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Cell adhesion proteins typically form stable clusters that anchor the cell membrane to its environment. Several
works have suggested that cell membrane protein clusters can emerge from a local feedback between the
membrane curvature and the density of proteins. Here, we investigate the effect of such a curvature-sensing
mechanism in the context of cell adhesion proteins. We show how clustering emerges in an intermediate range
of adhesion and curvature-sensing strengths. We identify key differences with the tilt-induced gradient sensing
mechanism we previously proposed (Lin et al., arXiv:2307.03670).
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I. INTRODUCTION

Cells rely on specific proteins to bind to their environment.
In particular, cadherins mediate the attachment between cells,
while integrins mediate the attachment between cells and the
extracellular matrix. Cell adhesion proteins are known to play
a central role in several processes critical in the development
and maintenance of tissues and organs [1–5].

Here we develop a generic, coarse-grained model for the
supramolecular assembly of cell adhesion proteins. Our in-
spiration comes from recent experiments on spreading cells
[6–8], which show that integrins form circular clusters at the
cell leading edge. These clusters form within 3 min, which is
short compared to their lifetime, suggesting that these clusters
are stable.

To interpret the formation of such stable clusters, we pro-
posed in Ref. [9] a tilt-induced clustering mechanism in which
gradients in the membrane height allow for the development
of a mean tilt of cell adhesion proteins. Such mean tilt along
membrane gradients relaxes the conformational energy of cell
adhesion proteins. Clusters form when the gain in conforma-
tional energy exceeds the membrane deformation cost.

Here we consider an alternative mechanism for the for-
mation of stable clusters in which cell adhesion proteins are
sensitive to the local membrane curvature. A spontaneous
membrane curvature generically emerges when the symmetry
between the inner and outer leaflets of the cell membrane
is broken [10,11]. Such symmetry breaking can be caused
by molecules or proteins that bind to a specific leaflet (e.g.,
crenator molecules [12], epsin [13], or Bin-Amphiphysin-Rvs
proteins [14,15]), or, in the case of transmembrane proteins,
due to a difference in the area occupied within each leaflet
[16]. Here we consider that the local concentration in cell
adhesion proteins modulates the membrane’s spontaneous
curvature. Our approach is agnostic of the specific micro-
scopic mechanism involved in setting up such spontaneous
curvature.

We point out that the two mechanisms of gradient sens-
ing (described in Ref. [9]) and curvature sensing (described
here) are not mutually exclusive; on the contrary, they likely

complement each other, as orders of magnitude suggest. Both
mechanisms predict similar spatial patterns, e.g., stable circu-
lar clusters and line structures that are reminiscent of patterns
observed in cells: nascent adhesions are organized as disklike
clusters [6–8] while focal or fibrillar adhesions are linear
structures [17]. Despite these similarities, we identify key dif-
ferences, notably regarding the role of the adhesion strength
on the emergence of clusters.

Several works tackled the role of the membrane-to-ligand
distance on the cell adhesion binding affinity and on the
growth rate of clusters [18,19]. However, the possibility that
cell adhesion proteins could generate a spontaneous curvature
appears unexplored—with the exception of a recent theoreti-
cal study [20], which focuses on the problem of evaluating the
protein binding affinity.

Our paper is organized as follows. In Sec. II, we present a
theoretical model to describe the membrane-protein-substrate
system [see Fig. 1(a)] that describes the mixing of proteins,
membrane deformation elasticity, and membrane-substrate
adhesion. We consider a simulation protocol that allows us
to reach a state that minimizes the free energy of the system.
In Sec. III, we first apply our theory and perform numerical
simulations to investigate the cluster formation of cell adhe-
sion proteins, focusing on the spontaneous curvature and cell
adhesion parameters. We next present an analytical criteria
for the stability of the homogeneous state, which we show
accounts for the type of patterns observed in simulations.
In Sec. IV, we interpret the transition from hexagonally ar-
ranged circular clusters to lines through a mapping to the
Swift-Hohenberg theory. We then discuss the relation of the
curvature-sensing mechanism proposed here to our previously
proposed gradient-sensing mechanism [9], as well as appli-
cations to the interpretation of experimental observations.
Finally, we give our main conclusions in Sec. V.

II. MODEL AND SIMULATION

A. Theoretical model

We consider a membrane-protein-substrate system as
shown in Fig. 1(a). Our model is defined in terms of two fields:
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FIG. 1. (a) Model sketch of the membrane-protein-substrate sys-
tem. Proteins (green) pin the membrane (blue) to the substrate (grey)
by adhesion to ligands (brown). Triangles (orange) indicate that the
adhesion protein induces a local spontaneous curvature into the cell
membrane. (b) The spontaneous curvature c0(φ) of a cell membrane
is assumed to be a linear function of the fraction of bound adhesion
proteins φ.

(1) the fraction of bound cell adhesion proteins among other
molecules, φ(x) ∈ (0, 1) and (2) the height of the membrane
with respect to the substrate, e(x).

We consider the total free energy for the membrane-
protein-substrate system in the following form:

F [e, φ] =
∫

d2x{ fFH[φ] + fHel[e, φ] + fadh[e, φ]}, (1)

where fFH, fHel, and fadh represent the free-energy densities
associated with protein mixing, membrane deformation, and
membrane–substrate adhesion, respectively. We next explain
these three terms in detail:

(1) Clustering comes at an entropy cost. As in Ref. [9],
we consider an entropy associated with protein binding in the
form

fFH = kBT

a
[φ ln φ + (1 − φ) ln(1 − φ)] + Dφ (∇φ)2

2
, (2)

where kBT is the thermal energy and a is the inverse areal
density of binders (as in Flory-Huggins theory [21,22]) and
Dφ is a gradient energy coefficient, which controls the width
of the cluster interfaces [23].

