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Cilia are hairlike microactuators whose cyclic motion is specialized to propel extracellular fluids at low
Reynolds numbers. Clusters of these organelles can form synchronized beating patterns, called metachronal
waves, which presumably arise from hydrodynamic interactions. We model hydrodynamically interacting cilia
by microspheres elastically bound to circular orbits, whose inclinations with respect to a no-slip wall model
the ciliary power and recovery stroke, resulting in an anisotropy of the viscous flow. We derive a coupled
phase-oscillator description by reducing the microsphere dynamics to the slow timescale of synchronization
and determine analytical metachronal wave solutions and their stability in a periodic chain setting. In this
framework, a simple intuition for the hydrodynamic coupling between phase oscillators is established by relating
the geometry of flow near the surface of a cell or tissue to the directionality of the hydrodynamic coupling
functions. This intuition naturally explains the properties of the linear stability of metachronal waves. The flow
near the surface stabilizes metachronal waves with long wavelengths propagating in the direction of the power
stroke and, moreover, metachronal waves with short wavelengths propagating perpendicularly to the power
stroke. Performing simulations of phase-oscillator chains with periodic boundary conditions, we indeed find
that both wave types emerge with a variety of linearly stable wave numbers. In open chains of phase oscillators,
the dynamics of metachronal waves is fundamentally different. Here the elasticity of the model cilia controls the
wave direction and selects a particular wave number: At large elasticity, waves traveling in the direction of the
power stroke are stable, whereas at smaller elasticity waves in the opposite direction are stable. For intermediate
elasticity both wave directions coexist. In this regime, waves propagating towards both ends of the chain form,
but only one wave direction prevails, depending on the elasticity and initial conditions.
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I. INTRODUCTION

A generic way of living matter to achieve fluid propulsion
is the cyclic motion of cilia and eukaryotic flagella [1]. These
organelles are hairlike cell extensions composed of a circular
array of microtubule doublets called an axoneme [2]. The
axonemal structure is subject to an internal biochemistry that
drives it into a cyclic motion [3] characterized by an asym-
metry known as the power and recovery stroke [4], power
indicating the production of thrust and recovery indicating the
return to the initial state. This asymmetry is crucial because
microscopic flow characteristics require nonreciprocal motion
to generate propulsion [5]. The flows generated by cilia and
flagella provide essential functions, e.g., single-cell locomo-
tion [6], feeding of marine invertebrates [7], mucus clearance
in the respiratory tract [8], circulation of cerebrospinal fluid
[9], and breaking the symmetry of organ arrangement in
developing embryos [10]. Cilia and eukaryotic flagella are
structurally identical [1]; thus we use the terms cilia and
flagella interchangeably.
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In order to transport fluid efficiently, arrays of cilia beat
in a strikingly coordinated fashion. Often a constant phase
shift between the beating of neighboring cilia is formed
and thus traveling waves, called metachronal waves, arise
[11]. While these waves are ubiquitous in biology, covering
scales from microns to centimeters [12,13], the character-
istics of metachronal coordination appear to be specific: A
symplectic wave (for which the wave direction is identical
to the direction of the power stroke) has been observed in
the green algae Volvox carteri [14,15]. Experiments with reef
coral larvae show laeoplectic metachronal waves (for which
the wave propagates to the left of the power stroke) [16].
The metachronal waves in the unicellular ciliate Parame-
cium propagate to the right of the power stroke (dexioplectic)
[17,18]. In ciliated epithelia studied in vitro, symplectic,
laeoplectic, and oblique waves occur depending on mucus
conditions [19].

The physics governing the interactions between cilia is
a widely discussed topic. Plausible coupling contributions
are mechanical connections [20], steric interactions [21,22],
and, notably, hydrodynamic forces mediated by the extracel-
lular fluid [23]. Empirical evidence on this issue supports
different effects depending on the specifics of the biological
system: Coupling two isolated flagella extracted from the
somatic cells of flagellated algae through a fluid medium
shows that hydrodynamic interactions alone can lead to

2470-0045/2024/109(5)/054407(16) 054407-1 ©2024 American Physical Society

https://orcid.org/0009-0000-8209-9187
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.109.054407&domain=pdf&date_stamp=2024-05-16
https://doi.org/10.1103/PhysRevE.109.054407


VON KENNE, BÄR, AND NIEDERMAYER PHYSICAL REVIEW E 109, 054407 (2024)

in-phase motion, antiphase motion, and nontrivial phase
locking [24,25]. On the other hand, subjecting the flag-
ella of Chlamydomonas reinhardtii to cyclic external flows
and studying the phase-locking properties suggests that the
magnitude of hydrodynamic forces in Chlamydomonas is in-
sufficient to explain synchronization, pointing to mechanical
couplings [26]. A similar analysis, however, indicates that
hydrodynamic interactions could be the dominant coupling
between cilia in mammalian brain tissue [27].

Detailed numerical simulations of hydrodynamic interac-
tions between beating cilia generally show the emergence
of synchronization patterns [28–30] and suggest an ener-
getic advantage of metachronal waves [31,32]. However, as
the complexity of these models makes it rather difficult to
understand the underlying effects, reduced approaches that
model the cilia as self-sustained phase oscillators have been
successful in predicting synchronization and metachronal
waves [33–36]. It turns out that hydrodynamic synchroniza-
tion requires breaking the time-reversal symmetry of the
microscopic flow [37], which can result from elastic wave-
form compliance [34,38], substrate-modified viscous drag
[33], phase-dependent intrinsic forcing [35], hydrodynamic
memory [39], cell body motion [40], or combinations of these
mechanisms [41]. In fact, the dominant physical mechanism
is still under debate [42,43].

To investigate the role of hydrodynamic coupling be-
tween cilia, the characteristics of metachronal waves are often
studied. With the exception of a paper investigating the ef-
fect of a spherical substrate [44], recent efforts to construct
phase-oscillator models of metachronal coordination typically
ignore elastic compliance and focus on the details of beating
[45–49]: In a carpet of cilia, different metachronal waves
are stable, depending on the characteristic forcing and the
geometry of the carpet [46]; a net flow can spontaneously be
generated by the collective motion induced by variable driving
forces [49] and the specific shape of the beating cycle can
select a dominant metachronal wave [47,48]. However, the
symplectic metachronal wave observed in Volvox has been
successfully predicted with an elastic compliance model, in
which the flagella are modeled as coupled phase-amplitude
oscillators [14,15,50].

In this paper we try to advance the elastic compliance
framework in the spirit of the simple phase-oscillator model
[34]. To this end we consider the anisotropy of viscous flow
near a surface, which results from motion perpendicular to it.
Following previous work [14], we model cilia as microspheres
elastically bound to circular orbits, whose inclinations with
respect to the surface model the power stroke of cilia. We
reduce this model to coupled phase oscillators in Sec. II A
and develop a simple geometric intuition for the hydrody-
namic coupling between the phase oscillators in Sec. II B.
Based on this intuition, the linear stability characteristics of
metachronal waves, which we calculate in Sec. III, can be
understood as a natural result of the flow anisotropy near
the surface. With numerical simulations we address the emer-
gence of metachronal waves in periodic (Sec. IV) as well as in
open (Sec. V) phase-oscillator chains. Our results show that
phase oscillators with elastic orbits, coupled by anisotropic
flow fields, robustly coordinate metachronal waves, regardless
of the boundary and initial conditions. Furthermore, we show

that bistability of metachronal wave directions can lead to
hysteresis and that the tuning of the elasticity of the orbits
can be used to switch between the wave directions. Our model
exhibits analytic solutions, allows interpretations in terms of
simple intuitions, is highly numerically efficient, and satisfies
phenomenological key requirements, i.e., the generation of di-
rected fluid transport and the robust formation of metachronal
waves. Although we introduce the model in the most simple
case of phase-oscillator chains, it can be easily generalized
to oscillator carpets and, in principle, can be used to address
a variety of biologically relevant situations. We discuss the
interrelations between our results and the literature on syn-
chronization of cilia in Sec. VI.

