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Patterning of multicomponent elastic shells by gaussian curvature
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Recent findings suggest that shell protein distribution and the morphology of bacterial microcompartments
regulate the chemical fluxes facilitating reactions which dictate their biological function. We explore how the
morphology and component patterning are coupled through the competition of mean and gaussian bending
energies in multicomponent elastic shells that form three-component irregular polyhedra. We observe two softer
components with lower bending rigidities allocated on the edges and vertices while the harder component
occupies the faces. When subjected to a nonzero interfacial line tension, the two softer components further
separate and pattern into subdomains that are mediated by the gaussian curvature. We find that this degree of
fractionation is maximized when there is a weaker line tension and when the ratio of bending rigidities between
the two softer domains ≈2. Our results reveal a patterning mechanism in multicomponent shells that can capture
the observed morphologies of bacterial microcompartments, and moreover, can be realized in synthetic vesicles.
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I. INTRODUCTION

The hierarchical nature of molecular biology allows for
incredible complexity to arise from simple molecular building
blocks. A striking example of this hierarchy is the division of
biological processes into specific subcellular compartments
[1]. Although many of these subcomponents share similar
building blocks such as lipids [2] and proteins [3], they have
a vast range of properties [4–11], functions [12–15], and
morphologies [16–20]. Thus, it is critical to understand how
heterogeneity in the composition [6,21,22] of these compart-
ments can lead to unique morphologies and overall functions.
We study a membrane compartment system composed of
multiple components with different mechanical properties and
investigate how these properties lead to complex surface pat-
terning that affects shell morphology.

One class of subcellular compartments that are comprised
of heterogeneous constituents is the bacterial microcom-
partment (BMC) [23,24]. Similar to viruses, they have
semi-permeable shells [25] that are composed with copies
of various shell proteins [26–31]. Atomistic simulations
of these different shell protein have shown that there are
unique mechanical interactions between the different pairs
of shell proteins, namely, the bending interactions between
two species of protein oligomers have distinct bending ener-
gies and energy-minimum bending angles [26,32]. Thus, at
a large-scale continuum level, the entire shell is expected to
behave as a multicomponent membrane, particularly in terms
of component-specific elastic parameters such as (mean)
bending and Gaussian rigidity [33–37]. Understanding and
quantifying the patterning mechanism in such multicompo-
nent shells could provide key insights into how the different
shell proteins are spatially arranged [38] and their biological
functions. Moreover, BMCs house enzymatic pathways that

are involved in many other important cellular functions in-
cluding CO2 fixation. Hence, they are of great interest in the
synthetic biology community due to their potential application
as nanobioreactors. For such applications, it is important to
control the size and shape of these compartments as previous
work [26] has shown that reaction rates can be altered by
changing the morphology of BMCs.

Fluid [39–41] and crystalline [42–44] membranes have
been successfully studied using continuum elasticity theory
that contain relatively few adjustable parameters [45–47].
For instance, viral capsids provide a great illustration of
how buckling transitions in single component membranes are
due to the competition of stretching and bending energies.
Smaller virus particles tend to be spherical, minimizing the
membrane bending energy while larger particles buckle into
icosahedra as the stretching energy scales with the surface
area of the shell [48,49]. In contrast, heterogeneous multi-
component membranes allow for a greater variety of shapes
[50–52] including irregular polyhedra [10,36,53,54]. These
shapes can arise from a mismatch between the membrane
curvature and isotropic [51] or anisotropic [52] local curva-
tures induced by inclusions such as membrane proteins in
a lipid bilayer. They can also arise from different bending
moduli between the components [33,35,53,55]. Such mem-
branes form shapes with highly bent vertices and edges when
one component is much less rigid than the others. Unlike
icosahedral viruses studied in previous works [48,49], BMCs
have been observed with irregular polyhedral shapes [24,56]
possibly due to diverse mechanical properties that arise from
heterogeneous bending interactions between the shell protein
components [26,32]. The question of how these components
are patterned on the shell surface, which is highly relevant
to functional features such as BMC permeability [25,57], re-
mains open [31,38]. In this work, we address the effects of
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component-dependent rigidity as well as interfacial line ten-
sion on shell patterning and morphology.

The role of Gaussian curvature becomes crucial for multi-
component membranes bearing domains of distinct rigidities
[33,35,53,55,58,59] as is often the case in shells composed
of chemically distinct hexamers and pentamers [60]. In a sin-
gle component, uniform membrane, the energetic contribution
from the Gaussian curvature is often irrelevant if there are no
changes in boundary or topology. This is due to the Gauss-
Bonnet theorem, by which the total Gaussian bending energy
of a closed homogeneous vesicle amounts to a topological
constant. However, in multicomponent membranes with com-
ponents that have different bending and Gaussian rigidities,
the total Gaussian energy of the system depends on the contact
lines of the multidomain boundaries and the relative values
of gaussian rigidities in the domains [33–36,53,58]. However,
for lipid membranes during fission events such as budding
where topological changes can occur, rather than the gaussian
bending contribution, other membrane properties like the or-
dering of anisotropic membrane components or inclusions has
been though to be the prime driving force [52,61–63].