(2) Adhesion molecules typically pin the cell membrane
at a relatively short distance ∼30 nm, against ∼110 nm
in regions where the cell membrane only interacts with the
substrate due to glycocalyx steric interactions [18]. As in
Ref. [9], we propose the following free energy for such
adhesion-mediated interaction between the membrane and the
flat substrate:

fadh = 1
2 k0e2 − k0e0(1 − φ)e − hφφ, (3)

where k0 is the membrane-substrate binding elastic constant,
e0 is the height difference between the adhered state and the
detached state, and hφ is the chemical potential of protein-
substrate binding. The adhesion free energy Eq. (3) indicates
that for a fully attached membrane [φ(x) → 1], e(x) → 0;
while for a fully detached membrane [φ(x) → 0], e(x) → e0.

(3) Membrane deformation generically comes at an en-
ergy cost. The spontaneous curvature c0 characterizes the
nondeformed, stress-free curvature of the membrane. Here,
inspired by previous works [24–35], we consider a density-
dependent spontaneous curvature c0(φ), within the following

Helfrich free energy:

fHel = 1
2σ (∇e)2 + 1

2κ[∇2e − c0(φ)]2, (4)

where σ is the surface tension and κ is the bending stiffness.
As per the standard convention, the curvature ∇2e is positive
when the membrane is deforming away from the cell cyto-
plasm; see Fig. 1(a). We here consider a relation between φ

and c0 at the simplest linear order [24–27,30–33,35],

c0(φ) = c0,min + (c0,max − c0,min)φ, (5)

where c0,max (respectively, c0,min) quantifies the maximal
(respectively, minimal) spontaneous curvature that can be
achieved for a maximal (respectively, minimal) fraction of
adhesion proteins. However, substituting Eq. (5) into Eq. (4)
and examining the total free energy, we find that the constant
part c0,min is equivalent to renormalizing the chemical poten-
tial: hφ → hφ − κc0,min(c0,max − c0,min). Therefore, without
loss of generality, we assume c0,min = 0 for simplicity in our
present paper, see Fig. 1(b).

B. Numerical simulation

To obtain the minimum energy state of the system, we
consider the following annealing dynamics:

∂e

∂t
= −δF

δe
+ η(x, t ), (6)

∂φ

∂t
= −δF

δφ
, (7)

where η(x, t ) is the decaying noise source, implemented
as a Gaussian white noise with a zero mean (〈η(x, t )〉 =
0) and variance 〈η(x, t )η(x′, t ′)〉 = �(t )2δ(x − x′)δ(t − t ′)
whose intensity �(t ) is a decreasing function of time (see
Appendix E for details).

Substituting Eq. (1) into Eqs. (6) and (7), we obtain the
following evolution equations:

∂e

∂t
= − k0e − k0e0φ + σ∇2e − κ∇2∇2e

+ κc0,max∇2φ + k0e0 + η(x, t ) (8)

and

∂φ

∂t
= − k0e0e − κc2

0,maxφ + κc0,max∇2e + Dφ∇2φ

− kBT

a
ln

(
φ

1 − φ

)
+ hφ. (9)

We point out that the total number of adhesion molecules
is not conserved through our energy-minimization process,
which represents a key difference with the previous models
reviewed in Ref. [34].

C. Default set of parameters

Based on previously reported experimental measurements,
we consider the following parameter values: a typical height
difference e0 = 80 nm, a distance between binders d = 10 nm
which results in a = 100 nm2 [6], a cell membrane ten-
sion σ = 2 × 10−5 J m−2 ≈ 0.005 kBT nm−2 [23,40], and
a membrane bending rigidity κ = 10 kBT [23,37,38]. The
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TABLE I. List of default parameter values.

Parameter Description Value

e0 Membrane rest-length
height

80 nm [18,36]

kBT Thermal energy 4 × 10−21 J
k0 Membrane-substrate

adhesion stiffness
2 × 10−5 kBT nm−4 [18]

κ Membrane bending
stiffness

10 kBT [18,23,37,38]

σ Membrane surface tension 0.005 kBT nm−2 [23,39,40]
a Inverse areal density of

binders
100 nm2 [23,41]

Dφ Gradient energy
coefficient

1 kBT

binding energy k0e2
0a ∼ 10 kBT [18,19] yields the follow-

ing value of the membrane–substrate binding stiffness: k0 ∼
10kBT/(e2

0a) ∼ 10−5 kBT nm−4; therefore, we find a value
of the effective stiffness, k0a ∼ 10−3 kBT nm−2, which is
consistent with one provided in Ref. [18] (the parameter λ

therein). Further, we consider Dφ = kBT and hφ = k0e2
0 =

0.1 kBT nm−2.
To our knowledge, there is not yet a work dealing with

the specific contribution of cell adhesion proteins (such as
integrins or cadherins) to the spontaneous curvature of a cell
membrane. A recent experimental work suggested a coupling
between integrins and curvature-inducing molecular com-
plexes [42]. Here we propose to set the maximal spontaneous
curvature at c0,max ∼ 0.1 nm−1, a value within the range re-
ported for membranes that include epsin1 [13] or SNARE [43]
complexes (see also Refs. [44,45]).

