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Limits on the accuracy of contact inhibition of locomotion
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Cells that collide with each other repolarize away from contact, in a process called contact inhibition of
locomotion (CIL), which is necessary for correct development of the embryo. CIL can occur even when cells
make a micron-scale contact with a neighbor—much smaller than their size. How precisely can a cell sense
cell-cell contact and repolarize in the correct direction? What factors control whether a cell recognizes it has
contacted a neighbor? We propose a theoretical model for the limits of CIL where cells recognize the presence of
another cell by binding the protein ephrin with the Eph receptor. This recognition is made difficult by the presence
of interfering ligands that bind nonspecifically. Both theoretical predictions and simulation results show that it
becomes more difficult to sense cell-cell contact when it is difficult to distinguish ephrin from the interfering
ligands, or when there are more interfering ligands, or when the contact width decreases. However, the error of
estimating contact position remains almost constant when the contact width changes. This happens because the
cell gains spatial information largely from the boundaries of cell-cell contact. We study using statistical decision
theory the likelihood of a false-positive CIL event in the absence of cell-cell contact, and the likelihood of a false
negative where CIL does not occur when another cell is present. Our results suggest that the cell is more likely
to make incorrect decisions when the contact width is very small or so large that it nears the cell’s perimeter.
However, in general, we find that cells have the ability to make reasonably reliable CIL decisions even for very
narrow (micron-scale) contacts, even if the concentration of interfering ligands is ten times that of the correct

ligands.
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I. INTRODUCTION

More than half a century ago, researchers first observed
contact inhibition of locomotion (CIL), when two collid-
ing fibroblasts changed direction rapidly and migrated away
from the collision [1-5]. During the following years, dif-
ferent variants of CIL were found in a large number of
healthy and cancerous cell types [2]. The outcomes of cell-
cell collisions that can be called CIL may include both cells
reversing or a single cell reversing, leading to cell train for-
mation, depending on the cell environment and cell type
[5-10]. The outcomes of cell-cell collisions are also known
to be stochastic in nature [5-7]. We will think of CIL as
the phenomenon of a cell actively changing its polarization
upon encountering—and specifically recognizing—another
cell. CIL can be classified into homotypic (occurring between
cells of the same type) and heterotypic CIL (occurring be-
tween cells of different types), which is usually lost in cancer
cells when confronted with normal cells [2]. CIL is now a
well-known characteristic of normal cells and plays an im-
portant role in regulating cell motility [4,5], tissue growth
[11], and development [12—-14]. For example, experiments
revealed that Drosophila macrophages (haemocytes) require
CIL for their uniform embryonic dispersal [14,15]. CIL can
happen—though rarely—even when cells are crawling on iso-
lated nanofibers, leading to very small (~um) contact regions
[5]. How can cells reliably observe the presence of another
cell just by such a small contact?

CIL is regulated by the Eph-ephrin signaling pathway
[12,14,16,17]. Contact detected by Eph-ephrin or cadherin

2470-0045/2024/109(5)/054408(15)

054408-1

binding [18,19] reorganizes the actin cytoskeleton [20] by
modulating the main elements of the Rho GTPase family
[21,22], resulting in the increase of actomyosin contractility
and the inhibition of lamellipodia formation at the cell-cell
contact [12,23]. Eph receptors are a family of transmembrane
receptor tyrosine kinases (RTK) [12,16] that regulate tissue
boundary formation in development [24] and tissue organi-
zation maintenance in adult organisms [12]. Their ligands,
known as ephrins, are normally anchored to the cell surface
[12,13,16]—Eph-ephrin signaling occurs when cells come
into contact with one another. Ephrin cues can be used to
reorganize and repolarize cells. Ephrin-coated beads lead to
CIL when cells collide with them [13], and micropatterned
ephrin spatial cues can be used to align intestinal crypt cells
[12].

Cells can use receptors on their membrane to estimate ex-
ternal ligand concentrations [25-27] and also to sense spatial
[28-33] or temporal [34] gradients. The accuracy limits of
these estimations have been extensively studied [26,28-31],
including related measurements of spatially localized extra-
cellular signals [29]. For a cell to undergo CIL, it must detect
the presence and location of the cell-cell contact—akin to
measuring a spatially localized chemical. The cell’s ability to
make this detection will be challenged if ligands other than
ephrin, i.e., spurious ligands, bind nonspecifically to the Eph
receptors [35-38]. Potential candidates for the spurious lig-
ands are soluble ephrins [39], ephrins on extracellular vesicles
[40], or ligands for other RTKs, e.g., growth factors [41]. In
scenarios where there is only a small patch of contact [5], such
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FIG. 1. Illustration of two cells in contact where they can sense
each other through Eph-ephrin signaling. Both Eph receptors (blue
receptors) and their ligands—ephrins (green ellipses), are distributed
on the cell membranes. Besides the cognate ligands, other spurious
ligands (red squares) can also bind to the Eph receptors. These
incorrect binding events mixed with the correct Eph-ephrin binding
will affect the sensing accuracy of contact inhibition of locomotion.

interference from other ligands poses a significant threat to the
precision of cell sensing.

In this paper, we develop a theory for sensing cell-cell
contact via Eph receptor-ephrin contact in the presence of
spurious ligands using a multiligand model [26,35,36,42]. To
analyze the optimal performance of such a sensing mecha-
nism, we adopt the method of maximum likelihood estimation
(MLE) and derive the fundamental sensing limits by using the
Cramér-Rao bound. We find that the accuracy of detecting the
location of the other cell is degraded when the binding affinity
of the spurious ligands is close to the true ephrin’s affinity,
or when the fraction of correct ligands is small. Surprisingly,
accuracy does not depend strongly on the contact width. These
results are also supported by Monte Carlo simulations. We use
statistical decision theory to study the problem of whether the
cell can effectively detect the presence of another cell via a
small cell-cell contact, and show how cells can trade off false
negatives, where they fail to respond to another cell, and false
positives, where they react even in the absence of a contact-
ing cell. We find that cell-cell contact can be highly reliably
detected even at large levels of spurious ligand concentrations.

II. MODEL

Consider two cells coming into contact as shown in Fig. 1,
where both cells can sense each other through Eph-ephrin
binding [12,13]. We study the sensing accuracy for cell 1
detecting cell 2, as the mirror problem is equivalent.