The numerical value of the gaussian rigidity of a given
component has been shown to be directly proportional to its
bending rigidity by the negative of a dimensionless constant
whose reported value is approximately 1 in experiments and
molecular dynamics simulation of lipid membranes [64], as
well as discretized mesh models [9,36,42,49,53,65,66]. As a
result, a component with a larger bending rigidity will have
a more negative Gaussian rigidity than the other components,
which can create a competition between the mean and gaus-
sian curvatures leading to patterning of components on the
membrane. However, in previous works on multicomponent
closed membranes, the mechanical regimes and conditions
necessary to address these patterns have not been accessed
[8,36,37,53,54]. Two-component polyhedra [36,53] do not
allow for the multiple edge and vertex components needed for
patterning, while three-component icosahedra [37] inherently
cannot form the complex shapes dictated by this competition.
Here, we investigate how the mean and Gaussian curvatures
are distributed among two components which combine to
form the edges and vertices of a buckled polyhedra whose
faces are comprised of a third, much more rigid component
(see Fig. 1). This competition creates regions of high or low
mean and gaussian curvature which correspond to domains
of the two softer components affecting the shell morphology.
We investigate how this is impacted by the strength of a
line tension between the different components, the ratio of
bending rigidities between the components, and the overall
composition of the membrane, finding values which maximize
the number of domains. These low symmetry patterns give
insight into how individual components may be distributed on
subcellular compartments with complex and irregular shapes.

This article is arranged as follows. In Sec. II, we outline
our continuum elasticity model and the numerical discretiza-
tion methods we employ to minimize the total energy.
Section III details our analysis of the resulting energy-
minimum shell patterns under varied mechanical parameters.
Our key findings and broader outcomes are highlighted in
Sec. IV. Additionally, we provide Appendices with additional
materials and results.

FIG. 1. Multicomponent elastic shell with three distinct compo-
nents denoted as hard (pink), midsoft (purple), and softest (cyan),
referring to their different bending rigidities such that κhard >

κmidsoft > κsoftest (top panel). These components pattern the shell
based on the surface distribution of the square of two times the
mean curvature H2 and the gaussian curvature G, which are given
for the red boxed section of the shell with their magnitudes indicated
by the color bar (lower right panel). This leads to polyhedra with
inhomogeneous vertex curvature similar to cryotransmission electron
micrographs of BMCs on TEM grids [reproduced from Ref. [56]
under Creative Commons Attribution 4.0 International (CC BY)
license] in the lower left panel.

II. MODEL AND METHODS

A. Continuum elasticity theory

The elastic energy of thin shells is primarily written as the
sum of mechanical stretching and bending contributions, in
which the stretching term is given as

EStretch = 1

2

∫
S

Y

1 + ν

(
U (�r)2

i j + ν

1 − ν
U (�r)2

kk

)
dA , (1)

where Y is the Young’s modulus, ν is Poisson’s ratio, and
U (�r)i j is the position �r-dependent strain tensor [36,37,47].
The bending term is accounted for by the Helfrich energy
[36,37,45] given by

EBend = 1

2

∫
S
κ (�r)H (�r)2dA +

∫
S
κG(�r)G(�r)dA , (2)

where κ (�r) is the bending rigidity, H (�r) is two times the
mean curvature, κG(�r) is the gaussian rigidity, and G(�r) is
the gaussian curvature. The mean and gaussian curvature
are functions of the two principal radii of curvature R1(�r)
and R2(�r), such that H = ( 1

R1
+ 1

R2
) and G = 1

R1R2
. In the

special case of a perfect uniform sphere, for instance, the
position dependence in Eqs. (1) and (2) are lost. However, this
dependence is maintained for more general multicompnent
membranes with nonuniform shapes. Although we encounter
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relatively large curvatures, for instance, at the component
interfaces (see Fig. 1), we employ here the standard thin
membrane with small deformation theory following previous
works [36,37] where the bending energy density in Eq. (2)
is approximated by truncating at the quadratic or squared
curvature term. The competition between the stretching and
bending energies is characterized by the dimensionless Foppl
von Karman number Fvk = Y R2

κ
where R is the shell radius.

At high FvK values, the stretching term is dominant and a
closed shell buckles into an icosahedron. Below the critical
value FvK ≈ 154 [42,49], a smoother spherical shell remains
with the bending energy density uniformly distributed.

In this work, we investigate a system of three components
(softest, soft, and hard, as shown in Fig. 1) with different
bending rigidities: κhard, κmidsoft, and κsoftest. We define the ra-
tios κmidsoft/κsoftest = λ1 � 1 and κhard/κsoftest = λ2. We set the
ratio κhard/κmidsoft = 50 such that λ2 = 50λ1, creating the right
conditions for polyhedral buckling with the hard component
on the faces [53]. The final, softest component will have a
bending rigidity κsoftest � κmidsoft and thus will buckle as well.
Determining the exact value of the gaussian rigidity of a given
component κG,α is not trivial and may be dependent on the
geometry as well as other intrinsic structural properties of the
membrane system [9,36,37,41,42,49,53,64,66]. However, it is
generally accepted that the gaussian rigidity is proportional
to the negative of the bending rigidity, such that κG,α = −cκα

where c is a dimensionless positive constant. Moreover, while
the case of nonzero and component-dependent intrinsic or
spontaneous curvature was studied in other works, which in-
cluded it in the bending energy [54,67–69], we do not consider
such a case here to simplify the problem.