II. MODEL

We abstract the cyclic bending wave dynamics of a cil-
ium into the motion of a microsphere, which represents the
application of a point force [51]. This approach allows the an-
alytical calculation of the cyclic flow fields in the extracellular
fluid, through which the cilia are coupled. Although this ap-
proximation appears rather crude, it can accurately capture the
average flow produced by flagellated microorganisms [52].
The elastic properties of the cilia are modeled by a harmonic
potential centered on a reference radius of circular motion,
allowing only modulations in the radius of motion [34]. This
model of cilia results in a dynamical description parametrized
by the radial amplitude R(t ) and the phase φ(t ). A limit
cycle reconstruction based on the analysis of the shapes of
the beating flagella of Chlamydomonas and their exposure
to controlled flow perturbations motivates this type of model
[53].

The fluid flow around the cilia is dominated by the effects
of viscosity, as indicated by the low Reynolds number Re =
L2/νT � 1, where L is the typical cilia length, T is the typical
period, and ν is the kinematic viscosity [54]. Thus, the inertial
terms in the Navier-Stokes equations will be neglected relative
to the viscous terms. Therefore, the flow field is determined by
the stationary Stokes equations

η∇2v − ∇p + f = 0, ∇ · v = 0. (1)

Here v(r) and p(r) are the velocity and pressure fields, respec-
tively, η is the dynamic viscosity, and f is a body force. Since
Eq. (1) lacks explicit time dependence, the instantaneous con-
figuration of the cilia completely determines the flow field.
For the flow induced by the motion of a small sphere, at
distances much larger than its size, the body force can be
approximated by a point force fδ(r − rf ). The flow velocity
is linearly related to the force exerted as

v(r) = G(r, rf ) · f . (2)

The Green’s function G of Eq. (1) subject to a no-slip condi-
tion at a planar wall is known as the Blake tensor [55]. We use
the Blake tensor to describe the hydrodynamic interaction.

The model outlined above can be reduced to coupled phase
oscillators by exploiting the separation of timescales that oc-
curs for weak hydrodynamic interactions, namely, between
fast oscillations and slow synchronization on the one hand
and between fast elastic relaxation and slow synchronization
on the other hand [34,43,56]. To extract the slow dynamics
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of synchronization, the dynamic equations of phase and ra-
dial amplitude are cycle averaged. At this level, the radial
coupling varies slowly on the synchronization timescale ts.
Because the timescale of elastic recoil te is small compared
to ts, the radial changes are approximately instantaneous with
respect to the synchronization dynamics, reducing the sys-
tem to coupled phase oscillators that include the effect of
orbit compliance as a contribution to the instantaneous phase
velocity.

Previous work [34] considered such a phase-oscillator
model for orbits oriented parallel to the no-slip boundary. No
directed net flow is generated in this configuration. Further-
more, in simulations metachronal waves emerge in periodic
chains of phase oscillators, but not in open chains.

Brumley et al. [14,15] developed a model based on similar
elastically bound mechanics and overdamped hydrodynam-
ics. This model retains the dynamics of the radial amplitude.
Moreover, a number of additional effects are included in this
model, e.g., a noncircular limit cycle, three-dimensional orbit
perturbations, and, in particular, the anisotropic flow fields
associated with inclined orbits near a no-slip wall. This more
general phase-amplitude model generates a net flow and ex-
hibits emergence of metachronal waves independent of the
boundary conditions.

We generalize the phase-oscillator model [34] by consid-
ering inclined orbits near a no-slip wall. The inclination of
the orbit breaks the symmetry of circular motion. In the part
of the inclined orbit far from the no-slip wall, the microsphere
generates a higher fluid velocity compared to the motion close
to the wall. As a result, a directed net flow is generated. In
this way, the power stroke of cilia is modeled. The interplay
between the flow anisotropy due to the power stroke and the
compliance of the orbits is sufficient for robust metachronal
wave formation, as we will demonstrate.

While cilia typically occur in two-dimensional arrays, we
confine the treatment of the model below to one-dimensional
chains and investigate longitudinally spreading metachronal
waves that propagate in or against the direction of the power
stroke, as well as transversally spreading metachronal waves
that move orthogonal to the power stroke. The former class
is known as symplectic or antiplectic waves, respectively,
whereas the literature refers to the latter wave type as laeo-
plectic or dexioplectic.

A. Dynamic equations

We model a chain of cilia by a collection of N microspheres
with radius a that are elastically bound to a circular orbit
(Fig. 1). The position of the ith sphere (i ∈ [0, . . . , N − 1])
is written as

ri(t ) = rc
i + Rβ,z̄ · R−α,x̄ ·

⎡
⎣Ri(t ) cos φi(t )

Ri(t ) sin φi(t )
0

⎤
⎦. (3)

Here rc
i = (i�, 0, h) are the centers of the orbits, where h

denotes the distance to the no-slip wall and � is the separation
between the center points in the substrate plane. The rotation
matrices R−α,x̄ and Rβ,z̄ are chosen to create an inclination
of the orbits about the wall by an angle α and to put the net

FIG. 1. Oscillator model of a cilia chain. A constant tangential
force Feφ drives microspheres that are elastically bound to a circular
orbit with reference radius R∗, by a harmonic force κ (R∗ − Ri )eR.
The centers rc

i of the orbits are uniformly spaced by a distance �

along the x axis, at a distance h above the no-slip wall. The orbits are
locally rotated around the construction axis of the oscillator chain,
by the rotation matrix R−α,x̄ . This creates an inclination of the orbits
about the no-slip wall by an angle α. The orbits are oriented at an
angle β to the construction axis by a subsequent rotation around the
local vertical axis through the rotation matrix Rβ,z̄. As a consequence
of the inclination of the orbits, a net flow is generated, whose direc-
tion is controlled by the orientation of the orbits with respect to the
chain axis. The direction of net flow is interpreted as power stroke
direction.

flow direction at an angle β with the construction axis of the
oscillator chain, respectively (Fig. 1).

The motility of the cilia is modeled by a constant tangential
driving force

fφ = Feφ, (4)

with magnitude F . A harmonic restoring force

fκ = κ (R∗ − Ri )eR, (5)

with spring constant κ , models the elasticity of the cilia and
bounds the radial motion to a reference radius R∗. The fluid
exerts a drag force on the spheres, which is given by Stokes
law

fζ = ζ (v − ṙ). (6)

Here ζ = 6πηa and v is the background velocity field. In the
overdamped Stokes flow, the balance between active, elas-
tic, and viscous forces fφ + fκ + fζ = 0 leads to the dynamic
equation

ṙi = F

ζ
eφ (φi ) + κ

ζ
(R∗ − Ri )eR(φi ) + v(ri ). (7)

To calculate the fluid velocity at the ith sphere v(ri ), we
assume that the size of the sphere is much smaller than the
radius of motion a � R∗ and that the radius of motion is much
smaller than the typical distances R∗ � � and R∗ � h. Then
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the flow velocity can be calculated according to

v(ri ) ≈
∑
j �=i

ζG
(
rc

i , rc
j

) · ṙ j, (8)

where G is the Blake tensor (in Appendix A we discuss the
Blake tensor in detail). With the flow field (8) we can write
the dynamic equation (7) as

Riφ̇i = R∗ω +
∑
j �=i

eφ (φi ) · ζG
(
rc

i , rc
j

) · ṙ j, (9)

Ṙi = R∗ − Ri

te
+

∑
j �=i

eR(φi ) · ζG
(
rc

i , rc
j

) · ṙ j, (10)

where ω = 2π/T = F/ζR∗ is the intrinsic frequency and te =
ζ/κ is the timescale of elastic relaxation.

We assume that the synchronization time ts is considerably
larger than the period T � ts, as well as the elastic relaxation
time te � ts. In Appendix A we show that under these assump-
tions the dynamics (9) and (10) can be reduced to a system
of coupled phase oscillators, which reflects the hydrodynamic
coupling at the slow timescale ts. To the leading order in the
hydrodynamic interaction, we obtain

φ̇i

ω
= 1 +

∑
j �=i

γ Ji j (φi − φ j ) − λKi j (φi − φ j ). (11)

Here the hydrodynamic interactions between rigid orbits are
captured in γ Ji j , where γ = 3a/4� � 1, and the effect of
orbit compliance is contained in λKi j , where λ = γ teω � 1.
The parameter λ/γ = teω indicates the flexibility of the or-
bits. For teω � 1 the orbits are stiff; for teω � 1 the orbits are
soft.