As an initial model for the fundamental sensing limits of
contact inhibition of locomotion, we work in an effectively
one-dimensional model, with Eph receptors characterized by
their location x around the perimeter of cell 1. We assume
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FIG. 2. Extracting information from bound-unbound time series
of receptors. Top: The ephrin concentration is a smooth rectangular
function c(x) that is high at the region of contact (~=o of the contact
center at xp). Bottom: The temporal record of the binding states of
example receptors inside and outside the contact region. Receptors
within the contact region (blue) can bind to both ephrins (green) and
incorrect ligands (red) while receptors outside (yellow) can only bind
to the spurious ligands.

ephrins from cell 2 can bind to the Eph receptors on cell
1 with a rate kc(x), i.e., a base rate k times an effective
ephrin concentration c¢(x). The rate kc(x) combines both the
area density of the ephrin on the membrane with the reduced
likelihood of binding for ephrins which are further away from
the membrane of cell 1—so if we treat k as constant, then we
expect c(x) to vary from its maximum value at the cell-cell
contact to essentially zero far away from the contact. The
details of the shape of c(x) will depend on the details of
the cell-cell junction and the cell-cell contact, but we make
an initial hypothesis that c(x) is effectively constant over the
cell-cell contact width and then smoothly decreases to zero
(Fig. 2, top). We use a smooth rectangular function for the
effective ephrin concentration that cell 1 senses on cell 2’s
surface:

c(x) = coS(x — (xo — 0))S((x0 + o) — x), ey

where S(x) = [1 + tanh(x/w)]/2, and w controls the steep-
ness at the transition between 0 and cy. xg is the center of the
region of cell-cell contact and 20 is the contact width. Recep-
tors bound with the correct ligand (ephrin) will unbind with
rate r. Receptors can also bind the incorrect (spurious) ligand
with rate k¢’ and unbind with rate ' (Fig. 2, bottom), where
we assume the effective concentration of incorrect ligands ¢’
is constant.

In our model, we adopt the assumption of Ref. [35], where
the only distinction between the two ligands is their binding
kinetics, neglecting features like potential ligand bias [43,44].
This means that the cell only knows whether a receptor
is bound, not what ligand is bound to it. How, then, can
the cell detect the presence of another cell and repolarize
away from it? First, even if ligands had identical unbinding
rates, there would be more bound receptors at the cell-cell
contact. Second, if the correct and incorrect ligands have
different affinities (r # #’), then the cell can discriminate
between them statistically. Ligands with a larger unbinding

054408-2



LIMITS ON THE ACCURACY OF CONTACT INHIBITION ...

PHYSICAL REVIEW E 109, 054408 (2024)

rate remain bound to receptors for a shorter time compared
to ligands with a smaller unbinding rate. Thus, the cell can
discern the mixture of two different ligands if the detailed
occupancy history of each receptor is available [35]. This
record can be summarized by the times the receptor spends
unbound 7, ; and the times it spends bound 7} ; [34,35,45],
e.g., {Tu.1> W1, Tu2, T2, - - -} (as shown in Fig. 2, bottom).
Given the receptor record, c(x) can be estimated which allows
the cell to identify the location of the cell-cell contact xy.

The probability densities to have a bound interval of length
75, and an unbound interval of length 7, for a receptor seeing
concentration c of correct ligand are [30,35]

P(t,) = k(c + ¢)e Kt 2)
P(1p) = —C e < re 3)
c+c c+¢ ’

where the factor (¢ + ¢’) in Eq. (2) is the total concentration,
and the factors ¢/(c 4+ ¢’) and ¢’/(c + ¢’) in Eq. (3) are the
probabilities of the binding event being the correct ligand and
incorrect ligand, respectively. We assume that there are N
receptors evenly spaced over the cell perimeter L, each with
position x, so the nth receptor has ephrin concentration c(x;,).

We assume that the cells observe the binding and
unbinding events over a “measuring time” 7 and use
this to make a CIL decision—estimating the position of
the cell-cell contact. The probability of a particular time
record {7,1, Tp.1, Tu2, Tr2, - - - } for the nth receptor is P, =
]_[?i’l P(rbgf’i)) . P(r,f,”i)), where M, is the number of pairs of
binding-unbinding events during the time 7'. Therefore, given
the three parameters 6 = (cg, ¢/, xo) in our model, the total
probability of a trajectory of bound and unbound times arising
from N independent receptors is P({t}|0) = ]_[,,N=1 P,.

To derive the fundamental sensing limits, we use the
method of maximum likelihood estimation (MLE) [28,45,46].
The log-likelihood function is In £(6|{t}) = In P({r}|0). The
MLE estimate of the parameters 8 is obtained by maximizing
the log-likelihood, e.g., by solving d In £/96,,|,_, = 0, where
the index u = 1, 2, 3, or by numerical maximization of In L.
The error between any unbiased estimate of the parameters
that the cell can make, 9, and the true parameters is limited
by the Fisher information matrix and the Cramér-Rao bound
[Eq. (4)]. We can compute the Fisher information matrix
1(0),, = —(d1n £/26,,36,) for our model in a partially an-
alytic way. After taking the derivatives of the log-likelihood
necessary to compute the Fisher information matrix, we get
an equation that is a complicated function of the bound
and unbound times {7}, 7,}. This reduces the problem to
quadrature—we can calculate the average (- - - ) by numerical
integration using the probability densities in Eqs. (2) and (3)
(see Appendix B for details). The Cramér-Rao bound (CRB)
then gives the lower bound for the variance of an unbiased
estimator 8 of parameters [31]:

Var(§,) = 1) 1, 4)

where 1(#)~! is the matrix inverse. Equation (4) sets the best
precision with which a cell could measure, e.g., the location
of the cell-cell contact, given the unavoidable stochasticity
arising from the ligand-receptor interactions.

III. RESULTS

How precisely can a cell detect the position of cell-cell
contact, or the concentrations of ligands? This is set by
Eq. (4)—the best possible unbiased estimates we can make
of our parameters. We will display our results in terms of
the variables 0 = (c;, x, Xo), where ¢, = ¢ + ¢’ is the total
concentration, i.e., the concentration that sets the total binding
rate at the cell-cell contact and x = c¢y/c; is the fraction of
correct ligands. When x <« 1, most bindings are the incorrect
ligand, and we expect the cell to struggle to perform CIL.
We also define the unbinding rate ratio of the two ligands as
a = r/r'. The correct ligands are expected to have a higher
affinity to the receptors and thus take longer to unbind, i.e.,
r < r/,soweassume o < 1.

In Fig. 3, we plot both our calculations of the minimal
standard deviations required from the Cramér-Rao bound in
Eq. (4) as well as simulation results from Monte Carlo (MC)
simulations where we generate stochastic receptor trajectories
according to Egs. (2) and (3), and then numerically max-
imize the likelihood to determine the maximum-likelihood
estimators ¢, X, and Xy (Appendix C). Broadly, we see good
agreement between simulation and theory, except for a few
data points at small patch sizes when o ~ 1-2 um, which we
discuss further below.

