ji jkl ) parameters. The
three terms on the right side correspond to the total pseudo-
likelihood of the energy function defined in Eq. (A1) over the
configurations from the three ensembles. Since the molecular
dynamics simulations used to produce the three ensembles
differ in the nonbonded interaction energy, we introduced
�h = {�h1,�h2,�h3} to account for the difference. �h1,
corresponding to εLJ = 0.35, was fixed at 0. Our use of three
conformational ensembles with different degrees of polymer
collapse provides a wide variety of conformations essential
for probing the correlation between contact pairs.

As mentioned in the main text, the first-order parameter
hi j accounts for the entropic penalty associated with forming
contact (i, j). In addition, it includes the contact potential
associated with the interaction between i and j in the ho-
mopolymer, so shifting the well depth associated with each
Lennard-Jones potential, εLJ, causes a constant shift in all hi j .
�hε ∈ �h accounts for these shifts, and we fixed �h1 = 0 so
the computed h parameters correspond to the simulation with
εLJ = 0.35. We related h to the homopolymer parameterized
by εLJ = 0.35 because the sequence-separation dependence of
contact probabilities in that model agree with the probabili-
ties observed in chromatin systems in vivo [91]. Meanwhile,
the supporting simulations use εLJ that differ from this
biologically accurate parametrization by the small �εLJ =
±0.05 to ensure that the resulting sets of conformations
remain biologically plausible while providing qualitatively
distinct sets of conformations [Fig. 10(a)].

On the other hand, J accounts for the correlation between
contacts, which primarily depends on connectivity and ex-
cluded volume effects [89,90]. The former is independent of
εLJ, and the latter is negligibly affected by it. Consequently,
J is unaffected by the choice of εLJ, and all models share
the same J values. Therefore, using PLM to infer the Ising-
like parameters of all three models simultaneously provides

additional information regarding first- and higher-order pro-
cesses, encouraging h and J to capture the intended entropic
effects.

Additional regularization was introduced to ensure the
robustness of parameter optimization, leading to the final
objective function

�B(h, J,�h) = �pseudo,B + γ
∑
i jkl

J2
i jkl , (A5)

with γ set to 0.6.
The function was optimized with the limited-memory

Broyden–Fletcher–Goldfarb–Shannon with bound variables
(L-BFGS-B) algorithm using SciPy version 1.5.2. All param-
eters were initialized at 0.

3. Characterizing the parameterized model

In Fig. 10(a), we plot the distribution of the homopoly-
mer’s radius of gyration (Rg) within each simulated set of
homopolymer conformations, i.e., the set of conformations
associated with each ε value and obtained via MD simulation.
For each conformation, we computed the Rg of the central 40
monomers of the polymer alone, as this is the polymer region
considered by our pseudolikelihood maximization procedure.
The observed distributions indicate that the homopolymer
by itself is expected to be relatively open, and we reiter-
ate that the kinetic model incorporates Ising-like parameters
representing a homopolymer with εLJ = 0.35. We note that
each set of conformations was used only once, namely, to
parametrize the Ising-like representation of a homopolymer
model. Afterward, the kinetic simulations discussed in the
main text utilized this parametrization, which remained con-
stant throughout; the attractions in the system that arise from
nucleosome marking are introduced during the kinetic sim-
ulation and are entirely independent of the pseudolikelihood

054411-9



AMOGH SOOD, GREG SCHUETTE, AND BIN ZHANG PHYSICAL REVIEW E 109, 054411 (2024)

FIG. 10. Characterizing and comparing the homopolymer con-
formations determined via an MD simulation of the λ = 0.01
polymer model and via a temperature replica exchange (TRE)
Markov chain Monte Carlo (MCMC) simulation of the Ising-
like model. (a) Compactness, measured by the distribution of the
homopolymer’s radius of gyration (Rg), differs between models
parameterized with different εLJ values in each of three MD simu-
lations. (b), (c) The mean contact probabilities associated with the
Ising-like model and computed via TRE MCMC (lower triangle,
y axis) agree reasonably well with the mean contact probabilities
computed from MD simulation-derived polymer conformations (up-
per triangle, x axis). (d) The correlation between each contact pair,
defined as 〈qiq j〉, agrees well in both the TRE MCMC-simulated
Ising-like model (y axis) and MD-simulated polymer model (x axis).
Open (e) and collapsed (f) polymer conformations are shown, having
Rg values of ≈2.01 and 0.22, respectively. Each conformation was
computed via MD simulation of the homopolymer model that uses
Lennard-Jones interaction potentials with magnitude εLJ = 0.35.

maximization task and the specific hi j and Ji jkl values. As
to the specific εLJ values chosen in this work, the contact
probabilities produced by the polymer model using εLJ =
0.35 agree with the sequence separation-averaged contact
probabilities observed in in vivo chromatin systems. [See
Ref. [91], which uses an identical parametrization for the
homopolymer model described in its Fig. 5(a).] Therefore, the
εLJ = 0.35 model is biologically relevant, and the supporting
simulations use εLJ that differ from this biologically accu-
rate parametrization by the small �εLJ = ±0.05 to ensure
that the resulting sets of conformations remain biologically
plausible while still providing qualitatively distinct sets of
conformations. We note a reasonable agreement between the
statistics obtained from explicit molecular dynamics simula-
tions and those reproduced by our learned model (Fig. 10).
This is more than sufficient for our intended primary purpose
of demonstrating that coupling between the stochastic epi-