We now write the mean and gaussian bending energy as a
function of λ1 and λ2 by breaking up the shell into domains
of the different components Dα . We reduce Eq. (2) as the
dimensionless bending energy

E∗
Bend = E∗

Mean − cE∗
Gauss , (3)

where E∗
Bend = EBend/κsoftest, and the dimensionless mean and

gaussian energies are

E∗
Mean = 1

2

∫
Dsoftest

H2dA + λ1

2

∫
Dmidsoft

H2dA + λ2

2

∫
Dhard

H2dA ,

(4)
and

E∗
Gauss =

∫
Dsoftest

GdA + λ1

∫
Dmidsoft

GdA + λ2

∫
Dhard

GdA , (5)

respectively. We have shells with the bending rigidity of the
hard component that are much higher than the midsoft or
softest components. As the hard component has a low FvK
number, it is preferred flattened at the faces of the polyhedral
shells. Equations (3) and (4) imply that, as λ1 increases, the
softest component is favored at the higher mean curvature
regions to minimize the bending energy. These high mean cur-
vature regions here include both the vertices and edges of the
polyhedra, which also have high gaussian curvature. Within
these regions, Eqs. (3) and (5), on the other hand, imply that
for a larger λ1, the midsoft component is preferred at places
with the higher positive gaussian curvature. This provides a
patterning mechanism for the two softer components within

these regions. In this case, we find the mean curvature is
higher at the edges than the vertices, such that the vertices
are occupied by the midsoft component. In contrast, when the
hard component has comparable bending rigidity to the other
two, with high FvK number, buckled icosahedral shells are
observed with the highest mean curvature at the vertices where
the softest component is located [37].

Given the presence of multiple, separated components at
lengthscales where continuum modeling is reasonable, we
impose an additional energy penalty when these components
are in contact [36,37,58,67,68]. To impose a penalty on the
creation of an interface between two different components we
add an interfacial line tension term [36,37] as follows:

EInterface = �α,β

∫
∂S

dl , (6)

where �α,β quantifies this energy penalty between two com-
ponents α and β. Thus, our total energy is E = EBend +
EStretch + EInterface.

B. Discretized Monte Carlo simulations

We discretize the shell surface into a triangular T = 192
mesh in a spherical configuration with components placed on
random mesh points according to the given fractions of each
component [36,37,53]. It has a radius R ≈ 11.5r0 where r0 is
the equilibrium length between vertices. We then minimize
the discretized version of the total elastic energy as developed
by Seung and Nelson [42] with the components on the mesh
points to include the line tension term [36] using a Monte
Carlo protocol. We attempt two different kinds of Monte Carlo
moves. One type moves a mesh point 5% of the equilibrium
mesh spacing and the second swaps the identity of two mesh
points. This allows us to minimize the morphology and pat-
terning of the membrane.

In the Seung-Nelson (SN) discretization, we assign har-
monic springs between each pair of nearest-neighbor vertices
[36,37,53]. When the components are defined on the vertices,
this gives us the SN discretized stretching energy as

ESN
Stretch = 1

2

∑
i, j

εα,β (|�ri − �r j | − r0)2 , (7)

where α and β are the identities of vertices i and j, respec-
tively, and when α �= β one must use the mixing rule for the
harmonic springs with the discrete stretching modulus εα,β .
However, here we assume it is the same for all components
and set εα,β = ε, as a constant. We also set r0 = 1, the unit of
length. In the continuum limit this potential leads to a Young’s
modulus Y = 2√

3
ε and Poisson ratio ν = 1

3 [42].
The SN discretized bending energy is computed in terms of

the angle between triangles which share edge i, j where kα is
the discrete bending rigidity and ni and n j are the unit normal
vectors of triangles ti and t j for which there is a dihedral angle
θi, j . Here, the components are defined on the vertices instead
[36,37,53] and the expression becomes

ESN
Bend = 1

2

∑
ti,t j

kα,β |n̂i − n̂ j |2 =
∑
ti,t j

kα,β [1 − cos(θi, j )] , (8)
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where kα,β is the discrete bending rigidity of an edge con-
necting vertices with identities α and β. The mixing rule that
takes effect at the contact boundary of the two neighboring
lattice components is such that the bending rigidities of the
mixed bond kα,β = kα+kβ