A. How do the sensing limits change when it becomes
difficult to distinguish the two ligands?

The unbinding rate ratio « = r/r’ quantifies the differ-
ence in receptor-ligand affinity between the two ligands. In
other words, it characterizes how hard it is for the cell to
discriminate the two ligands. When « is close to 0, i.e., in
the easy discrimination regime, the standard deviations of all
three estimated parameters (¢, X, Xp) are small. When o gets
closer to 1, it becomes harder to distinguish the two ligands.
If o = 1, then both ligands have the same unbinding rate and
are thus indistinguishable for the cell within our assumptions.
The difficulty to tell the two ligands apart leads to a rise
in sensing errors for all parameters as « nears 1, i.e., the
smaller the discrepancy between ligands, the less accurately
the cell can sense the contact [Figs. 3(a)-3(f)]. The stan-
dard deviations of all three parameters are small compared to
their relevant scales, which are for Fig. 3 total concentration
¢; = 1000 um~2, correct ligand fraction x = 0.1, and the cell
perimeter L = 100 um. We also see that the errors relative to
the mean are small (Fig. 9 in Appendix D). This means that the
limits imposed by stochastic noise of ligand-receptor binding
may not be that stringent in practice. For example, if the cell
can locate the source of cell-cell contact to £SD(%) of ~0.4
microns [the worst case of Fig. 3(f)], then the cell has an an-
gular uncertainty of the direction to go which is 2w SD(%g)/L
of ~1.5°. This angular uncertainty is much smaller than the
typical angular range of acceleration vectors observed in CIL
on two-dimensional substrates [14], which indicates that cells
likely have more positional information than they really use in
CIL—unless the concentration of spurious ligands is extraor-
dinarily high (x <« 1) or our model is incomplete or there is
additional noise due to one of the other factors we raise later
in Sec. IV.
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FIG. 3. Errors of maximum likelihood estimate (MLE) influenced by receptor-ligand affinity, fraction of correct ligands, and contact width.
Panels (a), (b) show the standard deviation (SD) of the total concentration ¢, panels (c), (d) show the SD of correct ligand fraction jx, and
panels (e), (f) display the SD of contact center position %. In all figures, the lines (solid, dashed, and dash-dot) represent theoretical results
obtained from Eq. (4), while the points are obtained from Monte Carlo simulations (the standard deviations are computed from 10* simulations
for each point); Measuring time is 7 = 10 s. Corresponding relative errors (SD/average) are shown in Fig. 9 in Appendix D.

In Figs. 3(a), 3(c), and 3(e), we also show the standard
deviations for different correct ligand fractions x = cp/c;. We
expect that, as the fraction of correct ligands decreases, the
error in estimating each parameter should increase. We do see
that errors associated with estimating the total concentration
¢; and the contact center position xy decrease as x increases
[Figs. 3(a) and 3(e)]. However, estimating the correct ligand
fraction yx itself has a more complex behavior [Fig. 3(c)].
Estimating x in our model is akin to a spatially dependent
multireceptor model of the question asked by Ref. [35]—how
precisely can a single receptor detect a rare ligand binding?
Our model, though, shows qualitative differences compared
to the single receptor model of Ref. [35]. For a single receptor
in the easy discrimination regime when the cell is confident
about what type of ligand is bound (o < 1/2), the uncertainty
of sensing x increases with x as SD(%) ~ x#/? with g =
1 —a/(1 —a), though the relative error SD(})/x always
decreases with x [35], while in the hard discrimination regime
(¢ > 1/2), SD()) is roughly independent of x, and diverges
as @ — 1, where a single receptor cannot discriminate be-
tween ligands. In our spatial, multireceptor model, we find
that when o < 1/2 the error in x increases with x, as seen
in Ref. [35]. However, in the hard discrimination regime
(¢ > 1/2), we find that SD(¥) has the opposite behavior, in-
creasing when x decreases. We argue that this occurs because
there are two ways for the cell to estimate x: first, by discrim-
inating between the two ligands by their binding times, and

second, by comparing the total amount of binding observed
at the cell-cell contact (depending on ¢y + ¢’) to the binding
outside the contact (depending only on ¢’). The second mech-
anism does not require that the cell can discriminate between
the two ligands, and will still function as « — 1. Hence, we
see that as @ — 1, the error of sensing x decreases as x
increases just like the error of the total concentration c,. This
source of error is essentially arising because at small y, the
difference between ¢y + ¢’ and ¢ will shrink. By contrast, for
o < 1/2, the estimation of yx is similar to the single-molecule
discrimination of Ref. [35] and the error in yx increases
with x.

B. How does contact width limit CIL?

As the contact width o expands, more receptors come
inside the contact region and the cell can obtain more in-
formation about the concentration of the true ligands—we
expect that the accuracy of estimating our parameters should
generally increase as the contact width increases. In Figs. 3(b)
and 3(d), we observe that both the standard deviation of to-
tal concentration SD(¢;) and the standard deviation of the
fraction of correct ligands SD(j) decrease with increasing
contact width o. Surprisingly, we find the error in estimating
the contact position SD(Xj) remains almost constant as o
ranges from 3-30um [Fig. 3(f)]. Why? We argue that the
cell’s information about the contact location is largely coming
from where the edges of the contact are, i.e., the transitions
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in c(x). To better illustrate this, consider a simpler model that
only involves one snapshot in time and one species of ligands,
which we denote with a capital C(x). In this toy model, given
concentration C(x), the occupancy for each receptor is given
by p, = C(x,)/[C(x,) + Kp], with the dissociation constant
Kp = r/k [32]. The joint probability for the state of all recep-
tors is P({Z,}) = L' with

£ =[1rra—pn' 7, ©)
where Z, = 0 indicates the receptor is unbound and Z, = 1

indicates it is bound. In this toy model, we can compute the
Fisher information:

toy _ _< 9% 1n £t°y> . Z Kp aC(x,) 0C(x,)
e 00,00, — [C(xn) + Kpl’C 96, 96,
(6)
If the concentration C(x) takes the form of a smooth rectan-
gular function [Eq. (1)], and we compute the x(-xy component
of the Fisher information matrix, then the only terms that are
nonzero in the sum in Eq. (6) are those where the derivative
dC(x)/0dxy is nonzero—which are the edges of the contact
zone. By contrast, if we were going to estimate the concen-
tration level of the contact, then you would get a nonzero term
at every receptor within the contact, and we would expect the

error to decrease with contact size.