In the following we analyze Eq. (11) with periodic as well
as open-ended boundary conditions. For periodic boundary
conditions we implement a cutoff radius of half the system
size. An open-ended boundary is to say that the system ends
at the first and the last oscillator, respectively. In this case we
impose no cutoff.

B. Hydrodynamic coupling functions

In Appendix A we calculate the hydrodynamic cou-
pling functions at the synchronization timescale. The cycle-
averaged hydrodynamic coupling between rigid orbits can be
written as

Ji j (φi − φ j ) = Gi j cos(φi − φ j ) + Ḡi j sin(φi − φ j ), (12)

where the geometry factors

Gi j = gi j + g+
i j cos 2α + 2g−

i j sin2 α cos 2β, (13)

Ḡi j = sgn( j − i)ḡi j cos β sin α (14)

depend on the normalized distance functions

gi j = 11

8

(
1

di j
− 1

Di j

)
+ 7

4D3
i j

(
h

�

)2

− 15

D5
i j

(
h

�

)4

, (15)

g±
i j = 1

8

(
1

di j
− 1

Di j

)
+ 5

4D3
i j

(
h

�

)2

± 3

D5
i j

(
h

�

)4

, (16)

ḡi j = 12

D4
i j

(
h

�

)3
√√√√1 − 4

D2
i j

(
h

�

)2

, (17)

with di j = |i − j| and Di j = [d2
i j + (2h/�)2]1/2. Note the sym-

metry of the geometry factors with respect to the exchange of
the phase oscillators: Gi j = Gji and Ḡi j = −Ḡ ji.

The cycle-averaged coupling function induced by orbit
compliance is given by

Ki j (φi − φ j ) = Gi j sin(φi − φ j ) − Ḡi j cos(φi − φ j ). (18)

The symmetry of the coupling functions with respect to the
exchange of the phase oscillators governs their phenomeno-
logical significance. The hydrodynamic interactions between
rigid orbits are even:

Ji j (φi − φ j ) = Jji(φ j − φi ). (19)

The effect of orbit compliance generates an odd coupling
function

Ki j (φi − φ j ) = −Kji(φ j − φi ). (20)

The odd coupling leads to the adaption of the relative
phases, which induces synchronization and the formation of
metachronal waves. The even coupling causes a frequency
gain, representing the cooperative reduction of hydrodynamic
drag in the synchronized state.

We can develop an intuition for the characteristics of the
hydrodynamic coupling by considering the geometry of flow
near the no-slip wall. It is instructive to envisage two particu-
lar arrangements of the chain of phase oscillators.

(i) Figure 2 illustrates the hydrodynamic interaction for an
arrangement of phase oscillators whose power stroke direction
coincides with the orientation of the chain axis. The flow
fields relevant for the coupling lie entirely in the xz plane.
Due to the linearity of the Stokes equations, it is sufficient
to consider the flows generated by a parallel (f‖) and a per-
pendicular force (f⊥), as indicated by the red arrows in the
sketch of Fig. 2. The flow patterns of Figs. 2(a) and 2(b)
reveal an important anisotropy of flow between the upstream
and downstream directions: The flow generated by the par-
allel force pushes the downstream neighbors away from the
substrate but the upstream neighbors toward the substrate.
Similarly, the downstream neighbors are pushed in the down-
stream direction by the flow due to the perpendicular force,
but the neighbors upstream are pushed in the upstream direc-
tion. This flow anisotropy is reflected in the cycle-averaged
coupling by the antisymmetric geometry factor Ḡi j = −Ḡ ji.
As shown in Fig. 2(c), only the horizontal velocity for the
perpendicular force and the vertical velocity for the parallel
force are anisotropic. The other velocity components treat
the upstream and downstream neighbors symmetrically, cor-
responding to a symmetric geometry factor Gi j = Gji. Due to
the flow anisotropy, the hydrodynamic interactions between
the phase oscillators are balanced at an offset: Two oscilla-
tors moving in unison exert partially opposite hydrodynamic
forces on each other. Thus, one of the oscillators is pushed to
a higher orbit, while the other is pushed to a lower orbit. The
resulting opposite changes in the phase velocities drive the
hydrodynamically stable configuration away from in-phase
motion. The symmetric and asymmetric coupling is balanced
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FIG. 2. Hydrodynamics for an arrangement of phase oscillators
with the power stroke parallel to the chain axis, corresponding to
α = π/2 and β = 0. (a) Flow field v‖(r), according to Eq. (2),
caused by a parallel force f‖. (b) Flow field v⊥(r) induced by a per-
pendicular force f⊥. (c) Normalized components of the flow velocity
generated by the parallel and perpendicular forces, respectively, as
a function of distance. (d) Cycle-averaged next-neighbor coupling
functions according to Eqs. (12)–(18), with h/� = 1/2. The flow
anisotropy with respect to upstream and downstream interactions in
(a) and (b) phase delays the cycle-averaged hydrodynamic coupling
by a phase shift δs

01 > 0.

at the phase shift

δs
i j = arctan

(
Ḡi j

Gi j

)
. (21)

The corresponding phase-shifted cycle-averaged hydrody-
namic coupling functions are shown in Fig. 2(d).

(ii) Figure 3 shows the hydrodynamic interaction for an
arrangement of phase oscillators whose power stroke direction
is perpendicular to the chain axis. The relevant flow fields lie
in the xz plane for vertical perturbations of the phase-oscillator
motion and in the yz plane for horizontal perturbations. The
power stroke direction is orthogonal to the chain axis, i.e.,
the hydrodynamic interactions are entirely symmetrical and
Ḡi j = 0. The coupling through the vertical flow velocity due
to the vortex shown in Fig. 3(a), however, is qualitatively
different for interactions at close and far distances. Close
to the forcing (in front of the vortex), the vertical velocity
is aligned with the forcing direction; however, far from the
forcing (beyond the vortex), it is opposite to the forcing
direction. The horizontal flow shown in Fig. 3(b) is always

×

FIG. 3. Hydrodynamics for an arrangement of phase oscillators
with the power stroke perpendicular to the chain axis, corresponding
to α = π/2 and β = π/2. (a) Flow field v⊥(r), according to Eq.
(2), caused by a perpendicular force. (b) Flow field v‖(r) caused
by a parallel force. (c) Normalized components of the flow velocity
generated by the parallel and perpendicular forces, respectively, as
a function of distance. (d) Cycle-averaged next-neighbor coupling
functions according to Eqs. (12)–(18), with h/� = 1/2. The reversal
of the vertical flow velocity relative to the direction of the forcing
in (a) leads to the sign reversal of the cycle-averaged hydrodynamic
coupling functions, corresponding to a phase shift δs

01 = π .

in the direction of the forcing. If the vertical flow velocity
dominates the horizontal velocity [Fig. 3(c)], the reversal of
the vertical flow with respect to the phase-oscillator motion
changes the hydrodynamically stable configuration between
neighbors from in-phase to antiphase synchronization. In this
case, the average coupling functions, depicted in Fig. 3(d),
exhibit a phase shift δs

01 = π .

III. LINEAR STABILITY OF METACHRONAL WAVES
IN PERIODIC CHAINS

We define metachronal waves as frequency-locked solu-
tions of Eq. (11), in which phase shifts φi − φi+1 remain
constant over time but may vary moderately along the chain
of phase oscillators. In this section we consider chains of
N phase oscillators with periodic boundary conditions and
calculate the linear stability of uniform metachronal waves,
where φi − φi+1 = �k, with the wave number k. Since the
number of phase oscillators is finite, the phase shifts are
quantized as |�k| = 2πK/N , where K is an integer. The
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FIG. 4. Snapshot of metachronal waves showing the relationship
between the collective motion of phase oscillators with phase shifts
φi − φi+1 = �k and a continuous wave sin(kx). The global in-phase
synchronization corresponds to an infinite wavelength 2π/k → ∞
and the global antiphase synchronization corresponds to a minimum
wavelength 2π/k = 2�. We categorize the wave numbers |�k| > π/2
as short wavelengths and the wave numbers |�k| < π/2 as long
wavelengths.

relationship between metachronal waves in the oscillator
phase and waves in continuous media is shown in Fig. 4.