2 . This is because, unlike stretching,
the bending deformation occurs out of the membrane plane
where the amounts of deformation for both components are
the same. We note that a discrete gaussian rigidity is not
explicitly defined in the SN model. While under a different
formulation of the model, it was shown that the gaussian
rigidity contributes to the torque tensor [70]. However, Eq. (8)
implicitly includes the gaussian contribution as it can be
shown that for a saddle shape lattice segment with zero mean
curvature but nonzero gaussian curvature, a nonzero energy is
obtained. We also attempt to use a form of the discretization
which explicitly includes the gaussian contribution [43] as
shown in Appendix A. However, we find numerical insta-
bilities at the vertices although the overall patterning was
quite similar to the results presented in the main text (see
Fig. 8). Here and in the single-component systems, the rela-
tion between the discrete bending constant k and the bending
rigidity κ is arrived at in the continuum limit of Eq. (8)
where it takes the form of κ = σk with σ =

√
3

2 following
the works [42,49,66]. For this discretization, we estimate that
c ≈ 1.28 by using it as a fitting parameter for our data (see
Appendix B). This is in good agreement with previous works
[49,66] which showed that c = 4

3 eas a valid solution for this
mesh for both spheres and cylinders. We choose the discrete
stretching modulus ε = 0.1khard/r2

0 such that FvKhard ≈ 18,
FvKmidsoft ≈ 900, and FvKsoftest ≈ 900λ1.

Following the previous work of Sknepnek et al. [36], we
define the discrete interfacial line tension as a sum over the
neighboring mesh points i, j

ESknepnek
Interface = 1

2

∑
i, j

γα,β (1 − δα,β ) , (9)

where δα,β is the Kronecker delta and γα,β is the discrete line
tension parameter with units of energy. This discretization of
Eq. (II A) assumes that the bond lengths at the interface are
not undergoing much deformation and thus the linear density
of mesh points at the interface is constant. In other words, it
only penalizes the number of interfacial contacts and not the
interface length as in the continuum model, and thus cannot
lead to domain budding. In our model this line tension term
is independent of any changes to the mechanical properties
although changing the mechanical properties can affect the
effective line tension and, in turn, the shell patterning [54].
The factor of 1/2 is included to avoid double counting these
contacts. Here, we make γα,β = γ a constant such that all
interfaces are penalized equally. Throughout this work, we
show the magnitude of γ relative to the bending energy using

γ

khard
where khard is the discrete bending constant for the hard

component.

III. RESULTS AND DISCUSSION

Membrane morphologies are shown for different compo-
nent fractions of the softest and midsoft components Fsoftest

and Fmidsoft, respectively, with and without line tension in

FIG. 2. Typical energies, in units of κsoftest, and shell config-
urations (a) with and (b) without line tension, where the rigidity
ratio, κmidsoft

κsoftest
= λ1 = 2. (a) The mechanical energy EBend + EStretch

for elastic shells with different fractions of the hard (pink), midsoft
(purple), and softest (cyan) components. Fhard, the fraction of the hard
component is given by 1 − Fsoftest − Fmidsoft. Characteristic shell pat-
terning is shown for all combinations where Fmidsoft = 0.0, 0.1, 0.2
and Fsoftest = 0.0, 0.1, 0.2. (b) The line tension energy, EInterface for an
elastic shell with line tension, γ

khard
= 10−3. Characteristic shell pat-

terning is shown for all combinations where Fmidsoft = 0.0, 0.1, 0.2
and Fsoftest = 0.0, 0.1, 0.2.

Fig. 2 along with the corresponding energies. These config-
urations are generated after an annealing protocol, which we
explore in the Appendix. We note the mechanical energy, that
is the sum of only the stretching and bending energies, drops
quickly as softer components are added to a one component
shell made only of the hard component. This accompanies
a polyhedral buckling transition as shown in previous work
[36,53]. However, once a certain amount of the softer compo-
nents is added (Fsoftest + Fmidsoft > 0.1) the mechanical energy
seems to slowly approach a minimum. This seems to signify
that the buckling transition is “complete” [Fig. 2(a)]. A related
trend is seen in the line tension energies, which increase as
more of the softer components are added in Fig. 2(b). The
line tension energy linearly for smaller Fmidsoft + Fsoftest as
adding the softer components creates a line or edge that has
an associated energy with it. However, at the point where this
buckling transition is completed, the relationship between the
amount of the softer components and the line tension energy
is no longer linear and instead the line tension increases much
more slowly. At this point, the bending energy is no longer
dominating and the line tension energy can be optimized as
well.

When the line tension is present, we observe segregated
domains of the softer components in Fig. 2(b), while without
the line tension, we observe patterns that look like the midsoft
component (purple) is “reinforcing” the softest component
(cyan) which is located at the center of the edges. In Fig. 3, we
quantify the number of these softer domains NSofter Domains =
NMidsoft Domains + NSoftest Domains, that is, the sum total of the
domains which contains both the midsoft and the softest parts.
More precisely, a softer domain is defined as a set of mesh
points of either the midsoft or softest component where, for
all vertices in the set, there exists a path between mesh points
that is only connected by neighboring mesh points of that
same component. Figure 3(a) shows that the number of softer
domains is maximized when the fraction of the midsoft com-
ponent Fmidsoft is higher then that of the of softest component
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FIG. 3. Analysis of domain patterning for different compositions
when the rigidity ratio λ1 = 2. (a) The number of softer domains
for different fractions the midsoft (purple) and softest (cyan) com-
ponents for the line tension parameter γ

khard
= 10−3. A softer domain

is a set of mesh points of either the midsoft or softest component
where, for all mesh points in the set, there exists a path between mesh
points that is only connected by neighboring mesh points of that
same component. Representative snapshots for the same component
fractions and line tension parameter are shown in (b). (c) The number
of softer domains for different fractions the midsoft (purple) and
softest (cyan) components for the line tension parameter γ

khard
= 2*

10−3. Representative snapshots for the same line tension parameter
are shown in (d).