In Fig. 3(f) the uncertainty in measuring the contact center
Xxo does increase for small enough o, in the range of o =
1-2 um. This happens when the contact width o is similar
to the scale @ = 1 um over which c(x) is varying—so then
dc/9dxy will be nonzero over the whole contact patch. If we
increase w, then the general behaviors of the errors will not
change, but the increase in SD(%y) at small o will occur
at a larger o, as the concentration profile becomes strongly

dependent on x when o ~ w [see Fig. 6(f) in Appendix D].
However, the derivative dc/dxy depends significantly on
the chosen concentration profile—it is zero except at the
boundaries because we are using a smooth rectangular func-
tion [Eq. (1)] here. If we choose a concentration profile where
dc/dxg is nonzero throughout, such as a Gaussian function,
then all receptors within the contact region will contribute to
the accuracy of position sensing, and the dependence of the
estimation errors of Xy shown in Fig. 3(f) will be different.

See Sec. IV and Fig. 10 (see Appendix D) for more details.
For most of Figs. 3(a)-3(f), we see good agreement be-
tween our bound from the Fisher information in Eq. (4) and
the variance of the maximum likelihood estimator computed
from a stochastic simulation. However, at the smallest o, we
do see a larger deviation between Monte Carlo simulations
and Fisher information results in Figs. 3(b), 3(d), and 3(f).
This discrepancy likely arises from the difficulty of the max-
imization process when o is small—when we do numerical
optimization to find the maximum-likelihood estimator 0,
there might be some deviations from the true global maximum
point—if the optimizer becomes trapped in a local maximum,
or if the number of iterations provided is too few, etc. These
numerical problems are more likely to happen for small con-
tact size o and @ — 1, because in such cases, there is less
difference between a cell with a very small contact patch and
one with essentially no contact (x = 0). In fact, the reasons

that make it difficult for us to do this numerical optimization
also make it difficult for the cell to determine if another cell
is present, which we address in the next section. In other
words, we suspect that any effective biochemical optimiza-
tion process would also be difficult in cases where numerical
optimization fails.

C. How reliably can the cell detect contact at all?

In many situations, determining the presence of another
cell is more useful for the cell than precisely locating the con-
tact point. For instance, a recent experiment [5] studied CIL
for cells on suspended nanofibers, which are used to mimic the
extracellular matrix. In this biologically relevant case—and in
other experiments of CIL on micropatterns [7,13]—cells only
have two possible directions. Thus, the precision in estimating
the location of contact xp is not so important, but deciding
whether there is contact or not is very important.

We study the problem of how precisely a cell can detect
the presence of a neighbor from a localized signal by using
tools from statistical decision theory. First, if we regard the
cell as a binary classifier, then we can pose a question to the
cell: “Is there another cell in proximity?” This question can
be formally translated into the task of distinguishing between
two hypotheses: the presence versus absence of another cell.
In our model, if we denote the three-dimensional parameter
space where @ lives as ©, then the two hypotheses—presence
or absence [35,42,47]—can be written as

Hy : 0 € ©g = {(co, ¢, x0)|co = 0}, @)

H; : 0 € Bf = 0\, (8)

where H (called the null hypothesis) states @ lives within
a subspace ®p, which corresponds to the plane of ¢y = 0,
i.e., the other cell is not there. And H; (called the alternative
hypothesis) asserts  lives in ©F, the complement space of Oy,
i.e., co # 0 and there is another cell nearby.

This question can be addressed by employing a statistical
method known as the likelihood-ratio test (Wilks test) [47] to
help the cell make decisions. The basic concept of this test is
to calculate the ratio of the maximum likelihood under the two
competing hypotheses:

L
SUPpeo & _ sup(In£) — sup(In£) >0,  (9)

A=1In
SUPgeo, L o 00,

where the sup notation refers to the supremum. Therefore, if A
is large, then the alternative hypothesis H; (presence) is more
competitive. In contrast, the null hypothesis Hy (absence)
becomes a more compelling choice if A is small. In general,
the ratio A will tune how much evidence is needed to prefer
hypothesis H; over hypothesis Hy. Then we can set an ad-
justable threshold value A. for the cell. If A > A, then the cell
believes it is contacting another cell. Conversely, if A < A,
then the cell concludes that there is no other cell nearby.

To gain deeper insight into the problem, we want to know:
How likely is it for the cell to fail in detecting the presence
of another cell when it is indeed there? Or how likely is it for
the cell to claim the detection of another cell but it is actually
absent? In statistics, the former probability is defined as the
false-negative rate (FNR), and the latter is referred to as the
false-positive rate (FPR). In our model, the false-negative rate
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these figures.
can be computed as [35]

ENR = (H(A. — 1))+, (10)
where H (x) is the Heaviside step function. The symbol (- - - ),
denotes the average over all allowed configurations of the time
series, and the positive subscript + indicates the average is
taken under the condition of another cell being there. Only
when the cell misses the presence of the other cell, i.e., A <
A, the step function is nonzero. Thus, Eq. (10) gives exactly
the probability of the cell making a false-negative decision,
where it erroneously asserts the absence of the other cell. To
compute the FNR, we choose a value X., use our Monte Carlo
simulation to generate a set of receptor occupancies over time
given the presence of a second cell (Appendix C), then nu-
merically maximize the likelihood under the two hypotheses
(presence and absence of the contacting cell) to compute A
from Eq. (9). We then repeat this many times to compute the
FNR from Eq. (10).

Figure 4(a) shows the Monte Carlo simulation results of
FNR for varying contact widths. At small o, when there are
relatively few receptors where the true concentration c(x) is
nonzero, the false-negative rate is large. Essentially, in this
case, the probability of small numbers of correct ligands bind-
ing from cell-cell contact being mistaken for a coincidence is
large. The FNR decreases as the contact width is increased,
leading more receptors to come into the contact region. How-
ever, when the contact width 20 becomes very large and
approaches the cell perimeter L, the false-negative rate starts
to rise again, particularly when o = 1. This 20 — L case
could happen if the cell is nearly engulfed by another cell, or
is in contact with many cells. FNR will increase as the contact
region approaches L only in the hard discrimination regime
(o approaches 1), when the two ligands are indistinguishable.
When 20 approaches the cell perimeter, c(x) becomes nearly
constant c(x) & cp—equivalent to a simple change in the
background concentration ¢/, if the cell cannot discriminate
between the two ligands. The rise in FNR at large o disappears
as the cell becomes increasingly capable of distinguishing
between the two ligands, i.e., when o < 1.

We then perform a sweep across the unbinding rate ratio o
and the correct ligand fraction yx, both of which significantly
impact the false-negative rate. We show a phase diagram for
when cells might fail to recognize a contact in Fig. 4(b),
which shows a sharp transition in FNR as we go from low
o, high x values to high «, low x values. Notably, the FNR
exhibits nonzero values only when o« approaches 1 and y < 1,
i.e., the cell is more prone to making mistakes in the hard
discrimination regime, where the ligands are nearly indistin-
guishable, and when there is a higher presence of interfering
background ligands. These findings align with the previous
results in Figs. 3(a), 3(c), and 3(e).