In our simulations, we normalize the parameters by the
length scale e0 and the energy scale kBT . We set our default set
of nondimensional parameters as below: k̃0 = k0e4

0/(kBT ) =
1000, κ̃ = κ/(kBT ) = 10, σ̃ = σe2

0/(kBT ) = 32, ã = a/e2
0 =

1/64, D̃φ = Dφ/(kBT ) = 1. Such a set of parameters corre-
sponds to the values of Table I in dimensionalized units.

III. RESULTS

A. Simulation results

We carried out a series of simulations for different values
of hφ and c0,max, with all other parameters fixed at the default
values in Table I. In the cases, hφ < 0 or c0,max < 0, no clus-
ters appear. We expect such a lack of cluster formation for
c0,max < 0 as e0 > 0 in our default set of parameters, which
implies that adhesion favors a positive membrane curvature.

In particular, in the absence of a curvature-sensing mech-
anism, i.e., c0,max = 0, we do not observe stable cluster
formation but observe a dilute state (φ ≈ 0) or a dense state
(φ ≈ 1), depending on the chemical potential hφ : at a low
chemical potential hφ < hcr,0

φ = k0e2
0/2, we observe a dilute

state (φ ≈ 0), while at high chemical potential hφ > hcr,0
φ , we

observe a dense state (φ ≈ 1) instead, see Fig. 2(a).
We therefore focus on the first quadrant hφ > 0 and

c0,max > 0; see Fig. 2. We report on the final steady state
reached in our simulation upon increasing the spontaneous

curvature (starting from c0,max = 0) in the following regimes
of:

(1) Very low chemical potential 0 < hφ < hcr,0
φ = k0e2

0/2:
simulations converge to a spatially homogeneous and dilute
state (φ ≈ 0), whatever the value of c0,max.

(2) Low chemical potential, hcr,0
φ = k0e2

0/2 < hφ <

hcr,1
φ ≈ 0.82k0e2

0: simulations converge to the homogeneous
and dense state (φ ≈ 1) for c0,max < ccr

0,max(hφ ) [see the
red line in Fig. 2(a)]; conversely, simulations converge to the
homogeneous and dilute state (φ ≈ 0) for c0,max > ccr

0,max(hφ ).

The critical line ccr
0,max(hφ ) exhibits a

√
hφ − hcr,0

φ scaling—
a behavior reminiscent of a first-order transition in
thermodynamics [see the inset of Fig. 2(a)].

(3) Intermediate chemical potential, hcr,1
φ ≈ 0.82k0e2

0 <

hφ < hcr,3
φ ≈ 5.25k0e2

0: for low c0,max values, the simulations
converge to the homogeneous and dense (φ ≈ 1) state; for
increasing large c0,max values, the simulations converge first
to low-density circular holes (with φ ≈ 0), then to long con-
nected lines, and then to dense circular clusters (with φ ≈ 1);
see Fig. 2(b). The intensity of the spatial modulation is re-
duced for large chemical potential, Fig. 2(c).

(4) High chemical potential, hφ > hcr,3
φ ≈ 5.25k0e2

0: the
steady state remains spatially homogeneous. The homoge-
neous state φ̄ transitions smoothly from a dense state (φ̄ ≈
1) to a dilute state (φ̄ ≈ 0), as the spontaneous curvature
is increased from small values [i.e., c0,max � ccr

0,max(hφ ), see
Eq. (14)] to large values (i.e., c0,max � ccr

0,max(hφ )).
Conversely, increasing the chemical potential at a fixed

spontaneous curvature yields a transition from a homogeneous
dilute state to clusters, and then to a homogeneous dense state,
Fig. 2(d).

In the next two subsections, we seek to understand the
results of these numerical simulations using an analytical
approach.

B. Homogeneous steady state

1. Theoretical solution of homogeneous states

Here we derive the expression of the spatially homoge-
neous solutions that minimize the total free energy. Solving
for the condition δF/δφ = 0, we find that such homogeneous
steady state (ē, φ̄) read

ē = e0(1 − φ̄) and g
(
φ̄
) = 0, (10)

where

g(φ̄) = (
κc2

0,max − k0e2
0

)
φ̄ + kBT

a
ln

(
φ̄

1 − φ̄

)
+ k0e2

0 − hφ.

Given that g(φ̄ → 0) = −∞ and g(φ̄ → 1) = +∞, the equa-
tion g(φ) = 0 has at least one root within the interval (0,1),
and the number of real roots will be odd. We find that there are
either one or three roots to Eq. (10); see Fig. 8. The transition
from one to three roots is achieved at the specific point where
minφ∈(0,1){ dg

dφ
} = 0. In Appendix B, we find that this point

corresponds to

hcr,1
φ = k0e2

0 − 2
kBT

a
(11)
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FIG. 2. The chemical potential hφ and the spontaneous curvature c0,max dictate the cluster formation of curvature-inducing cell adhesion
proteins. (a) Stability of the homogeneous state (ē, φ̄), regulated by the rescaled chemical potential ĥφ = hφ/(k0e2