Fsoftest, but when the total amount of softer components is not
too high (Fmidsoft + Fsoftest � 0.25). The representative mor-
phologies shown in Fig. 3(b) suggest that the midsoft (purple)
component prefers to be located on the vertices of the polyhe-
dra, while the softest (cyan) component tends to be located on
the edges. This creates the right conditions for many domains
to form since the midsoft vertices will be separated from
each other by the softest edges. Adding more of the midsoft
component fuses the vertex domains leading to a decrease
in the number of independent domains. The midsoft vertex
domains also seem thicker than the cyan edges, leading to in-
homogeneous mean curvature of the vertices and edges based
on which component the edge or vertex is made of. Another
way to fuse the domains should be to increase the magnitude
of the line tension parameter γ

khard
. This penalizes the formation

of independent domains. Indeed, Fig. 3(c) shows a decrease in
the number of domains for almost every composition by dou-
bling γ

khard
. The one composition which seems unaffected by

the increased line tension is Fmidsoft = Fsoftest = 0.05, which is
addressed later in the text and in Fig. 5.

THe snapshots in Fig. 3(d) visually show the fusion of the
midsoft and softest domains. Although the preference for the
midsoft component to be located on the vertices is still notice-
able, there are now more midsoft edges and these edges are
not as clearly defined as their softest (cyan) counterparts. We
expect that the persistent preference of the midsoft component

FIG. 4. Analysis of the relationship between domain formation
and the distribution of the mean and gaussian curvatures. All values
shown are with line tension paramter γ

khard
= 10−3. (a) The number of

softer domains as a function of the rigidity ratio, λ1 = κmidsoft
κsoftest

for three
different compositions shown in (c). (b) Analysis of the partitioning
of the mean and gaussian curvatures also as a function of the rigidity
ratio, λ1. Dashed lines are the fraction of the Gaussian curvature
found on the midsoft component ρG

midsoft, as defined in Eq. (10).
Solid lines are the fraction of the mean squared curvature found
on the midsoft component ρM

midsoft, as defined in Eq. (11). There is
more gaussian and mean squared curvature on the softest component
(cyan), however, there is a higher fraction of gaussian curvature on
the midsoft component than mean curvature on the midsoft com-
ponent. (c) Snapshots of different compositions and different λ1,
which correspond to (a) and (b). (d) The ratio of gaussian and mean
curvature energy on the softest and softest components βG and βM ,
as defined in Eqs. (12) and (13), respectively.

to be located on the vertices is due to the gaussian curvature
of the membrane, which is concentrated at the vertices of the
polyhedra. The relation between the gaussian and bending
rigidity imples that the midsoft component has a more neg-
ative gaussian rigidity despite having a more positive bending
rigidity. Thus, the midsoft component should be preferred in
regions of high gaussian curvature such as the vertices of
the polyhedra, as we observe. Based on our definition of the
gaussian energy in Eq. (5), this relationship should also be a
function of λ1, the ratio between the rigidity of the midsoft
and softest components. To illustrate this, we vary the rigidity
ratio in the range 1 � λ1 � 4, tracking the number of domains
for different compositions. We also quantity the gaussian and
mean contributions located on the midsoft component with
respect to the softest component through the following dimen-
sionless quantities

ρG
midsoft =

∫
Dmidsoft

GdA∫
Dmidsoft

GdA + ∫
Dsoftest

GdA
, (10)

and

ρM
midsoft =

∫
Dmidsoft

H2dA∫
Dmidsoft

H2dA + ∫
Dsoftest

H2dA
. (11)

These is computed using the per node definitions of the gaus-
sian and mean curvatures found in Eqs. (A3) and (A4). In
Fig. 4(a), we observe a maximum in the number of softer
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FIG. 5. Analysis of the partitioning of the mean and gaussian
curvatures also as a function of the rigidity ratio λ1 = κmidsoft