The false-negative rates are influenced by the adjustable
threshold parameter A, we chose. We can always increase
the FPR and decrease the false-negative rate by adjusting
the threshold parameter A, to a small value, and vice versa.
To compare the ability to discriminate independent of the
arbitrary A., we use the detection error tradeoff (DET) graph
[35,48,49]. First, we can compute the false-positive rate in a
similar manner to FNR:

FPR = (H(A — A.))_, (11)

where (- - - ) _ indicates taking the average with no second cell
present, i.e., setting the ephrin concentration ¢y = 0. We visu-
alize the trade-off between false positives and false negatives
by varying the threshold parameter A. over the whole range
of A observed in our simulations, and then plotting the FPR
found for each A. against the FNR, as shown in Figs. 5(a)—
5(c). The figures in Figs. 5(a)-5(c) show how FPR varies
as a function of FNR. For instance, if we look at Fig. 5(a),
the contours indicate the best false-positive rate the cell can
achieve given a fixed false-negative rate, or vice versa. For
instance, if the cell can tolerate a false-positive rate of 1073,
and the contact width is o = 20 um, then the cell can achieve
a low false-negative rate (down to ~ 1073, red line). However,
either decreasing the contact to o = 10 um, or expanding the
contact to 0 = 40 um makes the FNR larger for this FPR—the
cell is more likely to overlook the contact.

In Fig. 5(b), we see that the ability of the cell to reliably
distinguish the presence of contact gets progressively worse
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FIG. 5. Detection error tradeoff (DET) graphs and the associated area under the curve (AUC) showing how the cell’s ability of making
accurate decisions varies with the contact width o, unbinding rate ratio «, and measuring time 7. Panels (a) and (d) show that the optimal
contact width is at some intermediate value. Panels (b) and (e) show that the cell is more likely to make incorrect decisions when it is difficult
to distinguish the two ligands. Panels (c) and (f) show that the cell can more reliably detect the presence or absence of another cell with a
longer measuring time 7. Correct ligand fraction is set to x = 0.1 in all figures.

as « — 1—the FPR-FNR tradeoff curve gets further from the
origin. Increasing the cell’s measurement time 7" improves
the accuracy with which the cell can sense cell-cell contact
[Fig. 5(c)].

We can summarize the efficacy of the cell’s ability to distin-
guish the presence of a contacting cell by computing the area
under the curve (AUC) of the tradeoff graphs in Figs. 5(a)—
5(c). A smaller AUC indicates that the cell exhibits higher
accuracy in distinguishing between the two hypotheses H
and H,—roughly, that the cell achieves a lower false-negative
rate for a given false-positive rate. We note that tradeoffs of
this sort are also often plotted on a receiver operating char-
acteristic (ROC) curve, which plots true positive rate against
false-positive rate. In our convention, a smaller area under
the curve is more predictive, instead of larger; our AUC is
1 — AUCgoc [48,49].

Figure 5(d) shows the AUC value as a function of contact
width, which initially decreases and then increases as 20 gets
closer to L. This confirms the results of Fig. 4(a): The cell can
better sense the existence or absence of the other cell when
the contact width is at some intermediate value. Figs. 5(b)
and 5(e) show how the DET curve and the associated AUC
change with the unbinding rate ratio «. The area under the
curve increases as @ — 1, which means the cell is more likely
to make incorrect decisions in the hard discrimination regime.
We also observe that the AUC drops to approximately O in the
easy discrimination regime when @ & 0.5, which is consistent
with where the transition happens in the phase diagram of
FNR [Fig. 4(b)]. As we saw above, accuracy in sensing also

depends on the fraction of ligands that are spurious. If we de-
crease the correct ligand fraction to x = 0.01 (Fig. 8), then the
overall AUC can become much larger, reaching AUC ~ 0.4,
1.e., it becomes much harder to make correct decisions. How-
ever, even with this extremely small correct ligand fraction y,
the cell can detect contact very accurately once the unbinding
rate ratio reaches o ~ 0.25 (Fig. 8). So far, we have kept the
amount of time that the cell uses to make a decision constant.
Increasing the measurement time 7 monotonically brings the
DET curve toward the origin, decreasing the AUC [Figs. 5(c)
and 5(f)]. Cells can more reliably detect the presence or ab-
sence of another cell by extending the measuring time 7', as
we would expect. AUC are mostly large when the measuring
time is on the scale of seconds or less. This is a relatively short
time compared to the time over which CIL takes place, which
can be tens of minutes [7].

IV. DISCUSSION

Our multiligand model highlights the significant impact of
various factors on the accuracy of sensing cell-cell contact,
including the receptor-ligand affinity, the fraction of correct
ligands, and the contact width. It becomes more challeng-
ing to sense the cell-cell contact when it is difficult for the
cell to distinguish ephrins from spurious ligands, or when
there are more interfering spurious ligands present. Moreover,
our model reveals that as the contact width o expands, it
becomes easier for the cell to estimate the concentration and
the fraction of correct ligands. However, the error in contact
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position xy estimation remains constant while the contact
width increases. We argue that this phenomenon occurs be-
cause the cell can only obtain spatial information from the two
boundaries where the concentration changes. Furthermore,
we investigate whether the cell can successfully detect the
presence of another cell through a small cell-cell contact. Our
finding indicates that the cell is more likely to make incorrect
decisions when the contact width is either too small or too
large. In addition, our results also suggest that the cell is
more probable to make mistakes if it is difficult for the cell to
distinguish ephrins from spurious ligands (¢ — 1). The cell
can extend the time it takes to make a decision to improve
decision-making robustness.