0) and the rescaled spontaneous
curvature ĉ0,max = c0,max

√
κ/(e0

√
k0 ). This phase diagram is obtained by linear stability analysis, where the yellow region indicates cluster

formation [βmin < 0, see Eq. (22)]. The red solid line refers to a first-order transition between the dense phase (φ ≈ 1) and the dilute phase
(φ ≈ 0), see Eq. (14); while the red dashed line refers to the φ = 1/2 line. See the inset for these two different behaviors. The green solid line
(respectively, the blue solid line) refers to the lower (respectively, upper) bound (with respect to c0,max) of the cluster formation regime, obtained
by solving the βmin = 0 condition numerically. Purple symbols represent the numerical simulation results of Eqs. (8) and (9) [see (b)–(d) for
the corresponding patterns]: purple squares refer to the dense phase; purple triangles refer to the cluster phase; purple circles refer to the dilute
phase. The two red circles indicate the triple point (bottom-left one) and the critical point (top-right one). The square box patterns refer to some
typical patterns of these three different phases, obtained by numerical simulations. The gray dashed lines indicate critical values of hcr,0

φ , hcr,1
φ ,

hcr,2
φ , hcr,3

φ , ccr,1
0,max, and ccr,2

0,max. Inset: The homogeneous state φ̄ as a function of the rescaled curvature ĉ0,max. (b), (c) Typical patterns of bound cell

adhesion proteins at different values of c0,max. Parameters: (b) ĥφ = hφ/(k0e2
0 ) = 1; (c) ĥφ = hφ/(k0e2

0 ) = 5. (d) Typical patterns of bound cell
adhesion proteins at different values of hφ . Here ĉ0,max = c0,max

√
κ/(e0

√
k0 ) = 1.2. In (b)–(d), the color codes correspond to φ(x); simulation

box size L × L with L = 16e0. (e) The free-energy density f as a function of the spontaneous curvature c0,max, where ĥφ = hφ/(k0e2
0 ) = 1.

Solid line: Theoretically predicted homogeneous steady state, obtained by numerical resolution of Eq. (10). Symbols: Numerical simulations.
See Sec. II C and Table I for other parameter values.

and

ccr,1
0,max =

√
k0e2

0

κ
− 4kBT

aκ
. (12)

In a region of parameters within the quadrant hφ <

hcr,1
φ and c0,max < ccr,1

0,max, three homogeneous states coex-
ist; elsewhere, there is only one homogeneous state; see
Fig. 8.
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2. Free energy of homogeneous states

The free-energy density of the spatially homogeneous state
denoted (ē, φ̄) reads

f = kBT

a
[φ̄ ln φ̄ + (1 − φ̄) ln(1 − φ̄)] + 1

2
κc2

0,maxφ̄
2

− 1

2
k0e2

0(1 − φ̄)2 − hφφ̄. (13)

The later quantity increases with the value of the spontaneous
curvature c0,max; see Fig. 2(e).

In the fully detached state limit φ ≈ 0, the free-energy
density reads fdetached ≈ −k0e2

0/2. In the fully attached state
limit φ ≈ 1, the free-energy density reads fattached ≈ −hφ +
κc2

0,max/2. The detached state is more stable than the attached
one when c0,max > ccr

0,max, with

ccr
0,max =

√
2
(
hφ − hcr,0

φ

)
κ

, (14)

where hcr,0
φ = k0e2

0/2.
Equation (14) provides a quantitative prediction of the

transition from the dense to dilute phases observed in
our simulations; see the red line in Fig. 2(a). In par-
ticular, for ĥφ = hφ/(k0e2

0) = 0.6, Eq. (14) yields ĉ0,max =
c0,max

√
κ/(e0

√
k0) ≈ 0.447, which agrees with the value

ĉ0,max = c0,max
√

κ/(e0
√

k0) ≈ 0.45 observed in numerical
simulations.

C. Linear stability analysis

We next consider the stability of the homogeneous state
(ē, φ̄). Around (e, φ) = (ē, φ̄), the second-order variation of
the free energy F reads

δ2F = 1

(2π)2

∫
d2q�̄(q) · J(q) · �(q), (15)

where �(q) = (δ̃e(q), δ̃φ(q)) and �̄(q) = �(−q) is the con-
jugate complex of �(q) with δ̃e(q) = ∫

d2qδê(x) exp(−iq · x)
and δ̃φ(q) = ∫

d2qδφ̂(x) exp(−iq · x) being the Fourier trans-
forms of nondimensional perturbations δê = δe/e0 and δφ̂ =
δφ, respectively. The Jacobian matrix J(q) = [Ji j (q)]2×2 reads

J11 = k0e2
0 + σe2

0|q|2 + κe2
0|q|4,

J22 = kBT

a

1

φ̄(1 − φ̄)
+ κc2

0,max + Dφ|q|2,

J12 = J21 = k0e2
0 + κe0c0,max|q|2. (16)

Since the matrix J(q) is symmetric, the eigenvalues of J(q)
are real; these read

λ+ = α +
√

α2 − 4β

2
, λ− = α −

√
α2 − 4β

2
(17)

with α = J11 + J22 and β = J11J22 − J2
12. Given Eqs. (16), we

find that

α(q) = α0 + α1q2 + α2q4, (18)

with the coefficients

α0 = kBT

a

1

φ̄(1 − φ̄)
+ k0e2

0 + κc2
0,max,

α1 = σe2
0 + Dφ,

α2 = κe2
0. (19)