Two particular arrangements of the phase oscillators model
the basic metachronal waves discussed in biology texts [11].
In an arrangement as in Fig. 2, the power stroke is di-
rected parallel to the axis of the oscillator chain. Thus, the
metachronal waves propagate either with or against the power
stroke direction. If the wave direction aligns with the direction
of the power stroke, the metachronal waves are called sym-
plectic. For the opposite direction, the metachronal waves are
called antiplectic. In the definitions we use, symplectic waves
have positive wave numbers �k > 0 and antiplectic waves
have negative wave numbers �k < 0. In an arrangement as
in Fig. 3, the direction of the power stroke is perpendicular
to the chain axis. Consequently, the wave direction is per-
pendicular to the power stroke direction. Here metachronal
waves are called dexioplectic if they travel to the right of the
power stroke (�k > 0) and laeoplectic if they travel to the left
(�k < 0).

In order to study metachronal waves we work in a coro-
tating frame of reference. The phase in this frame satisfies
ψ (t ) = φ(t ) − [ω + �(k)]t , where the frequency gain of
metachronal waves, with wave number k, is given by

�(k) =
M∑

j=1

2γωJ0 j ( j�k). (22)

Here M = (N − 1)/2 for odd N and M = N/2 − 1 for even
N . The frequency gain is obtained from Eq. (11), with phase

shifts φi − φi+1 = �k, using Eqs. (19) and (20) and the peri-
odic boundary conditions.

The dynamic equations of the corotating phases are written
as

ψ̇i

ω
= −�(k)

ω
+

∑
j �=i

γ Ji j (ψi − ψ j ) − λKi j (ψi − ψ j ). (23)

For phases ψi − ψi+1 = �k the sum in Eq. (23) gives �/ω.
Thus, metachronal waves are stationary solutions of Eq. (23).

We obtain the dynamics of a small perturbation of
metachronal waves �ψ(t ) = [�ψ0(t ), . . . ,�ψN−1(t )] by lin-
earization of Eq. (23) as

d

dt
(�ψ) = M(k) · �ψ, (24)

where the components of the Jacobi matrix M(k) are given by

Mi j (k) = ∂ψ̇i

∂ψ j

∣∣∣∣
ψ j=− j�k

. (25)

The perturbation exhibits exponential growth in the eigendi-
rections of M. The rate of growth in the direction of the nth
eigenvector is given by the real part of the corresponding
eigenvalue �n(k). In Appendix B we exploit the circulant
structure of M to calculate the linear growth rates as

Re �n(k)

2λω
= −�(k)

2γω
+

M∑
j=1

J0 j ( j�k) cos
2πn j

N
. (26)

The sign of the linear growth rates determines whether the
perturbation grows or decays with time. If each Re �n(k) < 0
the perturbation exponentially decays in all eigendirections
and the metachronal wave with the wave number k is linearly
stable. The zeroth eigenvalue of the circulant matrix M is real
and vanishes for all wave numbers �0(k) = 0. The eigenvec-
tor corresponding to the neutral eigenvalue �0 is unity for
all �ψi, reflecting the invariance against global phase shifts
of the underlying model (23) [34]. Note also, by Eqs. (22)
and (26), that the choice of the parameters λ > 0, γ > 0, and
ω > 0 does not affect the sign of the linear growth rate.

In order to discuss the linear stability of metachronal
waves, we first consider next-neighbor coupling. In this case
we truncate the sum over pair interactions at j = 1 and obtain
the linear growth rates as

Re �n(k)

2λω
= −�(k)

2γω

(
1 − cos

2πn

N

)
. (27)

Discarding �0, the sign of each growth rate is governed by
the frequency gain. Thus, if the wave number k corresponds
to an increased beat frequency, the perturbation decays and
the metachronal wave is linearly stable. For orbits oriented in
the plane of the no-slip wall, the metachronal waves with in-
creased frequency have wave numbers |�k| � π/2 [34]. If the
orbits are inclined about the no-slip wall, the flow anisotropy
discussed in Figs. 2 and 3 phase shifts the frequency gain. The
constraint on linearly stable wave numbers becomes

|�k − δs
01| �

π

2
, (28)
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FIG. 5. Linear stability of metachronal waves in a periodic chain of N = 30 phase oscillators. (a) Frequency gain �(k) and maximum
linear growth rate maxi Re �i(k) for α = π/2, β = 0, and h/� = 1/2. Data are for next-neighbor and long-range coupling. The vertical lines
indicate the linearly stable wave numbers, showing that long-range interactions reinforce the restriction to high-frequency waves that is already
established by the next-neighbor interaction. (b) Linearly stable wave numbers as a function of the geometry parameters, for next-neighbor
(light green) and long-range (dark green) coupling, respectively. The data for next-neighbor interactions highlight the effect of the no-slip wall.
As can be seen in the subfigure highlighted in blue, the linearly stable wave numbers are shifted towards positive values (symplectic waves), for
a configuration as in Fig. 2, where the flow fields are anisotropic. The red highlighted subfigure shows that the long wavelengths (|�k| < π/2)
may be destabilized in favor of the short wavelengths (|�k| > π/2), corresponding to a coupling by reversed flow fields as shown in Fig. 3. The
effect of long-range coupling is seen in the collapse of the linearly stable wave numbers to the exclusively stable wave number k = 0, which is
the maximum frequency wave number for bulk fluid hydrodynamics (h/� → ∞). The dashed vertical lines in (b) indicate the linearly stable
wave numbers for the simulations in Fig. 6.

where δs
01 is given by Eq. (21). Figure 5(a) illustrates that

metachronal waves are linearly stable [maxi�i(k) < 0] when
the beating frequency is increased by the hydrodynamic in-
teraction [�(k) > 0]. The effect of the no-slip wall on linear
stability depends on the orientation of the power stroke rel-
ative to the wave direction, as is evident by comparing the
red and blue highlighted subfigures in Fig. 5(b). In particular,
in the arrangement of phase oscillators modeling symplec-
tic or antiplectic waves (blue subfigure), the flow anisotropy
discussed in Fig. 2 generates a phase shift δs

01 > 0. As a
consequence, the number of stable wave numbers with �k >

0 becomes larger than the number of stable wave numbers
with �k < 0. Thus, the symplectic metachronal waves are
preferred. In the arrangement of phase oscillators modeling
the propagation of laeoplectic or dexioplectic metachronal
waves (red subfigure), the mutual flow is isotropic (Fig. 3).
Thus, there is no such asymmetry between the wave direc-
tions. However, the reversal of the vertical flow with respect
to the oscillator motion, discussed in Fig. 3, can induce an-
tiphase synchronization corresponding to δs

01 = π . As a result,
metachronal waves are stabilized at short wavelengths (around
�k = π ) rather than at long wavelengths (around �k = 0).

In the case of long-range coupling, the linear stability of
metachronal waves is determined graphically via Eq. (26).
Figure 5(a) shows that an even stronger constraint on linearly
stable wave numbers is imposed by long-range interactions.

The effect is to increase the preference for low drag configu-
rations, which is reflected in the fact that metachronal waves
are now stabilized only near the maximum frequency wave
number. How much stronger the constraint is depends on the
relative weight of the long-range interactions, as can be seen
by the dark green shading of Fig. 5(b): In the h/� → ∞ limit,
the hydrodynamic interaction decays slowly with distance
(proportional to 1/d). Accordingly, the higher harmonics in
the correction term in Eq. (26) have a significant weight,
strongly restricting collective motion to low drag configu-
rations. In fact, only the maximum frequency wave number
�k = 0 is linearly stable. In the near-wall limit h/� → 0, the
hydrodynamic interaction is screened and the spatial decay
is much faster. Consequently, the higher harmonics are less
significant and multiple high-frequency wave numbers are
linearly stable. In particular, in an arrangement as in Fig. 2
the coupling decays with distance proportional to 1/d3. In an
arrangement like in Fig. 3 the coupling is through reversed
flow fields. This leads to an even faster decay proportional to
1/d5. In this situation, long-range effects are not essential.