A core element of our model is the profile c¢(x) in Eq. (1),
which represents a cell in contact with another cell with a
clear contact region of fixed size and a smoothed rectangular
form. This neglects many potential complications—e.g., that
the size of cell-cell contacts may evolve over time during CIL
(see, e.g., the movies of Ref. [5]), how ligand-receptor binding
could drive changes in the size and spacing of the cell-cell
contact [50,51], and how cadherin proteins could facilitate
the formation of contacting patches by zipping (or unzipping)
regions of the contacting membrane, thereby leading the
coalescence of a patch of defined size [52]. To check the ro-
bustness of some of our assumptions, we also explore the case
where the ephrin concentration takes the form of a Gaussian
function c(x) = ¢y exp(—(x — x0)?/20%). This would arise if
we assume that our effective binding rate kc(x) is suppressed
when there is a gap large enough to require ephrin to undergo a
strain to bind. If there is a gap h(x) between the two cells, then
we would expect kc ~ e~ 21 /ksT yith i an effective spring
stiffness [53]. If A4(x) increases linearly away from the point
of closest approach xj, then we would get a Gaussian profile.
Many of our core results are quite similar between the Gaus-
sian and the smooth step profile for c(x), see Figs. 10(a)-10(e)
in Appendix D. However, in the scenario of a Gaussian con-
centration, we find that the error in contact position estimation
SD(%p) increases with increasing contact width [Fig. 10(f)
in Appendix D]. Unlike the case of rectangular profiles,
the cell now can obtain spatial information from receptors
away from the contact edges, as dc/dxy = c(x)(x — xo)/02
is nonzero throughout the contact and depends systematically
on o—there is more spatial information at any given point
as the width o becomes smaller. Therefore, the error of
estimating the contact position xy does not remain constant as
o expands; instead, it increases with increasing o. Moreover,
the concentration profile c¢(x) may take on a more intricate
form, such as comprising several small patches. Our model
currently implicitly assumes a single patch. If a cell expecting
a single patch had multiple patches in contact with it, then it
would do its best to interpret this—either lumping together
multiple patches or treating one patch as the “real” one and
assuming the other was a coincidence. In either case, we
expect similar factors would control the cell’s ability to detect
the presence of a second cell, but the localization error we
study here might not be as directly applicable.

Can a cell reasonably reach the limits we suggest here?
Reference [35] proposed a network for sensing the concentra-
tion of correct ligands so that biological systems can approach
the physical limits given by the Cramér-Rao bound. Other

papers have also suggested signal transduction networks to
interpret sensing from ligands [36,54]. However, the current
state of the art in this field only treats concentration sensing,
and its extension to our spatially dependent model for position
sensing, let alone decision-making, is not straightforward. We
know that experimentally, CIL occurs through the regulation
of Rho GTPase polarity [13]. We speculate that modeling
patterning occurring via Rho GTPases, regulated by the mea-
sured local concentrations as proposed by Ref. [35], may serve
as a sensible first model for spatial decision-making. However,
the details of this model would be much more complex than
the approach we take here.

The estimation errors shown in our model (Fig. 3) are
generally small compared to their relevant scales, suggest-
ing cells may have fairly precise knowledge of the cell-cell
contact location and ephrin levels. This may reflect the large
number of binding-unbinding events. With the total number
of receptors N = 10* and typical receptor correlation times of
~s (Appendix A), and the measuring time 7" = 10, there are
~10’ binding-unbinding events during the time the cell makes
its CIL measurement. Given our results, it is likely that, unless
one of our assumptions is incorrect, or that the fraction of
spurious ligands is extremely high (e.g., x < 0.1), stochastic
ligand-receptor noise is not a crucial factor in CIL decisions.
Where could our assumptions be incomplete? One possibility
is that we have neglected details of the Eph receptor inter-
actions. Experiments have found that receptor clustering and
other biophysical complexities [16,55-57] can influence the
functioning of receptors in binding kinetics in Eph receptors
and other RTKs. For instance, EGF receptors dimerize while
binding to their ligands EGF [55]. Moreover, for A549 lung
cancer cells, it has been observed that the vast majority of
EphA2 molecules exist in clusters [56]. As a result, receptor
clustering could significantly reduce the number of distinct re-
ceptor locations in our model, thereby substantially increasing
the errors when estimating the cell-cell contact. Additionally,
the precise values of the binding constant £ and unbinding
rate r for ligands and receptors tethered to cell membranes,
such as Eph-ephrin, are not entirely clear [53,58—60]. These
parameters can also significantly influence the number of
binding-unbinding events M that occur during the measuring
time 7. Sources of noise downstream of the initial ephrin
binding, such as stochasticity in the polarization of the cell’s
Rho GTPases [8,61-63], might lead to significant additional
noise in responses to CIL. Incorporating these factors into our
model could provide a more comprehensive understanding of
cell-cell interaction and response mechanisms.

Code availability. Code to reproduce this paper has been
deposited at Zenodo [64].
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APPENDIX A: CORRELATION TIME
OF BINDING KINETICS

In our analytical model, we assume that the number of
binding-unbinding events for each receptor is large. This
requires that the time of the observation 7T is large in com-
parison to the timescales relevant for binding and unbinding.
In this Appendix, we determine these timescales. We show
that the probability of occupation of a single receptor relaxes
to its steady state with two separate timescales 72, where
the correlation time depends on the kinetics of binding (rates
k, r, and ) and the effective concentrations ¢ and ¢’. With
the presence of the incorrect ligands, a receptor can be in an
unbound state, a correct bound state, or an incorrect bound
state. Thus, we can write the corresponding three-state master
equations:

d Peorrect
T = (1 = Pcorrect — Pincorrect )K€ — Peorrect?’
dpi
%ﬂect = (1 = peorrect — pincorrecl)kcl - pincorrectr/y
where 1 — peorrect(f) — Pincorrect(f) 1S probability that the re-

ceptor is unbound. The steady-state solutions can be easily
obtained by setting the time derivatives to zero:

_ ker™! (Al)
Peorrect = 14+ ker—1 —}—kC’I"/_l ’
kcl r—1
D 1SnScorrect (AZ)

1+ ker=! + ke'r=1"

If there is only one species of ligands, then the occupancy
(aka fractional saturation) is given by p =c/(c+ Kp) =
ker='/(1 4+ ker™1), where Kp = r/k is the dissociation con-
stant [32]. With the presence of the second species of ligands,
the probability of being bound at all is [35]:

ker™' + ke
1+ ker=1 + ke'r'—1

SS SS
P = Pcorrect + Pincorrect = (A3)

However, to calculate the receptor correlation timescale, we
have to solve the master equations over time. Because the final
solutions should converge to the steady state, we assume the
complete solutions are in the form of

pCOITC(,l(t) - Ae r/rl + Be I/TZ + pmcorrect’

pmcorrecl(t) - Ce—t/rl + De l/rz + pmcorrect’

where Pcorrect —> ngrrem and Pincorrect —> pisnsconect when 7 —
o0o. Here we are primarily interested in the two correlation
times 7; and t,—which should not depend on the particu-
lar initial conditions. We then assume the receptor is bound
to a correct ligand at r =0, so the initial conditions are
pcorrcct(o) =1 and pincorrect(o) =0,ie,A+B=1-
andC+D =

pCOITECt

Substituting the solutions back to the

~ Pincorrect*

master equations, we can find the four coefficients:
kc ss

_2\/— incorrect
+(kC+”)—(kC/+”/)(1 Ss )

. 3 \/K Pcorrect
c 1
m p iSnScorrect + 5 ( 1- p Egn'eu)

B (kC—i—i’)—(kC/-i-”/)(] . sS )
2\/K correct/?