Similarly, we find that

β(q) = β0 + β1q2 + β2q4 + β3q6, (20)

with the coefficients

β0 = k0e2
0kBT

a

1

φ̄(1 − φ̄)
+ k0e2

0κc2
0,max − k2

0e4
0,

β1 = σe2
0kBT

a

1

φ̄(1 − φ̄)
+ k0e2

0Dφ + σe2
0κc2

0,max

− 2k0e3
0κc0,max,

β2 = κe2
0kBT

a

1

φ̄(1 − φ̄)
+ σe2

0Dφ,

β3 = κe2
0Dφ, (21)

where φ̄ is given by Eq. (10).
Note that α > 0 and α2 − 4β > 0 hold for arbitrary pa-

rameters and all wave numbers q, indicating λ+ > 0 for all
q. Thus, the stability condition of the homogeneous state
(e, φ) = (ē, φ̄) is solely imposed by the sign of λ−(q). How-
ever, given that α(q) > 0 for all q (since α0 > 0, α1 > 0, and
α2 > 0), we find that the stability condition that λ−(q) > 0 for
all q is, in fact, equivalent to the condition that β(q) > 0 for
all q, hence to

βmin � min
q

[β(q)] > 0. (22)

After some algebra, we derive the following expression:

βmin =
{

β0 β1 � 0

β0 + β1q2
s + β2q4

s + β3q6
s β1 < 0,

(23)

where

qs =

√√√√−β2 +
√

β2
2 − 3β1β3

3β3
. (24)

When βmin > 0 (respectively, βmin < 0), the homogeneous
steady state (ē, φ̄) is stable (respectively unstable). We note
that β2 > 0 and β3 > 0, such that at large wave numbers q →
+∞, β(q) → +∞, suggesting the system is always stable at
small scales.

1. Stability of homogeneous states for large hφ and c0,max

Inspecting Eqs. (21) and (23) in the large spontaneous
curvature limit, we find that the condition

c0,max > max

{
2k0e0

σ
, e0

√
k0

κ

}
(25)
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ensures that β0 > 0 and β1 > 0, hence that βmin > 0 and that
the homogeneous steady state is stable. Similarly, in the large
chemical potential limit, e.g.,

hφ � κc2
0,max + kBT

a
, (26)

we also find that β0 > 0 and β1 > 0, hence that βmin > 0.
These two limit cases indicate that, in the (hφ , c0,max) param-
eter space, the regime of βmin < 0 is a bounded region.

2. Phase diagram

We next systematically computed the quantity βmin defined
in Eq. (23) in the (hφ , c0,max) parameter space. As expected
from Eqs. (25) and (26), we find that the condition βmin < 0
can only be met within a bounded region of the parameter
space, see Fig. 2(a), with ccr,2

0,max ≈ 2.85e0
√

k0/κ and hcr,3
φ ≈

5.24k0e2
0 being the maximal values such that βmin < 0 [see

Fig. 2(a)]. More precisely, the region βmin < 0 takes the shape
of a leaf, see Fig. 2; by analogy to thermodynamics, we call
the triple point the top end of the leaf [i.e., the bottom-left red
point in Fig. 2(a)], and the critical point the bottom end [i.e.,
the top-right red point in Fig. 2(a)].

3. Analytical approximation of the triple point

We find that the point of transition from one to three
homogeneous states, defined in Sec. III B, matches well the
triple point (hcr,1

φ , ccr,1
0,max) defined in Fig. 2. The term triple

point is chosen by analogy to the point of coexistence of
the solid, liquid, and gas phases. With our default parameter
set (see Sec. II C), Eqs. (11) and (12) yield hcr,1

φ ≈ 0.87k0e2
0

and ccr,1
0,max ≈ 0.85e0

√
k0/κ , both of which are close to those

obtained by numerical resolution of the condition βmin = 0,
which read hcr,1

φ ≈ 0.82k0e2
0 and ccr,1

0,max ≈ 0.80e0
√

k0/κ .

4. Analytical approximation of the critical point

Here we derive an approximate expression of the point
(hcr,2

φ , ccr,2
0,max) that we call critical, by analogy to the point sep-

arating the supercritical fluid from the gas and liquid phases
in standard thermodynamics theory. We consider the condition
βmin = 0 together with φ̄ = 1/2 [such that hφ and c0,max sat-
isfy Eq. (14), see Appendix B for details]. In the limit Dφ → 0
and σ → 0, we find that ccr,2

0,max and hcr,2
φ read

ccr,2
0,max ≈

2k0e0 − 4

√
k0kBT

a
σ

(27)

and

hcr,2
φ ≈ 1

2

⎡⎣1 + 4κk0

σ 2

(
1 − 2

√
kBT

ak0e2
0

)2
⎤⎦k0e2

0. (28)

With our default parameter set (see Sec. II C), Eqs. (27)
and (28) yield the critical values hcr,2

φ ≈ 5.27k0e2
0 and

ccr,2
0,max ≈ 3.09e0

√
k0/κ . These are close to those obtained by

numerical resolution of the condition βmin = 0, which read
hcr,2

φ ≈ 5.40k0e2
0 and ccr,2

0,max ≈ 3.13e0
√

k0/κ for Dφ = 0; and

hcr,2
φ ≈ 4.56k0e2

0 and ccr,2
0,max ≈ 2.85e0

√
k0/κ for Dφ = 1 kBT .