IV. EMERGENCE OF METACHRONAL WAVES
IN PERIODIC CHAINS

We numerically investigate briefly the spontaneous for-
mation of metachronal waves in phase-oscillator chains with
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FIG. 6. Formation of metachronal waves in periodic phase-
oscillator chains, oriented as in Fig. 2 (symplectic and antiplectic)
and Fig. 3 (laeoplectic and dexioplectic), respectively. (a) Probability
P(k) of the wave number k. The vertical lines denote the linear
stability limit according to Eq. (26). The data are from simulations
with 8 × 103 random initial conditions, each of which converged to a
metachronal wave. Typical phases φi(t ) at the end of the simulation
are shown for the (b) symplectic and (c) laeoplectic arrangements.
The parameters are N = 30, h/� = 1/2, teω = 1, and γ = 10−2. The
simulation time is τsim = 103.

periodic boundary conditions. We consider only the two basic
arrangements corresponding to either symplectic (antiplectic)
or laeoplectic (dexioplectic) metachronal waves. The associ-
ated linearly stable wave numbers are indicated by the dashed
lines in Fig. 5(b).

To simulate extensive time series, we focus on the slow
hydrodynamic interaction and remove the fast oscillations by
transforming the phases as � = φ − ωt . The dynamics of the
slowly varying phases are written as

d�i

dτ
= ω

ωs

∑
j �=i

γ Ji j (�i − � j ) − λKi j (�i − � j ). (29)

Here we have normalized the dynamics by scaling time as
τ = ωst , where ωs = γω(G01 + Ḡ01)1/2. The fast phase vari-
ables are given by φ(τ ) = �(τ ) + τω/ωs. We obtain the data
shown in the following by numerically integrating Eq. (29)
by the classical Runge-Kutta method with the time step �τ =
0.01.

Figure 6(a) shows data from simulations with 8 × 103

random initial conditions, each of which converges to a
metachronal wave with φi − φi+1 = �k. To quantify the emer-
gence of metachronal waves, we calculate the probability
P(k) of the wave number k. As expected from the linear
stability analysis, the long wavelengths (|�k| < π/2) emerge

FIG. 7. Emergence of a metachronal wave from random ini-
tial data, in an open phase-oscillator chain, oriented as in Fig. 2.
(a) Transient phases φi(t ). (b) Transient phase shifts φi(t ) − φi+1(t ).
(c) Steady-state phase shifts φi − φi+1 after 1300 beat cycles. (d) In-
stantaneous frequencies φ̇i corresponding to (c). The average phase
shift 〈φi − φi+1〉i ≈ 0.18 indicates a symplectic metachronal wave.
Each random initial condition we simulated reached the same steady
state. Data are generated with the parameters h/� = 1/2, N = 30,
γ = 3/8 × 10−2, and teω = 10.

in the symplectic arrangement, but the short wavelengths
(|�k| > π/2) emerge in the laeoplectic arrangement. Note that
the asymmetry between symplectic (�k > 0) and antiplectic
(�k < 0) wave numbers (established by linear stability) is
amplified by a much larger probability of the emergence of
symplectic wave numbers. The phases φi(t ) of typical emer-
gent metachronal waves, over three beat cycles, are shown in
Figs. 6(c) and 6(b), respectively.

V. EMERGENCE OF METACHRONAL WAVES
IN OPEN CHAINS

In many biological systems, the arrangement of cilia is
not periodically closed. We investigate the emergence of
metachronal waves in open phase-oscillator chains by simu-
lations of Eq. (29). We consider an arrangement of the phase
oscillators as in Fig. 2, corresponding to symplectic (an-
tiplectic) wave propagation. We choose the model parameters
according to Ref. [15], where the phase-amplitude model is
used as a model of metachronal waves in Volvox.

Figure 7(a) shows the transient phases φi(t ) during the
initial formation of a symplectic metachronal wave. As indi-
cated by the associated transient phase shifts φi(t ) − φi+1(t )
[Fig. 7(b)], the metachronal wave is rapidly created by merg-
ing of locally phase-locked spots that are spontaneously
formed by the hydrodynamic interaction. In the open chain,
however, the phase oscillators at the ends interact with fewer
neighbors. This prevents the system from forming a collective
state with uniform phase shifts φi − φi+1 = �k, correspond-
ing to metachronal waves in periodic chains. Nevertheless,
the hydrodynamic interaction leads to the formation of a
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FIG. 8. Characteristics of metachronal waves in an open chain of N = 30 phase oscillators, oriented as in Fig. 2 with h/� = 1/2 and
γ = 10−2. (a)–(d) Continuation of the metachronal wave solution shown in Fig. 7. The data are obtained successively by adjustments of teω

followed by numerical integration for a simulation time τsim ∝ (Nωs )2/(λω)2. Starting from teω = 10, the elasticity of the orbits is decreased
until teω = 10−1 and subsequently increased to its initial value. (a) Steady-state phase shifts φi − φi+1 of symplectic and antiplectic metachronal
waves. (b) Corresponding frequency gain φ̇i − ω. (c) Average phase shift 〈φi − φi+1〉i, at the end of the simulation, as a function of teω. In
the irregular regime, no steady state is reached during the simulation. (d) Maximum linear growth rate maxi Re �̄i corresponding to (a). In the
vicinity of the vertical lines, the growth rates are approaching a sign reversal, indicating an imminent instability. (e) Time series of the phases
φi(t ) of metachronal waves from simulations with random initial conditions.

metachronal wave with nonuniform steady-state phase shifts,
which causes frequency locking, as shown in Figs. 7(c) and
7(d), respectively. In simulations with 103 random initial con-
ditions, we always obtained the same particular metachronal
wave.

The selection of a particular metachronal wave highlights
the importance of boundary conditions. To investigate how
this wave selection might be influenced by the elasticity of
the orbits, we continue the state shown in Fig. 7 in the
elasticity range teω ∈ [10−1, 10]. Figures 8(a) and 8(b) show
the resulting frequency-locked solutions corresponding to ei-
ther symplectic (positive phase shifts) or antiplectic (negative
phase shifts) metachronal waves. By the average phase shift
〈φi − φi+1〉i of the frequency-locked solutions, we illustrate
the elasticity dependence of the selected metachronal wave:
Large elasticity corresponds to symplectic metachronal waves
and small elasticity corresponds to antiplectic metachronal
waves. The transition between symplectic and antiplectic
metachronal waves is characterized by an intermediate region
of bistability, connecting the symplectic and antiplectic solu-
tions by a hysteresis loop [Fig. 8(c)]. Below a critical elasticity
teω ≈ 0.4, frequency-locked solutions are not observed. Thus,
the instantaneous average phase shift becomes meaningless,
as indicated by the irregular behavior for teω < 0.4. The

phases φi(t ) of symplectic and antiplectic metachronal waves
are shown in Fig. 8(e).

We obtain the linear stability of the numerically com-
puted metachronal wave solutions similar to the periodic case:
Eq. (11) is transformed into a corotating reference frame by
ψ̄ = φ − (ω + �̄)t , where �̄ is calculated with the phase
shifts in Fig. 8(a). The dynamics of ψ̄i are linearized around
the corresponding phase shifts. The eigenvalues �̄i of the
resulting Jacobian are calculated numerically. We discard the
neutral eigenvalue (which reflects the global phase-shift sym-
metry) when evaluating the linear stability.

Figure 8(d) shows the maximum linear growth rate
maxi Re �̄i, suggesting three instabilities, each occurring at an
elasticity where the maximum growth rate approaches a sign
reversal: (i) at the transition from symplectic to antiplectic
metachronal waves (indicated by the red vertical line), (ii)
at the boundary between irregular solutions and metachronal
waves (black vertical line), and (iii) at the transition from
antiplectic to symplectic metachronal waves (blue vertical
line).