C — 1 pmcorrect — pincorrect
T2 WA 1 WA
and the two characteristic times:

2

7 = : (A4)

: ke+r—+ke +r +vA
2

ke +r+ke +1 — A

where the discriminant-like term A = [k(c +¢/) +r — r']*> —
4kc'(r — r') is larger than O under our assumption r’ > r. We
can also rewrite A in a more symmetric form:

A = (kc+r+kd +7)

1
A = + = (1 - p§§rrect)

= (AS5)

—4rr (A + ker " + kc'F ™,

which ensures 7|, 7, > 0. Moreover, when there is only one
species of ligands, i.e., the correct ligand concentration ¢ = 0,
the two timescales degenerate to 7, = 1/r and 7y = 1/(k¢’ +
r"), which is exactly the correlation timescale for one species
of ligands [65]. In brief, we can write the characteristic corre-
lation times 7, and 7, as

2
+
T, - b
k4 r 4k +r VA

and expect that for our semi-analytical calculation of the
Fisher information to be valid, we must be in the limit 7 >
tt_ for all receptors.

(A6)

APPENDIX B: SEMIANALYTICAL CALCULATION
OF FISHER INFORMATION

If the correct ligand concentration takes the form of c(x) =
cog(x), and there are N independent receptors evenly dis-
tributed in the cell perimeter L, then the nth receptor will
have a different value of the ephrin concentration c(x,) and
a different number of binding-unbinding events M, during a
measuring time 7. Then for the nth receptor, the probability
to have a time record {z,", ("} is

P = H P(w,?)  P(57), (B1)
where the unbinding and binding times are given by
P(t,) = k(c + ¢/ )e Kt (B2)
P(tp) = re” "% < re ", (B3)
c+c c+c
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Therefore, given the three parameters # = (co, ¢’, xo) in our model, the total probability of all N receptors is P({t}|6) = HN P,,

then the likelihood L£(8|{t}) = P({t}|0) is given by

N M,
L= HH |:k(c+ e

n=1 i=1

k(c+c)z™

wi X

n=1

!
C e C s
-re T, + ,r’e T,
c+c c+c

_ RO g
_l_[e k(c+c)T, l_[k rce rt’”-}-}"/, rt,”)

n s (n)
- l_[ —ker[xgn)+1-x1T," l_[kr e W1 = g + axg(r)e ]

i=1

I
=1

3
Il
_

where in the second and last steps we have defined the to-
tal amount of unbound and bound time for the nth receptor
as T, =Y\ ") and T, = 31 7, respectively. And
in the penultimate step, we introduce a transformation from
(co, ¢') to the total concentration ¢; = ¢g + ¢’ and correct
ligand fraction x = c¢o/c¢;, i.e., we substitute ¢’ = ¢,(1 — x),
r=ar, and c(x) = ¢; xg(x). After taking a logarithm, In £
can be written as a sum of five independent contributions:

N M, N
InLo="> lnkr'=> M,Inkr,
n=1 i=1 i=1
N M, N
g, =—r Z Z TZS,’? = ¢ Z Tb(n)’
n=1 i=1 n=1
N M, N
Inl, = ZZlnc, = ZM,,lnc,,
n=1 i=1 n=1
N M,
Inl; = Z Zln [1—x+ axg(na)e(l_“)"’;ﬁ)],
n=1 i=1
N
InLy=—> kel = x + xgna) T, (B4)
n=1

where a is the receptor spacing and x, = na gives the po-
sition of the nth receptor. Note that £y and L, are trivial
terms since they do not depend on any parameter we are
concerned with, and thus we only need to include the other
three terms in the following computation. Calculating the
derivatives 3%1In L/ 00,00 is straightforward but not partic-
ularly informative. We include these results in a Mathematica
notebook [66]. These derivatives depend on the bound and
unbound times through terms like 7, M,,, but also in more
complex forms f (‘L’ISH)) like !~ %,

The complex part during the derivation of the Fisher
information matrix 1(0),, = —(d*InL/ 00,,00,) arises from
computing the average (---). To begin, we can calculate
the average of the bound and unbound times for the nth

ke e il o)
et x0Tk [1 = x + g7,
i=1

(

receptor:
(n) = (n) 1
<Tu ): /(; 'L'P(Tu = 'L')d‘l,' = m,
oy _ [T () _ _ Cn ¢
<Tb )_/0 IP(Tb - t)dt - r(cn + C’) + r’(cn + C').

We then assume the average of the total binding-unbinding
events M, during the measuring time 7" can be approximated

as
T

which should only be valid when 7 > tZ . (Appendix A).
And the average of the total unbound time for the nth receptor

is

(M,) = (BS)

(7)) = (1 — pu)T, (B6)

where p, is the occupancy given by Eq. (A3). We can readily
verify (M,) = (T,)/(t{™), which is expected to be true if
T > t£ . When computing a sum over all binding-unbinding
events, e.g., (Z?i”l f (tlgf’i))), we assume that the average of
each term is equal, and as a result, it is equivalent to multiply
the average of a single term by (M,,). This essentially treats the
value of the number of binding- unbmdmg events M, as fixed,

and requires again that we have T > tZ . To sum up, to go
from the analytical derivatives of Eq. (B4) to computing the
averages required for the Fisher information matrix, we apply
the rules:

) f (),

n N o0
< > oY) > > M,) f dtP(7) =
n=1 i=1 n 0

(B7)

where the last term is computed by numerical integration
using Gaussian quadrature (scipy.integrate.quad method pro-
vided by SciPy [67]).
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We can see from Eq. (B4) that all terms in the Fisher
information matrix should contain (M,,) or (T,,)—so we expect
that the Fisher information time is thus proportional to the
total measuring time 7, at least in the limit of 7 >> 7o Where
our analytic theory is appropriate. After obtaining all the terms
in the matrix numerically, we can compute its inverse and take
the diagonal elements as the lower bound of the variances,
namely the Cramér-Rao bound in Eq. (4).

APPENDIX C: DETAILS OF STOCHASTIC SIMULATIONS

1. Simulation methods

In the Monte Carlo simulations, we generate a series of
random bound and unbound times for each receptor from the
probability distribution in Egs. (2) and (3). To do this, we
note that Eq. (3) is essentially a composite of two exponential
distributions: We draw samples from re~"® with a probability
of ¢/(c + ¢’) and from r'e™" ™ with a probability of ¢’/(c +
¢’), which is equivalent to running a kinetic Monte Carlo
simulation to generate these time series. Subsequently, we
compute the log-likelihood function In £(#'|7) using Eq. (B4)
and numerically maximize it to find the optimal parame-
ters (&, X,Xo). When doing the optimization, we use the
modified Powell algorithm [69] (provided by SciPy [67]) to
minimize — In £ within the bounds ¢; € [0, 10%] um’z, X €
[0, 1], xo € [0, 100] um, and set the relative error in solu-
tions acceptable for convergence to 1077, This gives us the
maximume-likelihood estimators (¢;, X, Xo) for this individual
trajectory. We then repeat this process many times for new
trajectories (~10%), thus allowing us to compute distributions
of the estimators. We then plot the standard deviations of these
estimator distributions in, e.g., Fig. 3.