5. Impact of surface tension

In the limit of a vanishing cell membrane tension σ → 0,
we predict that hcr,2

φ → +∞ and ccr,2
0,max → +∞, based on

Eqs. (27) and (28). Conversely, we expect that a sufficiently
large surface tension can remove the possibility of clusters.
Indeed, the triple point (hcr,1

φ , ccr,1
0,max) is insensitive to the

membrane surface tension σ , as predicted by Eqs. (11) and
(12), see Figs. 3(a)–3(c). By systematically estimating βmin

for decreasing values of the surface tension σ , we found
a regime where clusters could no longer be observed, see
Figs. 3(a)–3(c). Indeed, starting from the default parameter
set, the critical point (hcr,2

φ , ccr,2
0,max) shifts toward the triple

point (hcr,1
φ , ccr,1

0,max) as the membrane surface tension σ in-

creases (Fig. 3); we verify the ccr,2
0,max ∼ σ−1 scaling predicted

in Eq. (27); see Fig. 3(c). Thus, increasing the cell membrane
surface tension σ tends to suppress cell adhesion protein
clusters. The critical surface tension σ cr can be obtained by
letting ccr,1

0,max = ccr,2
0,max. Deriving the analytical expression of

such critical surface tension, the general case seems out of
reach; however, in the limit of Dφ → 0, combining Eqs. (12)
and (27) leads to an estimate of the critical surface tension of
σ cr ≈ 115 kBT/e2

0 ≈ 0.018 kBT nm−2 (see parameter values
in Table I), which is a slightly lower than that obtained by
simulations (≈170 kBT/e2

0 ≈ 0.027 kBT nm−2). These val-
ues lie within the typical range of tensions encountered in
experiments.

6. Comparison to numerical simulations

The instability of the homogeneous state criteria, βmin < 0,
is a good predictor for the formation of stable clusters in the
numerical solution to Eqs. (6)–(7), see Fig. 2. Clusters were
still observed in a restricted range of parameters where βmin >

0 suggesting that, within this regime, the homogeneous state
is not the global minimum of the free energy.

7. Cluster size

We provide an analytical expression for the size of clusters
observed in simulations. We call linear expansion length the
quantity d = 2π/qcluster, where qcluster is the wave number at
which the growth rate λ−(q) < 0 [as defined by Eq. (17)] is
minimum:

qcluster = argmin
q

(λ−(q)). (29)

In simulations, the size of clusters is estimated through the
quantity dcluster = 2

√
Acluster/π , where Acluster is the mean area

of connected domains in which φ > 0.5. The linear expan-
sion length matches numerical simulations, in the regime of
disklike clusters (i.e., for ĉ0,max = c0,max

√
κ/(e0

√
k0) > 1.1

in Fig. 4 inset, and Fig. 2(b)], while larger deviations occur at
low spontaneous curvatures, in the regime where lines form
[i.e., for ĉ0,max = c0,max

√
κ/(e0

√
k0) < 1.1 in Fig. 4 inset,

Fig. 2(b)]; however, such deviations are to be expected given
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FIG. 3. The membrane surface tension σ regulates cluster formation. (a) The phase diagram of cluster formation is regulated by the
membrane surface tension σ̃ = σe2

0/(kBT ). (b), (c) The critical spontaneous curvature values ccr,1
0,max and ccr,2

0,max as a function of the membrane
surface tension σ : (b) Dφ = 1 kBT ; (c) Dφ = 0. These data points are obtained from the numerical resolution of the condition βmin = 0,
defined in Eq. (22). (d) The membrane surface tension σ regulates the cluster patterns of cell adhesion proteins; snapshots of the steady state
reached in simulations for several values of the surface tension (parameter values: ĥφ = hφ/(k0e2

0) = 1, ĉ0,max = c0,max
√

κ/(e0
√

k0 ) = 1.2;
other parameter values in Sec. II C and Table I).

the definition of the cluster size considered here, which leads
to a sharp increase of dcluster when lines form.

FIG. 4. Phase diagram of the rescaled wave number q̂cluster =
qclustere0, with qcluster defined in Eq. (29), as the wave number maxi-
mizing the instability growth rate λ−(q) as a function of the rescaled
chemical potential ĥφ = hφ/(k0e2

0 ) and the rescaled spontaneous cur-
vature ĉ0,max = c0,max

√
κ/(e0

√
k0 ). Inset: The cluster diameter dcluster

measured in simulation (magenta crosses) and predicted cluster size
(red line) as a function of the spontaneous curvature c0,max, where
ĥφ = hφ/(k0e2

0) = 1. See Sec. II C and Table I for other parameter
values.

IV. DISCUSSION

A. Physical interpretation of cluster formation

Here we discuss, in simple, physical terms, why clustering
can emerge due to a spontaneous curvature coupling at adhe-
sion sites. At adhesion sites, the membrane is pinned to the
substrate. Stable clusters emerge because the switch between
adherent and nonadherent regions allows for the membrane
to curve, hence releasing the energy associated with the onset
of a spontaneous curvature. At an adhesion site (φ ≈ 1), the
membrane curvature is set by c0,max; we, therefore, expect
the cluster size to decrease with the value of the spontaneous
curvature c0,max, as observed in the inset of Fig. 4. At first
order in c0,max, the onset of a spontaneous curvature leads
to a release of energy, δF = −κc0,max∇2e < 0. We expect
clusters to emerge when such a gain in free energy becomes
comparable to the free-energy difference between the adhered
and detached state. In particular, for small spontaneous curva-
ture (c0,max < c(1)