FIG. 11. The Ising-like model parameters are compared to the
physical effects they capture. The MD simulation of the ho-
mopolymer using ε = 0.35 provided the included contact statistics.
(a) Illustration of various topological relationships between loops.
∅ illustrates the loop associated with one contact. This loop resides
within or fully contains loops in region I, partially overlaps with
loops in region II, and is independent of loops in region III. (b) The
contact probabilities, 〈qi j〉, and entropic penalties, hi j , are plotted
against their associated loop size, j − i. For visual clarity, the plot
displays the average value of all 〈qi j〉, corresponding to each loop
size. However, as shown in the upper triangle of Fig. 10(b), they
are similar to the plotted probability whose contact has the same
loop size. Meanwhile, hi j ∀ (i, j) are plotted against their associated
loop size. (c) The coupling (lower triangle) and correlation (upper
triangle) between contact (16,26) and all other contacts (k, l ) are
plotted on a two-dimensional grid. J16,26,kl quantifies coupling, where
k and l index the x and y axis, respectively. Mirroring each interaction
across the diagonal, the covariance 〈q16,26qkl〉 − 〈q16,26〉〈qkl〉 quanti-
fies the correlation between the formation of the relevant contacts,
where l and k index the x and y axis, respectively. Green indicates
values that are undefined in the Ising-like model.

genetic reaction network and structure produces interesting
dynamical behavior when the underlying structure relaxes
on disparate timescales. The subtleties of parametrizing
Ising-like models of homopolymers are the subject of other
works [91].

Figure 10 includes plots that compare the first- [Figs. 10(b)
and 10(c)] and second-order [Fig. 10(d)] contact statistics
of the Ising-like model, obtained via a TRE MCMC sim-
ulation, to the statistics computed from the homopolymer
conformations obtained via MD simulation. These plots
demonstrate the quality of the parameters composing the ho-
mopolymer model.

In addition, Fig. 11 compares h and J to the MD-derived
homopolymer contact statistics that illustrate the physical
effects they capture. First, topological constraints cause the
contact probability between beads i and j to decrease as
their sequence separation, quantified by the loop size j − i
increases [88–90]. The left panel shows this effect, and the
Ising-like model captures it by increasing h as loop size
increases. Second, topological constraints couple the forma-
tion of different contacts [89,90], which we illustrate with
the covariance between each pair of interactions, i.e., Ci jkl ≡
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〈qi jqkl〉 − 〈qi j〉〈qkl〉. To visualize second-order data, the right
panel considers the interaction between the contact (16,26)
and all other contacts (k, l ), and the grid uses k and l (lower
triangle) or l and k (upper triangle) to index the x and y
axis, respectively. The covariance C16,26,kl is positive for in-
teractions in which one loop contains the other, negative for
partially overlapping loops, and near zero for loops that don’t
overlap. (Chan and Dill provide a thorough description of the
distinct topological conditions associated with each of these
interaction types in Refs. [89,90].) Supporting these correla-
tions, the J16,26,kl values (lower triangle) are negative valued
for correlated contact pairs (C16,26,kl > 0), positive valued for
anticorrelated contact pairs (C16,26,kl < 0), and zero valued
for uncorrelated contact pairs (C16,26,kl ≈ 0). Green indicates
values that are undefined in the Ising-like model.

APPENDIX B: DERIVING THE PSEUDO-POTENTIAL
AND TRANSITION RATES

Following Ref. [24], we derive the pseudopotential V (n, q)
that dictates the transition rates between marked and un-
marked states. We consider n = ∑

i ni/N , the fraction of
nucleosomes in the modified state. The kinetic equation for
dn = 1/N is

dn

dt
= (R+(n) − R−(n))dn, (B1)

where

R+(n) = crn2(1 − n)q2 + cn(1 − n), (B2a)

R−(n) = crn(1 − n)2q2 + cnn. (B2b)

The crn2(1 − n)q2 term in the above equations represents
the rate of recruited conversion from unmarked to marked nu-
cleosomes. Similarly, crn(1 − n)2q2 corresponds to recruited
conversions from marked to unmarked nucleosomes. The
terms proportional to cn represent noisy conversions. cr and
cn are the same rates introduced in the main text. For conve-
nience, we introduce the feedback ratio F = cr/cn, the ratio
of recruited to random conversions. We formulate the master
equation for this system:

∂t P(n, t ) = R−(n + dn)P(n + dn, t )

+ R+(n − dn)P(n − dn, t )

− [R+(n) + R−(n)]P(n, t ). (B3)

We expand Eq. (B3) to second order to obtain the following
Fokker-Planck equation:

∂t P = −∂J

∂n
= − ∂

∂n

[
−μ(n)

dU (n)

dn
P − ∂ (D(n)P)

∂n

]

= − ∂

∂n

[
−μ(n)

dV (n)

dn
P − D(n)

∂P

∂n

]
. (B4)

J in the above equation describes the probability flux, μ(n)
is the mobility, and D(n) is the diffusion coefficient. V (n) is
an effective potential that includes both drift and noise events,

defined as dV
dn = dU

dn + D
μ

d ln(D)
dn . The pseudopotential, V (n) is

obtained by expanding Eq. (B3) to second- order and compar-
ing it with Eq. (B4). We identify the drift (〈 dn

dt 〉 = μ(n) dU
dn ),

the pseudopotential (V (n)), diffusion (D(n)), and mobility
(μ(n)) as follows:〈

dn

dt

〉
= crq2

N
(2n − 1)

(
n(1 − n) − 1

Fq2

)
, (B5)

V (n) = 2Nn(1 − n) +
(

1 − 4N
Fq2

)
ln[Fq2n(1 − n) + 1],

(B6)

μ(n) = D(n) = crq2

2N2

(
1

Fq2
+ n(1 − n)

)
. (B7)

The transition from s = 0 to s = 1 in Eq. (4) occurs
with rate h(n, q) = km exp(−(V (n = 0.5, q) − V (n = 1, q))),
while the transition from s = 1 to s = 0 occurs with rate
f (n, q) = km exp(−(V (n = 0.5, q) − V (n = 0, q))).

APPENDIX C: DERIVING AN IMAGINARY-TIME
SCHRÖDINGER EQUATION

In Sec. II C we rewrote the master equation as an imaginary
time Schrödinger equation [Eq. (6)], where the stochastic
Hamiltonian is given by Eq. (7). Since we model the contacts
as a birth-death process, we use the following Poisson ansatz
[15,20,26]:

|�〉 =
(

c1 exp(q1(a† − 1))|0〉
c0 exp(q0(a† − 1))|0〉

)
, (C1)

〈�| = (〈0|ea exp(α1 + λ1a) 〈0|ea exp(α0 + λ0a)). (C2)

Furthermore, we impose 〈�(αL = 0)|�(αR)〉 = 1. Plugging
(C2) and (C1) into (8), we obtain the following set of varia-
tional equations given in Eq. (9).

APPENDIX D: DETAILS OF GILLESPIE
STOCHASTIC SIMULATIONS

Stochastic simulations were carried out for the reaction
network using an implementation of the Gillespie stochastic
simulation algorithm [98] in Python using standard libraries.
We set the parameters as follows: cn = 1.0 τ−1, cr/cn =
100.0. We simulate a system of size N = 40 sites, and M =
741 mutable, nonbackbone contacts.

We ran simulations of length 3 × 105 τ using specified
kc/cn, ε, λ values, approximately corresponding to ∼108 −
1010 Gillespie moves. We discarded the first half of each
trajectory to remove the influence of initial conditions on the
simulation results. Steady-state probability distributions and
contact maps were obtained by averaging over the remaining
half of each simulated trajectory.

To better understand the origin of the asymmetry in the
epigenetic landscape presented in Fig. 2 of the main text, we
computed the steady-state lifetime as follows. We identified
the steady states using the fraction of modified nucleosomes
as n ∈ (0.8, 1.0] and n ∈ [0.0, 0.2). To compute the average
lifetimes of each, we subdivided the second half of each of the
simulated trajectories into ∼10 subtrajectories, each of length
104τ ; this allows one to observe at least ∼102 transitions
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FIG. 12. Steady-state lifetime estimation is robust with respect
to the state definition. Qualitatively similar trends to Fig. 3(c) of
the main text are observed for marked (unmarked) states defined as
(a) 〈n〉 ∈ (0.9, 1.0] (〈n〉 ∈ [0.0, 0.1)) and (b) 〈n〉 ∈ (0.7, 1.0] (〈n〉 ∈
[0.0, 0.3)).

between marked and unmarked states in each subtrajectory.
A successful transition from the unmarked to marked state

was defined as the event wherein a system starting in the un-
marked state arrives in the set defining the marked state (and
vice versa). The lifetime of the unmarked (marked) state was
defined to be the time between a transition to the unmarked
(marked) state and transition to the marked (unmarked) state.
The average lifetime was then obtained by computing the
average time spent in each state in each subtrajectory, and the
error bars in Fig. 3(c) reflect the standard error of the mean
across the ten subtrajectories. A similar procedure was carried
out to prepare Figs. 4(c), 5(c), 6(d), and 7(a)–7(c). We also
tested the sensitivity of the results to the definition of marked
(and unmarked) states used. We performed similar analysis
by defining a marked (unmarked) state to be n ∈ (0.9, 1.0]
(n ∈ [0.0, 0.1)) and n ∈ (0.7, 1.0] (n ∈ [0.0, 0.3)). Figure 12
demonstrates qualitatively similar trends for the average life-
times with varying kc using these thresholds to the ones seen
in Fig. 3(c) of the main text.
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