κsoftest
. The

different colors are for different line tension parameters γ

khard
. Dashed

lines are the fraction of the gaussian curvature found on the midsoft
component (purple), ρG

midsoft, as defined in Eq. (10). Solid lines are
the fraction of the mean curvature found on the midsoft component
ρM

midsoft, as defined in Eq. (11). (a) Relative to the mean curvature,
the gaussian curvature is partitioned preferentially to the midsoft
component (ρG

midsoft > ρM
midsoft) for Fmidsoft = Fsoftest = 0.1. This only

occurs in the presence of a line tension, but doubling the line tension
parameter has little effect on this partitioning but does lead to domain
fusion. For Fmidsoft = Fsoftest = 0.05 (c)–(f), when (c) no line tension,
there is only a slight preference for the gaussian curvature to be
on midsoft domains (ρG

midsoft > ρM
midsoft) at low values of λ1, with

mean squared curvature dominating for other λ1 (ρG
midsoft < ρM

midsoft).
(d) When weak line tension is added there is a preference for the
gaussian curvature to partition to the midsoft component, but only
when λ1 > 3. (e) When the line tension is doubled there is always a
preference for the gaussian curvature to be located on the midsoft
component, although the preference is maximized at λ1 = 2. The
ratio of mean and gaussian curvature energies between the softest and
midsoft components, βG and βM , as defined in Eqs. (12) and (13),
respectively, for different values of line tension when (b) Fmidsoft =
Fsoftest = 0.1 and (f) Fmidsoft = Fsoftest = 0.05.

domains for rigidity ratios of 2 or 3, depending on the specific
compositions. In Fig. 4(b), we show that both ρG

midsoft and
ρM

midsoft are always less than 0.5, meaning that more of both
the mean and gaussian contributions are on the softest compo-
nent. However, there is always a higher gaussian contribution
than mean contribution on the midsoft component (ρG

midsoft >

ρM
midsoft). This creates a maximum in the number of domains

when the rigidity ratio is large enough for there to be a dif-
ference in gaussian rigidity of the two components, but not
so large that the mean curvature term dominates completely.
This is illustrated by the snapshots at different λ1 values in
Fig. 4(c). As λ1 increases the softest component creates edges
that are skinnier relative to the midsoft component allowing

the softest component to cover more of the surface, increasing
its fraction of the gaussian and mean curvatures as shown
in Fig. 4(b). At first, this leads to more segregated domains
as it mostly occupies the edges, leaving segregated vertices
occupied by the midsoft component. However, it eventually
takes up more of the vertices as well, leading to a decrease in
the average number of domains.

One can approximate the relationship between ρG
midsoft and

λ1 goes as 1/(1 + βGλ1), where βG can be a fitting parameter
that describes how fast ρG

midsoft decays. It can be shown through
Eq. (12) that in this approxtimation, we find

βG =
∫

Dsoftest
GdA

λ1
∫

Dmidsoft
GdA

, (12)

which means that here βG is the ratio of gaussian energy in the
softest component to that of the midsoft component. Similary,
for the mean curvature using Eq. (13), we get

βM =
∫

Dsoftest
H2dA

λ1
∫

Dmidsoft
H2dA

. (13)

Interestingly, βG ≈ 1 for all values of λ1 and for different
compositions as shown in Fig. 4(d), which means the midsoft
and softest components have the same gaussian curvature
energy. This is not the case for the mean curvature energy,
where βM has a stronger dependence on λ1 and seems to
plateau around 1.6 for all compositions. This means that the
softest component is taking on more of the mean curvature
energy. The difference in βG and βM quantifies the energies
involved in the morphological “splitting” of the mean and
gaussian curvatures through the low mean curvature vertices
of the midsoft component.

Finally, we look at the effect of line tension on the split-
ting of the mean and gaussian curvatures. In Fig. 5(a), we
plot ρG

midsoft and ρM
midsoft as a function of the rigidity ratio

at γ

khard
= 0, 10−3, 2×10−3 and Fmidsoft = Fsoftest = 0.1. We ob-

serve only a slight difference in the curves for γ

khard
= 10−3 and

2× 10−3 with a slight increase in the fraction of both the mean
squared and Gaussian curvature on the midsoft component
at higher values of λ1. This suggests that the magnitude of
the line tension plays only a small role in determining how
the mean and gaussian curvatures are distributed between
the two components, despite the fact that the lower value
of line tension lead to significantly more domains in Fig. 3.
The values of βG and βM also remain nearly unchanged and
can be seen in Fig. 5(b). Thus, this effect of line tension
only induces domain fusion and does not sufficiently change
curvature distribution. For shells without line tension, pat-
terning on the vertices is lost as there is more mean squared
curvature than gaussian curvature on the mid-soft component
and both βG and βM become much larger with βG > βM [see
Fig. 5(f)]. This is the case when there is plenty of excess softer
component to buckle the shell as shown in Fig. 2. In contrast,
when all of the softer components are needed to buckle the
shell, as in Figs. 5(c) and 5(d) where Fmidsoft = Fsoftest = 0.05,
the line tension has a larger impact on the partitioning of mean
and gaussian curvature. Even without line tension in Fig. 5(c),
there is a slight preference for the gaussian curvature on the
midsoft phase when 1 < λ1 < 2. When the weak line tension
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is applied, this preference is much stronger and extends to
λ1 > 3 [Fig. 5(d)]. When the line tension is doubled there is
always a preference for the gaussian curvature to be located on
the midsoft component, although the preference is maximized
at λ1 = 2 and decreases afterwards as shown in Fig. 5(e).
Overall, the interplay between the line tension and rigidity
ratio promotes the formation of midsoft domains located on
the vertices.