0,max), such free-energy gain is not sufficient
to destabilize the homogeneous state; in contrast, for large
spontaneous curvature (c0,max), the energy of the adhered state
scales quadratically with c0,max, hence preventing adhesions to
forms. In addition, the bending stiffness κ and the membrane-
substrate adhesion stiffness k0 dictate a length scale [18]

bend = 2π 4

√
κ

k0
, (30)

which corresponds to the size of the transition region that
connects a fully adhered region (e ≈ 0) to a fully dead-
hered region (e ≈ e0). The spontaneous curvature c0,max and
the membrane rest-length height e0 dictate another length
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scale,

curv = 4
√

3
√

e0

c0,max
, (31)

which corresponds to the relaxation length of the mem-
brane height profile from the curvature c0,max at the adhesion
site center to a curvature zero at height e0 that connects
to the flat region between clusters. This can be obtained
by solving the membrane height profile: d2e/dx2 = c(x)
with boundary conditions: e(x = 0) = 0, de/dx(x = 0) =
0, d2e/dx2(x = 0) = c0,max, e(x = curv/2) = e0, de/dx(x =
curv/2) = 0, and d2e/dx2(x = curv/2) = 0. Further expand-
ing c(x) to second-order terms, c(x) ≈ b0 + b1x + b2x2,
together with the above boundary conditions, we obtain an
approximation of the membrane height profile near the ad-
hesion site as e(x) ≈ b0x2/2 + b1x3/6 + b2x4/12 with the
coefficients b0 = c0,max, b1 = −(2/

√
3)c0,max

√
c0,max/e0, and

b2 = (1/4)c2
0,max/e0, as well as the length curv given by

Eq. (31). We find that stable clusters can emerge when these
two length scales are comparable, i.e., bend ∼ curv. Using
the parameter values provided in Table I, we get bend ≈
160 nm. Therefore, we have an estimate of the sponta-
neous curvature around which stable clusters can form as,
c0,max ∼ 48e0/

2
curv ∼ 48e0/

2
bend ≈ 0.15 nm−1. This value

agrees with our numerical simulations, see Fig. 2. Regard-
ing the distance between separated clusters cluster−cluster,
increasing the spontaneous curvature c0,max tends to penal-
ize the bending of the membrane at the flat region (with
the free-energy density κc2

0,max/2) that connects two neigh-
boring clusters. Thus, increasing c0,max can lead to a larger
distance cluster−cluster between clusters, i.e., a fewer number
of clusters, as observed in our numerical simulations; see
Fig. 2(b).

B. Link to Swift–Hohenberg theory

Our numerical simulations show the existence of circular
clustering of hexagonlike patterns and line-structured pat-
terns; see Fig. 2. This is reminiscent of the pattern formation
in a Swift-Hohenberg theory [46,47]. Imposing the condi-
tion e = e0(1 − φ), Eq. (9) can be recast as the following
Swift-Hohenberg equation (rescaling time in units of κe2

0; see
Appendix C for derivation details):

∂δφ

∂t
= [

μ − (
q2

c + ∇2
)2]

δφ + m(δφ), (32)

where δφ = φ − φ̄ is the perturbation away from the minimal
energy homogeneous steady state; the critical wave-length
reads

q2
c = c0,max − cth

0,max

e0
, (33)

the bifurcation parameter is

μ = k0

κ
− kBT

κe2
0aφ̄(1 − φ̄)

+ cth
0,max

(
cth

0,max − 2c0,max
)

e2
0

, (34)
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FIG. 5. Swift-Hohenberg theory interpretation of the clustering
pattern transition of cell adhesion proteins upon varying the spon-
taneous curvature c0,max: line structures appear when the bifurcation
parameter μ [see Eq. (34)] is maximal, see point C. The magenta
and blue arrows indicate the two pattern transition routes discussed
in the main text. Inset: Typical patterns of bound adhesion proteins.
Parameters: ĥφ = hφ/(k0e2

0 ) = 1; see Sec. II C and Table I for other
parameter values.

and the nonlinear function is

m(δφ) = kBT

2κe2
0a

(1 − 2φ̄)

φ̄2(1 − φ̄)2
(δφ)2

− kBT

3κe2
0a

1 − 3φ̄(1 − φ̄)

φ̄3(1 − φ̄)3
(δφ)3, (35)

with cth
0,max = (Dφ + σe2

0)/(2κe0).
In the Swift–Hohenberg theory, the wavelength qc controls

the pattern size, while the bifurcation parameter μ controls
the transition from a homogeneous state to spatial patterns; in
particular, when a quadratic term is present in the nonlinear
function m, increasing μ first can yield a transition from a
homogeneous state to hexagonally arranged dots, and then to
lines [47].

Here, an inspection of Eqs. (33)–(35) shows that
(1) The nonlinear term m(δφ) defined in Eq. (35) contains

a quadratic contribution in δφ except when φ̄ = 1/2 (i.e.,
φ̄ → 1/2 only in the high temperature regime).

(2) The bifurcation parameter μ defined in Eq. (34) ex-
hibits a maximum as a function of the spontaneous curvature
c0,max; see Fig. 5. This means that μ increases upon decreasing
c0,max from large values (dilute phase); this accounts well
for the transition from hexagonally arranged, circular clusters
(dense phase) to dense lines observed in our numerical simu-
lations upon decreasing c0,max; see magenta arrows in Fig. 5.
Conversely, μ increases upon increasing c0,max from small
values (dense phase); this accounts well for the transition from
hexagonally arranged, circular clusters (dilute phase or holes)
to dilute lines (elongated holes) observed in our numerical
simulations upon increasing c0,max; see blue arrows in Fig. 5.