While for highly elastic orbits the symplectic wave forms
directly (Fig. 7), the formation process for intermediate
elasticity is characterized by a competition between sym-
plectic and antiplectic metachronal waves. We illustrate this
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FIG. 9. Competing symplectic and antiplectic metachronal
waves in an open chain of N = 30 phase oscillators, oriented as
in Fig. 2, with h/� = 1/2, teω = 1, and γ = 3/8 × 10−2. (a) Time
series of the slow phases �i(t ). (b) Phase shifts �i(t ) − �i+1(t ) as a
function of time.

competition in Fig. 9: The phase oscillators at the ends of
the chain interact with fewer local neighbors. This causes a
higher-frequency gain of the phase oscillators in the bulk of
the chain. Therefore, the phase oscillators at the ends initially
lag behind their neighbors in phase. As a result, an antiplectic
metachronal wave forms first in the downstream region of the
chain, while the phase oscillators upstream adjust their phases
to a symplectic metachronal wave. After about 1000 beats, the
two metachronal waves fill the entire phase-oscillator chain
and intersect at a synchronized interface. This pattern of two
oppositely directed metachronal waves is sometimes called a
chevron pattern. For bulk fluid hydrodynamics, the chevron is
a stable collective configuration [34]. In our model, however,
the phase oscillators interact through anisotropic near-wall
flows that implement a directional coupling. The two-wave
state is no longer stable and the symplectic and antiplectic
metachronal waves compete to push each other out of the
phase-oscillator chain, approaching a single-wave frequency-
locked solution on a timescale of several thousand beat cycles.
This dynamic behavior is consistent with a discontinuous
transition between an antiplectic wave and a symplectic wave
[Fig. 8(c)].

VI. SUMMARY AND DISCUSSION

In this paper we investigated hydrodynamic synchroniza-
tion between cilia which are modeled by phase oscillators
whose elastic circular orbits are inclined about a no-slip
wall. The inclination of the orbit breaks the symmetry of
the circular motion and establishes a preferred direction
of flow, thus modeling the power stroke of the cilia. The
power stroke direction in turn leads to an anisotropy in the
hydrodynamics, breaking the reflection symmetry between
upstream and downstream neighbors and reversing the cou-
pling with respect to mutual motion for oscillators oriented
perpendicular to the power stroke. The anisotropic hydrody-
namics results in directional coupling, which has profound
consequences for the coordination of metachronal waves: In
periodic phase-oscillator chains, metachronal waves propagat-
ing in the direction of the power stroke are linearly stable
at long wavelengths. The perpendicular wave directions,

however, may be stable at short wavelengths. Furthermore,
the interplay between the anisotropic flow near a surface
and orbit compliance robustly coordinates the phase oscil-
lators in metachronal waves independently of the boundary
and initial conditions. In open chains of phase oscillators,
we observed a phenomenon that is unusual in the context
of hydrodynamic synchronization of cilia: Bistability of sym-
plectic and antiplectic metachronal waves leads to hysteresis.
Adjusting the elasticity allows switching between the wave
directions.

Hydrodynamic interactions between inclined, elastically
bound, harmonically oscillating microspheres have previously
been studied numerically in terms of coupled phase-amplitude
oscillators [14,15]. Our model exhibits essentially identi-
cal coupling characteristics between pairs of oscillators (see
Appendix C), particularly with respect to the spatial decay
of the coupling. The models should therefore predict similar
large-scale coordination. However, in simulations with the
phase-amplitude model over about 1000 beat cycles, bista-
bility of metachronal wave directions is not reported [14,15].
In our simulations, the timescale of competition between
wave directions is rather slow, requiring several thousand beat
cycles.

The geometrical understanding of the hydrodynamic cou-
pling, illustrated in Figs. 2 and 3, may have relevance beyond
coupled phase oscillators. The discussed anisotropy of flow
solely depends on the presence of a surface. Thus, slender
filaments undergoing complex motion near the surface are
expected to produce a flow that exhibits a similar anisotropy.
Indeed, long-wavelength symplectic metachronal waves and
short-wavelength laeoplectic metachronal waves are observed
in an in vitro model of ciliated bronchial epithelium [19]. The
anisotropy of flow induced by the surface could explain these
observations. However, to further link the interplay of surface
effects and elastic compliance with metachronal coordination
in biology, it is necessary to extend our analysis to carpets of
phase oscillators.

In experiments with laser-driven colloids [57] as well as
in numerical investigations [58], an instability of metachronal
waves with finite wavelength occurs for interactions far from
the no-slip wall. The linear stability of metachronal waves
in our model suggests that this instability is caused by a
constraint for low-drag collective configurations induced by
long-range interactions, which ultimately stabilizes only the
highest-frequency wave mode, corresponding to an infinite
wavelength in the bulk fluid. However, conclusions about
long-range hydrodynamic effects derived from models based
on the steady Stokes equations must be treated with cau-
tion, since these equations break down at large length scales
(compared to the length scale of vorticity diffusion

√
νT )

[59]. In fact, recent experiments suggest that inertial effects
in the fluid cannot be neglected at the microscale [60,61].
Furthermore, theory suggests that the leading-order contribu-
tion to the hydrodynamic synchronization strength, induced
by time-dependent effects in the fluid, scales with distance
fundamentally differently than expected from steady Stokes
flow [39]. To judge possible deviations from the steady Stokes
flow coupling in systems extending beyond a length scale√

νT , a theory is needed that takes into account the time
dependence of the fluid.
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Elastic compliance and variable forcing can similarly
contribute to hydrodynamic synchronization [42], and their
interrelationships can be used to control synchronization
between oscillator pairs [41]. Regarding hydrodynamic large-
scale coordination, we note that, as shown in Sec. III, the
dispersion of metachronal waves in the elastic compliance
framework is dominated by first harmonics. In contrast, the
dispersion of metachronal waves coordinated by variable driv-
ing forces is dominated by the second harmonics [46]. This
suggests that metachronal waves are controllable by relative
adjustments of the elastic parameter and the coefficients of
variable forcing.

The ability to control the metachronal wave mode by ad-
justing the elasticity of the model cilia is reminiscent of the
behavior of two actuated slender filaments coupled by elastic
junctions at their base [62]. In this case, in-phase, antiphase,
and bistable synchronization modes are achieved depending
on the stiffness of the basal junctions. However, in our model,
the selection of wave mode by orbit elasticity is a collective
phenomenon of oscillator chains. Changes in elasticity affect
the timescale of synchronization but not the quality of syn-
chronization mode between oscillator pairs.
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APPENDIX A: PHASE-OSCILLATOR DYNAMICS

Here we derive the coupled phase-oscillator equations at
the timescale of synchronization to the leading order in the
hydrodynamic interaction. The position of the model cilia
ri = (xi, yi, zi ) reads

ri(t ) = rc
i + Rβ,z̄ · R−α,x̄ ·

⎡
⎣Ri(t ) cos φi(t )

Ri(t ) sin φi(t )
0

⎤
⎦, (A1)

where rc
i = (i�, 0, h) with i ∈ (0, 1, . . . , N − 1). The circular

orbits are locally rotated by the matrices

R−α,x̄ =

⎡
⎢⎣1 0 0

0 cos α sin α

0 − sin α cos α

⎤
⎥⎦, (A2)

Rβ,z̄ =

⎡
⎢⎣cos β − sin β 0

sin β cos β 0
0 0 1

⎤
⎥⎦. (A3)

The tangential and radial unit vectors are given by

eφ (φ) = Rβ,z̄ · R−α,x̄ ·
⎡
⎣− sin φ

cos φ

0

⎤
⎦, (A4)

eR(φ) = Rβ,z̄ · R−α,x̄ ·
⎡
⎣cos φ

sin φ

0

⎤
⎦. (A5)

The dynamic equations of the phase and the radius can be
written as

φ̇i = R∗ω
Ri

+
∑
j �=i

eφ (φi) · ζG(ri, r j ) · ṙ j

Ri
, (A6)

Ṙi = R∗ − Ri

te
+

∑
j �=i

eR(φi ) · ζG(ri, r j ) · ṙ j . (A7)

The Green’s function G of the steady Stokes equation, sub-
ject to a no-slip condition on the substrate, is known as the
Blake tensor [55]. The components of the Blake tensor (μ, ν ∈
{x, y, z}) can be written as