IV. CONCLUSION AND OUTLOOK

In this article, we show that gaussian curvature plays a
crucial role in the morphology and patterning of multicompo-
nent elastic membranes. We observe that, for shells composed
of three components with distinct bending rigidities, energy-
minimum configurations where the two softer components
distributed on the edges and vertices while the harder com-
ponent forms the faces. Among the two softer components
that occupy the edges and vertices, a preference of the com-
ponent with higher bending rigidity is predominantly found
at the vertices leading to many subdomains, although with
low symmetry. These vertices were much flatter than their
counterparts occupied by the component with lower bending
rigidity leading to polyhedra with inhomogeneous vertices as
has been seen in BMCs with many components. These effects
required that the two softer components on the edges and
vertices have different bending rigidities, but not so different
that one component will occupy the vast majority of the bent
edges and vertices.

We saw a peak in the number of domains at a rigidity ratio
of ≈2, in contrast with the larger ratios necessary for the poly-
hedral buckling transition. Since this ratio is relatively low, the
necessary differences in bending properties may result from
only subtle changes to chemical properties of the molecules
that make the different shell proteins. This is consistent with
the BMC system where the two most common types of shell
proteins found are structurally similar and have almost iden-
tical amino acid sequences [29]. These effects also required a
line tension to help segregate the components, but not one so
strong as to fuse the domains back together, again suggesting
relatively similar components can create these morphological
patterns.

Besides such distinctions in their elastic properties, the
shell protein components of BMCs are also known to have
distinct electrostatic properties, namely, they carry different
ratios of charged amino acids. Thus, the resulting morphology
and component patterning observed here may, in turn, lead
to patterned surface charge densities on the shell as seen in
the icosahedral shells that have been crystallized [30,71,72].
Moreover, such BMC systems can facilitate chemical reaction
that produce fluxes of ionic chemical species. The combined
effect of such surface features provided with their asymmetric
distribution on the shell can induce self-phoretic movement
[73,74]. Both the elastic and electrostatic properties arise due
to small compositional variations in the protein components,
and thus, it may also be possible to regulate these subtle chem-
ical perturbations in synthetic vesicles that can be optimized
for specialized functionalities.
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APPENDIX A: ITZYKSON DISCRETIZATION

In the main text, we use the SN dicretization [42] of the
Helfrich bending and stretching energy, but define the com-
ponents on the vertices instead of the edges [36]. This makes
it simple to define the line tension, however, the edges can
now have a mixed identity at the interface and one must define
mixing rules, which are somewhat arbitrary and do not exist
in the continuum equations. One could also use the Itzykson
discretization [37,43]. Here, the components are located on
the vertices, however, the bending energies are computed by
calculating the mean and gaussian curvatures at the vertex
instead of the angle across triangles. In Fig. 8, we show that
this discretization is does not perform well for our annealing
protocol and thus we do not show results using the Itzykson
discretization in the main text. However, we do use the defi-
nitions of mean and gaussian curvature at a vertex to analyze
our morphologies generated by the SN discretization.

The issue of mixed edges is resolved in the Itzykson [43]
discretization by computing the local mean and gaussian cur-
vature of the Voronoi cell around each vertex. The potential,
summed over all vertices, takes on the form

EBend =
∑

i

(
κα

2
(Hi − H0,α )2 + κG,αGi

)
Ai , (A1)

where κα and κG,α have the same value as the continuum
parameters and thus we use the same κ to denote them as
opposed to the SN discretization, which uses k that must be
converted to κ . Hi and Gi are the mean and gaussian curvature
at vertex i and Ai is the dual-lattice vertex area defined as

Ai = 1

8

∑
j∈N (i)

[cot(φi, j ) + cot(ψi, j )](ri − r j )
2 , (A2)

where the sum is over the neighbors of i, indexed by j. The
angles φi, j and ψi, j are the interior angles opposite from edge
i, j which is shared by triangles, ti and t j . The mean curvature
is computed as

Hi = sign

2Ai

∑
j∈N (i)

[cot(φi, j ) + cot(ψi, j )](ri − r j ) , (A3)

where sign denotes whether the curvature is concave or con-
vex, 1 or −1, respectively. The gaussian curvature is found by
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summing over the angles adjacent to vertex i in the triangles
which share vertex i as follows:

Gi = 1

Ai

(
2π −

∑
t

θt

)
, (A4)

where θ is the angle at vertex i. In Fig. 8, we show this
discretized form of the energy is not adequately minimized on
our mesh by our Monte Carlo protocol. However, we use this
discretization to calculate the mean and gaussian curvature of
the mesh minimized with the SN discretization in Figs. 4 and
5 in the main text.