We have not been able to compute the false-negative rates
in Eq. (10) and false-positive rates in Eq. (11) analytically.
However, we can still calculate the FNR and FPR through
Monte Carlo simulations. To compute FNR, we assume the
other cell is present, i.e., cp # 0, and then generate a time
series to compute the likelihood ratio by computing the max-
imum log-likelihood [Eq. (B4)] numerically under both the
assumption of the other cell being present and it being absent.
We then repeat this process many times to compute the FNR
for a fixed value of A. For the FPR, we do simulations by first
assuming the other cell is absent (setting ¢y = 0), but keep all
other parameters the same. We perform approximately ~10°
simulations to do averages for each data point shown in Fig. 4,
which allows us to obtain robust and reliable results for the
analysis.

2. Parameters

The default parameter values in our model are shown in
Table I. The typical radius of the Drosophila haemocytes cell
is in the order of 10 um [14], which makes the cell perimeter
roughly 10? um. The concentration of EphA2 receptors on
the cell surface is reported to be around 100-1000/um? for
CHO cells [70] and about 600/um? for A549 lung cancer cells
[56]. As we’re modeling the perimeter of the cell as a line,
we set the contact center xo = L/2 to avoid boundary effects.
Additionally, we choose a receptor spacing of @ = 0.01 um to

TABLE 1. Table of simulation parameters.*

Parameter Description Dimension Value

o Ephrin concentration L2 10% um—2 [68]

X Fraction of correct 1 Varying
ligands ¢y/c;

k Eph-ephrin binding L2)T 1072 um?/s
constant

r Eph-ephrin unbinding T-! 1s7!
rate

o Ratio of unbinding 1 Varying
rates r/r’

X0 Contact center position L 50 um

o Contact width L Varying

10} Boundary steepness L 1 um

T Measuring time T s

L Cell perimeter L 100 ym

a Eph receptor spacing L 0.01 um

N Number of receptors 1 10000

*These parameters are used throughout the paper; any deviation from
them is explicitly noted.

ensure that there are approximately 100 receptors per square
micron of the surface area on the cell, assuming a height in
the z-direction around the order of 1 wm. This neglects many
potential complications like the possible change in cell shape
with time. In our model, we only considered CIL happening
between two cells with a fixed height. Increasing the height of
the contacting region is equivalent to increasing the number
of receptors in the contact region, which would increase the
sensing accuracy in general.

3. Consistency between stochastic simulation
and semi-analytic theory

The fundamental assumption we utilize when deriving the
Fisher information matrix in Appendix B is that T > =
for all receptors on the cell. In this limit, it is reasonable to
compare our theory, which has a fixed number of binding and
unbinding events for each receptor, to the stochastic simula-
tions, where we fix the measuring time 7. This assumption
leads to the theoretical Cramér-Rao bound scaling as ~1/T
(Appendix B). When we compare simulation and theory, we
should check this dependence, to ensure we are exploring
times T > tX . We find that the variances obtained from
simulations do not depend strongly on 7 when 7' « 1 second
and the discrepancy between simulation and theory grows
with decreasing measuring time (Fig. 7). This makes sense:
In the limit 7 < o, the cell is effectively making a “snap-
shot” measurement, using the receptor state at one instant to
estimate parameters, and the error in measurement will not
depend strongly on the measurement time. The correlation
timescale of about a second is consistent with our analysis in
Appendix A. With the chosen binding rate kc and unbinding
rate r in the order of 1 s~! (Table I), the correlation times Teorr
given by Eq. (A6) are 7; ~ 107! s and 1, ~ 1s. Therefore, to
effectively compare the simulation results with the theoretical
Cramér-Rao bound in Eq. (4), we need to increase the mea-
suring time to 7 ~ 10 s in Figs. 3 and 10 (see Appendix D).
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FIG. 6. Estimating errors of MLE when w = 10 um. We can see that all SDs have a similar pattern to Fig. 3 where w = 1 um. Besides, we
note that the SD(Xy) also starts to rise as o decreases to ~w. In all figures, the lines (solid, dashed, and dash-dot) represent theoretical results
obtained from Eq. (4), while the points are obtained from Monte Carlo simulations (the standard deviations are computed from 10* simulations

for each point); measuring time is 7 = 10s.

APPENDIX D: ADDITIONAL FIGURES
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FIG. 7. Variances of MLE decrease with increasing measuring 3
time 7. The variances from the Cramér-Rao bound scales as ~1/T o 0.0 Caacacacaracacacacas
in our derivation (Appendix B). Though the simulation results show < 0-2.5 . 0.50 0-75' 1.00
a slower decrease compared to the theoretical predictions at small Unbinding rate ratio a
T, they still converge as the measuring time 7 > .. Lines repre- ) ) o
sent theoretical results obtained from Eq. (4), while the points are .FIG~ 8. Area under th‘? DET curve changing j’;’lth unblndllng rate
obtained from Monte Carlo simulations; correct ligand fraction is ratio o when the correct ligand fraction x = 107=. Black points are
x =0.1. exactly the results in Fig. 5(e) when y = 107
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FIG. 9. Relative errors (SD/average) for Fig. 3 in the main text, which are generally small everywhere. In all figures, the lines (solid,
dashed, and dash-dot) represent theoretical results obtained from Eq. (4), while the points are obtained from Monte Carlo simulations (the
standard deviations are computed from 10* simulations for each point); measuring time is 7 = 10s.
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FIG. 10. Estimating errors of MLE when the correct ligand concentration c(x) takes the form of a Gaussian function c(x) = ¢y exp(—(x —
Xo)?/20°?) rather than the rectangular function given in Eq. (1). Panels (a), (b) show the standard deviation (SD) of the total concentration &,
panels (c), (d) show the SD of correct ligand fraction ¥, and panels (e), (f) display the SD of contact center position Xy, where the estimating
error of xj increases as the contact width o expands. In all figures, the lines (solid, dashed, and dash-dot) represent theoretical results obtained
from Eq. (4), while the points are obtained from Monte Carlo simulations (the standard deviations are computed from 10* simulations for each
point); measuring time is 7 = 10s.
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