Gμν (ri, r j ) = GS
μν (ri − r j ) − GS

μν (ri − r̄ j )

+ 2z2
j G

D
μν (ri − r̄ j ) + 2z jG

SD
μν (ri − r̄ j ), (A8)

with r̄ j = r j − 2z jez, where ez is the unit vector in the z
direction, and

GS
μν (r) = 1

8πη

(
δμν

r
+ rμrν

r3

)
, (A9)

GD
μν (r) = 1

8πη
(1 − 2δνz )

∂

∂rν

( rμ

r3

)
, (A10)

GSD
μν (r) = (1 − 2δνz )

∂

∂rν

[
GS

μz(r)
]
, (A11)

where r = |r| and δμν denotes the Kronecker delta [63].
To simplify the Blake tensor, we neglect the finite size of

the orbits and assume the scaling separations R � � and R �
h. The distance vectors read

ri(t ) − r j (t ) = rc
i − rc

j + O(R/�), (A12)

ri(t ) − r̄ j (t ) = rc
i − r̄c

j + O(R/�, R/h). (A13)

Furthermore, we decompose the Blake tensor in symmetric
and antisymmetric parts as

G
(
rc

i , rc
j

) = Gs
(
rc

i , rc
j

) + Ga
(
rc

i , rc
j

)
. (A14)

As the basis for the decomposition we use the center to
center unit vectors ni j = (rc

i − rc
j )/|rc

i − rc
j | and n̄i j = (rc

i −
r̄c

j )/|rc
i − r̄c

j |. Those are given by

ni j = sgn(i − j)ex, (A15)

n̄i j = sgn(i − j)

√
1 − 4h̄2

D2
i j

ex + 2h̄

Di j
ez, (A16)

where Di j ≡ (d2
i j + 4h̄2)1/2, di j ≡ |i − j|, h̄ ≡ h/�, and ex is

the unit vector in the x direction. In order to generalize our
model to carpets of cilia, the basis vectors must be modified.

The symmetric and antisymmetric parts of the Blake tensor
can be written as

8πη�Gs
(
rc

i , rc
j

) =
(

1

di j
− 1

Di j
− 2h̄2

D3
i j

)
I − 4h̄2

D3
i j

ezez

+
(

2h̄

D2
i j

− 12h̄3

D4
i j

)
(ezn̄i j + n̄i jez ) + ni jni j

di j

−
(

1

Di j
− 6h̄2

D3
i j

)
n̄i j n̄i j, (A17)
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8πη�Ga
(
rc

i , rc
j

) = 12h̄3

D4
i j

ez ∧ n̄i j, (A18)

where I is the identity matrix, ab = aμbν , and a ∧ b = ab −
ba. With ζ = 6πηa and the factor 8πη� in Eqs. (A17) and
(A18), we see that the interaction terms in Eqs. (A6) and (A7)
scale as ζG = O(3a/4�). We consider only weak hydrody-
namic interactions with γ ≡ 3a/4� � 1.

Starting from an unperturbed motion ṙ = R∗ωeφ in
Eq. (A7), we estimate the scale of the hydrodynamically in-
duced radial velocity and the radial displacement as Ṙ/ω =
O(γ ) and R/R∗ = 1 + O(λ), where λ = γ teω � 1. The re-
sulting changes in the velocity ṙ = Rφ̇eφ + ṘeR = R∗ωeφ +
O(γ , λ) induce interaction terms of the order of γ 2 and λγ in
Eqs. (A6) and (A7).

With Eq. (A14) and keeping only the leading order in λ and
γ , Eqs. (A6) and (A7) reduce to

φ̇i = R∗ω
Ri

+ R∗ω
Ri

∑
j �=i

eφ (φi ) · ζG
(
rc

i , rc
j

) · eφ (φ j )

+ O(γ 2, λγ ), (A19)

Ṙi = R∗ − Ri

te
+ R∗ω

∑
j �=i

eR(φi ) · ζG
(
rc

i , rc
j

) · eφ (φ j )

+ O(γ 2, λγ ). (A20)

Using Eqs. (A4), (A5), and (A14)–(A18), we calculate the
pairwise hydrodynamic coupling functions as

eφ (φi ) · ζG
(
rc

i , rc
j

) · eφ (φ j ) = γ [Ji j (δi j ) + J̃i j (σi j )], (A21)

eR(φi ) · ζG
(
rc

i , rc
j

) · eφ (φ j ) = γ [Ki j (δi j ) + K̃i j (σi j )],
(A22)

where δi j ≡ φi − φ j , σi j ≡ φi + φ j , and

Ji j (δi j ) ≡ Gi j cos(δi j ) + Ḡi j sin(δi j ), (A23)

Ki j (δi j ) ≡ Gi j sin(δi j ) − Ḡi j cos(δi j ), (A24)

J̃i j (σi j ) ≡ G̃i j cos(σi j ) + Ĝi j sin(σi j ), (A25)

K̃i j (σi j ) ≡ G̃i j sin(σi j ) − Ĝi j cos(σi j ). (A26)

The geometry factors read

Gi j ≡ gi j + g+
i j cos 2α + 2g−

i j sin2 α cos 2β, (A27)

Ḡi j ≡ sgn( j − i)ḡi j sin α cos β, (A28)

Ĝi j ≡ −2g+
i j sin2 α − g−

i j cos 2β(3 + cos 2α), (A29)

G̃i j ≡ 4g−
i j cos α sin 2β, (A30)

with dimensionless distance functions

gi j ≡ 11

8

(
1

di j
− 1

Di j

)
+ 7h̄2

4D3
i j

− 15h̄4

D5
i j

, (A31)

g±
i j ≡ 1

8

(
1

di j
− 1

Di j

)
+ 5h̄2

4D3
i j

± 3h̄4

D5
i j

, (A32)

ḡ ≡ 12h̄3

D4
i j

√
1 − 4h̄2

D2
i j

. (A33)

The phase difference changes at the timescale of syn-
chronization δ̇ = O(t−1

s ), but the sum of phases changes at
the order of the intrinsic frequency σ̇ = O(ω) [34]. Thus,
Eqs. (A21) and (A22) show that the hydrodynamic interaction
separates into slowly and rapidly varying parts.

We are only interested in the synchronization dynamics and
remove the rapid oscillations by period averaging as

〈· · · 〉 = 1

T

∫ t0+T

t0

· · · dt . (A34)

We assume that the synchronization time is considerably
larger than the period (ts � T ) and take δ as constant over one
period. We moreover ignore the higher-order terms in λ and γ

and set σ = 2ωt + O(γ , λ) in the averaging of the coupling
functions. The average radial dynamics is given by

〈Ṙi〉 = 〈R∗ − Ri〉
te

+
∑
j �=i

γωR∗Ki j (δi j ) + O(γ 2, λγ ). (A35)

The first term on the right-hand side of Eq. (A35) generates
a relaxation to an average radial displacement at a timescale
te. The second term represents the hydrodynamic coupling,
which slowly changes at the timescale of synchronization ts.

To the leading order in the radial displacements the average
phase velocity reads

〈φ̇i〉 =ω

(
1 − 〈Ri − R∗〉

R∗

)
+

∑
j �=i

γωJi j (δi j )

+ O(γ 2, λ2, λγ ). (A36)

To arrive at the phase-oscillator equation, we exploit the scal-
ing separation te � ts and set 〈Ṙ〉 = 0. Then, by Eq. (A35),
the phase dynamics at the synchronization timescale can be
written as

φ̇i

ω
= 1 +

∑
j �=i

γ Ji j (δi j ) − λKi j (δi j ) + O(γ 2, λ2, λγ ), (A37)

where we dropped the averaging indication.
A comparison between the full system of phase and radial

dynamics (A19) and (A20) and our phase-oscillator approxi-
mation is shown in Fig. 10. If te/ts ≈ 1 the phase difference
becomes modulated at a fast timescale, leading to optimal
synchronization at finite elasticity [56]. In this case our ap-
proximation breaks down.