APPENDIX B: ESTIMATION OF c AND σ

We attempted to estimate the continuum c and σ for our
three component meshes in a way that is consistent with the
continuum result for the one component sphere. In the SN
discretization of a one component sphere, the discrete bending
energy is 4πk

√
3

3 . We can set this equal to the corresponding
continuum bending energy

4πk

√
3

3
= κ

2

∫
H2dA − cκ

∫
GdA = 4πκ (2 − c) , (B1)

and thus

κ =
√

3

3(2 − c)
k = σk . (B2)

We will use this relationship to reduce c and κ to a sin-
gle fitting parameter. Lidmar et al. [49] previously used the
κ =

√
3k
2 for a cylinder with no gaussian curvature to arrive

at the result that c = 4
3 ; a solution which is correct for both

geometries. We use

Ediscrete
Bend = κsoftestE

∗
Bend , (B3)

where Ediscrete
bend is the discretized bending energy of the mesh

and E∗
Benc is the same as defined in Eq. (3). We found that

the best fit for the data, including different compositions,
line tensions, and rigidity ratios was c ≈ 1.28 and σ ≈ 0.80.
This is in fairly good agreement with the values suggested
by Lidmar et al. In Fig. 6, we show c for some specific
parameters.

APPENDIX C: MONTE CARLO ANNEALING

Our annealing protocol involves seven different temper-
ature cycles. The first five cycles start at an annealing
temperature, T ∗, of 0.1 and then is reduced linearly in ten
steps to T ∗ = 10−7. The sixth and seventh cycles start at
T ∗ = 0.01 and T ∗ = 0.001, respectively, before being cooled
to T ∗ = 10−7 in the same linear fashion over ten steps. For
each T ∗, we run 5000 Monte Carlo steps for a total of 350 000
Monte Carlo steps. In each Monte Carlo step, we attempt two
different kinds of Monte Carlo moves. (1) For each vertex, we
attempt to move it a distance of 0.05r0 and (2) For each vertex,
we attempt to swap the identity of two random vertices. The
probability of move acceptance P is given by

P = min(1, e−�E/T ∗
), (C1)

FIG. 6. Using a fitting scheme where the continuum solution is
c = 1.28 as described in the main text we estimate c for different
compositions and the values of γ

khard
= 10−3, 10−3, 2 ∗ 10−3 and λ1 =

2, 4, 2 in (a), (b), and (c), respectively. We also display the average
value of c for the different compositions at the bottom of (a), (b), and
(c) (1.27, 1.23, and 1.32, respectively), which also show reasonable
agreement with the continuum solution.

where �E is the difference in total energy of the system
after the attempted Monte Carlo move. This protocol is run
four separate times with different random initial conditions
for all sets of parameters reported in the main text. All values
reported are an average of these four trials. Using a maximum
T ∗ = 0.1 is important as if a similar protocol is used, but the
maximum T ∗ = 0.01, the shells end up in much higher energy
states as shown in Fig. 7(a). This is for the same parameters as
in Fig. 2(b) in the main text and one can see the much higher
line tension energies in these cases as well as a lack of smooth
trends in Fig. 7(a).

FIG. 7. Results for annealing using (a) Itzykson discretization
and (b) Seung-Nelson discretization, both with a lower maximum
temperature T ∗ = 0.01. Typical energies and shell configurations
with and without line tension, where the rigidity ratio, κmidsoft

κsoftest
= λ1 =

2 and γ

khard
= 10−3. The line tension energies and characteristic shell

patterns are shown for all combinations where Fmidsoft = 0.0, 0.1, 0.2
and Fsoftest = 0.0, 0.1, 0.2.
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FIG. 8. One representative shell morphology for annealing using
the Itzykson discretization with the standard maximum tempera-
ture T ∗ = 0.1. The rigidity ratio κmidsoft

κsoftest
= λ1 = 2, γ

khard
= 10−3, and

(Fsoftest, Fmidsoft ) = (0.2, 0.1). Instabilities at vertices composed of the
softest (cyan) component in (a)–(c) with (a) showing some prefer-
ence of the midsoft component to occupy the vertices. (d) Shows a
magnified image where it is apparent that some of the hard compo-
nent is trapped and there are many convex bending angles.

We also ran this annealing protocol using the Itzykson
discretization and achieved very similar results in Fig. 7(b).
Neither Fig. 7(b) nor Fig. 7(a) show lowest energy states do
the lower maximum annealing temperature T ∗. When we at-
tempted to use the higher annealing temperature, T ∗ = 1, with
the Itzykson discretization we found that the mesh became un-
stable as shown in Fig. 8. This issue appears at vertices formed
by the softest component, making it impossible to quantita-
tively compare the Itzykson and Nelson discretizations for

FIG. 9. Representative snapshots for the shells with a strong line
tension parameter γ

khard
= 2×10−2 and rigidity ratio λ1 = 2. There

are always two softer domains which are now completely separated
from the hard component and the polyhedral shape is lost. Similar
effects have been seen previously in a two component system with
high line tension [36].

our parameters. We do note that the mid-soft component still
seems to prefer the vertices as was the case with the Nelson
discretization in the main text. This is noticeable in Fig. 8(a).

APPENDIX D: LARGER LINE TENSION

In the main text, we show that the line tension is necessary
for patterning the polyhedron, but also that doubling the line
tension will fuse domains back together. In Fig. 9, we show
that as the line tension is increased by an order of magnitude,
the polyhedral morphology is lost altogether and a sphere
with segregated regions of the softer component are formed
instead. A very similar transition has been observed in two
component membranes [36]. This also supports the idea that
line tension in these systems must be relatively weak or else
the polyhedral morphology will not be observed.
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