APPENDIX B: LINEAR GROWTH RATE OF
PERTURBATIONS OF METACHRONAL WAVES IN

PERIODIC CHAINS

The Jacobi matrix of metachronal waves in periodic chains
of N phase oscillators is given by

Mi j (k) = ∂ψ̇i

∂ψ j

∣∣∣∣
ψ j=− j�k

, (B1)
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FIG. 10. We numerically solve Eqs. (A19) and (A20), for a pair
of phase oscillators, in the bulk fluid (h/� → ∞), by the classical
Runge-Kutta method with numerical step size �t = 0.01. (a) Phase
difference φ0(t ) − φ1(t ) according to the full model and according
to our phase-oscillator model [Eq. (C6)]. (b) Numerically calculated
radial displacement R0(t ) − R∗ and average radial displacement ac-
cording to Eq. (A35) (with 〈Ṙ〉 = 0) and Eq. (C6). The initial data
are R0(0) = R1(0) = R∗ and φ0(0) − φ1(0) = π/2. The parameters
are α = β = 0, γ = 1/4 × 10−2, and teω = 2.

with |�k| = 2πK/N , where K is an integer and

∂ψ̇i

∂ψ j
= ∂

∂ψ j

⎛
⎝ω

∑
j �=i

γ Ji j (ψi − ψ j ) − λKi j (ψi − ψ j )

⎞
⎠.

(B2)
We impose a cutoff radius of half the system size.

Due to the periodic boundary conditions and the translation
invariance of the phase shifts of metachronal waves, the Jacobi
matrix is a circulant matrix; its successive rows are given by
cyclic right shifts of its first row. Thus, the matrix is fully
specified by the components M0 j , say.

We begin by calculating M00 as

M00 = γω
∑
j �=0

∂J0 j (ψ0 − ψ j )

∂ψ0

∣∣∣∣
ψ j=− j�k

− λω
∑
j �=0

∂K0 j (ψ0 − ψ j )

∂ψ0

∣∣∣∣
ψ j=− j�k

. (B3)

The interaction ranges symmetrically to either side of the
periodic phase-oscillator chain. We split the summation into
two sums, one for each direction. This leads to

∑
j �=0

∂J0 j (ψ0 − ψ j )

∂ψ0

= −
M∑

j=1

K0 j (ψ0 − ψ j ) + K0,N− j (ψ0 − ψN− j ) (B4)

and

∑
j �=0

∂K0 j (ψ0 − ψ j )

∂ψ0

=
M∑

j=1

J0 j (ψ0 − ψ j ) + J0,N− j (ψ0 − ψN− j ), (B5)

where M = (N − 1)/2 for odd N and M = N/2 − 1 for even
N .

The jth-neighbor phase difference is ψi − ψi+ j = j�k in
one direction and ψi − ψi− j = − j�k in the other direction.
Thus, in the wave state we can identify ψ0 − ψ j = j�k
and ψ0 − ψN− j = − j�k. At the level of the hydrodynamic
coupling functions we set J0 j (ψ0 − ψ j ) = J0 j ( j�k) in one
direction and J0,N− j (ψ0 − ψN− j ) = Jj0(− j�k) in the other
direction. The same holds for the coupling function Ki j . With
this we arrive at

∑
j �=0

∂J0 j (ψ0 − ψ j )

∂ψ0

∣∣∣∣
ψ j=− j�k

= −
M∑

j=1

K0 j ( j�k) + Kj0(− j�k)

(B6)

and

∑
j �=0

∂K0 j (ψ0 − ψ j )

∂ψ0

∣∣∣∣
ψ j=− j�k

=
M∑

j=1

J0 j ( j�k) + Jj0(− j�k).

(B7)

Using Eqs. (B6), (B7), (19), and (20) in Eq. (B3), we obtain

M00 = −
M∑

j=1

2λωJ0 j ( j�k). (B8)

The j �= 0 components of M0 j are given by

M0 j = γω[K0 j ( j�k)�(M − j)

+ KN− j,0(( j − N )�k)�( j − (N − M ))]

+ λω[J0 j ( j�k)�(M − j)

+ JN− j,0(( j − N )�k)�( j − (N − M ))], (B9)

where �(x) is the Heaviside step function. The eigenvalues
�n are written as

�n =
N−1∑
j=0

M0 j exp

(
i
2πn j

N

)

=
N−1∑
j=0

M0 j cos
2πn j

N
+ i

N−1∑
n=0

M0 j sin
2πn j

N
, (B10)

where i = √−1 [64]. The real part reads

Re �n = −
M∑

j=1

2λωJ0 j ( j�k) +
N−1∑
j=1

M0 j cos
2πn j

N
. (B11)
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×

FIG. 11. Synchronization between pairs of phase oscillators. (a) Cycle-averaged hydrodynamic coupling functions as a function of phase
difference. (b) Synchronization time ts and frequency gain ωs as a function of the stiffness of the orbits. (c) Steady-state phase difference −δs

as a function of the geometric configuration. (d) Frequency gain ωs as a function of the geometric configuration. The data shown correspond
to the data in Fig. 5 of Ref. [15]. In order to facilitate the comparison we shifted the orientation parameter β and show data for −δs. Unless
stated otherwise, the data are generated with the parameters α = π/2, β = 0, �/h = 2, γ = 3/8 × 10−2, and teω = 2.

After carrying out the summation over M0 j and rearranging
indices, the second term in Eq. (B11) reads

N−1∑
j=1

M0 j cos
2πn j

N

=
M∑

j=1

[λωJ0 j ( j�k) + γωK0 j ( j�k)] cos
2πn j

N

+
M∑

j=1

[λωJj0(− j�k)+γωKj0(− j�k)] cos
2πn(N − j)

N
.

(B12)

Using Eqs. (19) and (20) in Eq. (B12), we obtain the linear
growth rates from Eq. (B11) as

Re �n

2λω
= −

M∑
j=1

J0 j ( j�k) +
M∑

j=1

J0 j ( j�k) cos
2πn j

N
. (B13)

APPENDIX C: PAIR SYNCHRONIZATION

Here we compare our phase-oscillator model with the more
general phase-amplitude model. In Ref. [15] it is shown that
the phase difference � = �1 − �0 in the phase-amplitude
model obeys the evolution equation �̇ = D(�), where the
numerically computed coupling function is given to a good
approximation by D(�) = −D0 sin(� − �s), with amplitude
D0 and phase shift �s. Similarly, the sum of phases � = �0 +
�1 evolves according to �̇ = 2ω + S(�), where S(�) =
S0 cos(� − �s). It is shown that the phase shift �s and the
amplitudes D0 and S0 depend in a particular way on the geo-
metrical configuration, leading to in-phase motion, antiphase
motion, and phase-shifted steady states, depending on the
orientation of the oscillators relative to the direction of the
power stroke.

In our model the dynamic equations of the phase difference
δ = φ0 − φ1 and the sum of phases σ = φ0 + φ1 are given by

δ̇ = −2λωK01(δ), (C1)

σ̇ = 2ω + 2γωJ01(δ). (C2)

By Eqs. (12) and (18) it is clear that the functional form of
the dynamics above coincide with the evolution equations
of the phase-amplitude model. In particular, we can write
2λωK01(δ) = t−1

s sin(δ − δs), where the steady-state phase
shift δs and the synchronization timescale ts are given by

δs = arctan

(
Ḡ01

G01

)
(C3)

and

t−1
s = 2λω

√
G2

01 + Ḡ2
01. (C4)

Similarly, we write 2ωγ J01(δ) = 2ωs cos(δ − δs), where the
steady-state frequency gain ωs = φ̇ − ω reads

ωs = γω

√
G2

01 + Ḡ2
01. (C5)

Furthermore, we solve Eq. (C1) explicitly for a function of
time δ(t ) as

δ(t ) = δs − 2 arctan

[
tan

(
δs − δ0

2

)
exp

(
− t

ts

)]
, (C6)

where δ0 is the initial phase difference.
The general properties of the hydrodynamic synchroniza-

tion between pairs of phase oscillators are shown in Fig. 11.
We explicitly reproduce the data of the phase-amplitude
model shown in Fig. 5 of Ref. [15]. A direct comparison
between Fig. 11 herein and Fig. 5 of Ref. [15] shows that
the coupling of the phase-amplitude model agrees remarkably
well with the coupling of our phase-oscillator model.
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