(3) The wavelength qc defined in Eq. (33) increases with
c0,max; this accounts well for the decreasing cluster sizes
dcluster observed in our numerical simulations for increasing
c0,max values, see Fig. 4.
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C. Relation to the gradient-sensing mechanism [9]

In Ref. [9], we investigated the intrinsic tilt effect of cell
adhesion proteins with respect to the membrane by introduc-
ing the free energy

Ftilt =
∫

d2x
[
−1

2
σaφ(∇e)2

]
, (36)

with σa > 0. We found that such a tilt energy contributes
to an effective negative surface tension and leads to cluster
formation.

In a certain regime of cluster formation, the two parameters
σa and c0,max identify each other; this can be well seen in
the framework of the Swift–Hohenberg theory framework.
However, unlike the tilt parameter σa, the spontaneous cur-
vature parameter c0,max also modulates the energy level of the
adhered state. This is why clusters disappear (by detaching)
when c0,max becomes too large, whereas clusters do not disap-
pear even at large σa. Moreover, increasing σa tends to create
more clusters [9], while increasing c0,max leads to less clusters,
as discussed in Sec. IV A.

In particular, in the absence of adhesion energy (e0 = 0
or k0 = 0, and hφ = 0), a sufficiently large tilt σa > σ

destabilizes the homogeneous state [9]. In contrast, the
homogeneous state is always stable in the curvature-sensing
mechanism considered here. Indeed, when k0 → 0, the coef-
ficients βi simplify to β0 ≈ 0, β1 ≈ σe2

0kBT/[aφ̄(1 − φ̄)] +
σe2

0κc2
0,max > 0, β2 > 0 and β3 > 0. Similarly, when

e0 → 0 (vanishing attached or detached height differ-
ence), β0 ≈ k0e2

0{kBT/[aφ̄(1 − φ̄)] + κc2
0,max} > 0, β1

≈ e2
0{σkBT/[aφ̄(1 − φ̄)] + k0Dφ + σκc2

0,max} > 0, β2 > 0,
and β3 > 0, hence the homogeneous steady state is stable;
such behavior is observed in our systematic analysis on the
role of e0; see Fig. 6.

D. Role of protein interactions

In our study, we have ignored the contribution of pro-
tein interactions (quantified by a φ2 term) in the free-energy
density. Here we discuss the role of protein interactions by
adding an additional term χφ2/2 to the free-energy density
(see Appendix D): χ > 0 represents a repulsive interaction,
while χ < 0 for an attractive interaction [23].

Following the same investigation scheme as described
above, we perform linear stability analysis and numerical sim-
ulations to examine the energy minimum state of the system.
In particular, we find that in the absence of the curvature-
sensing mechanism (c0,max = 0), the homogeneous steady
state is stable (βmin > 0), see Appendix D; we cannot observe
cluster formation in numerical simulations irrespective of the
value of χ . In the presence of the curvature-sensing mech-
anism, we find that the clustering patterns can be tuned by
the value of χ : a sufficiently large χ > 0 can suppress cluster
formation due to strong repulsion among proteins, while a
negative χ promotes the fusion of small clusters due to the
attractive interaction among proteins, see Fig. 7.

These results suggest that it is the curvature-sensing mech-
anism (the c0,maxφ∇2e term in the bending energy density),
rather than the protein interaction term (the φ2 term), that is
critical for stable cluster formation.
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FIG. 6. The membrane–substrate rest-length distance e0 affects
the cluster formation of cell adhesion proteins. Stability of the homo-
geneous state (ē, φ̄), regulated by the rescaled membrane–substrate
rest-length distance ě0 = e0/

4
√

κ/k0 and the rescaled spontaneous
curvature č0,max = c0,max

4
√

κ/k0. This phase diagram is obtained by
linear stability analysis, where the yellow region corresponds to
βmin < 0. Purple symbols represent the location of the numerical
simulation data represented in the inset: squares refer to the homo-
geneous dense state; triangles refer to the cluster state; circles refer
to the homogeneous dilute state. The two red circles indicate the
location of the triple and critical points. Inset: Typical patterns of
bound cell adhesion proteins at different values of e0 where č0,max =
c0,max

4
√

κ/k0 = 3.8. See Sec. II C and Table I for other parameter
values.

E. Alternative formalism of the mechanical
energy of the membrane

The membrane’s mechanical energy expression Eq. (4)
assumes small deformations (i.e., |∇e| � 1) and a substrate-
related spontaneous curvature definition. We wonder whether
such assumptions affect the cluster formation behavior. Here
we provide an alternative formalism of the mechanical en-
ergy of the membrane that accounts for large deformations
and defines the curvature within the membrane configuration.
Specifically, we express the membrane’s mechanical energy
as

FHel =
∫ √

gdxdy

[
σ + 1

2
κ
(
cα
α − c0,maxφ

)2
]
, (37)

where

cα
α = 1√

g
∇2e (38)

is the membrane curvature and

g = 1 + (∇e)2 (39)

is the determinant of the metric tensor of the membrane.
Equation (37) indicates that the curvature sensing mechanism
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ĥφ = hφ/(k0e2

0 ) = 1 and ĉ0,max = c0,max
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purple triangle on the phase diagram. Other parameter values are
listed in Sec. II C and Table I.

contributes to additional surface tension, σadd = κc2
0,maxφ

2/2.
Correspondingly, the total free energy reads

F [e, φ] =
∫

d2x{ fFH[φ] + √
gfHel[e, φ] + fadh[e, φ]}, (40)

where the membrane’s mechanical energy density now reads

fHel = σ + 1
2κ

(
cα
α − c0,maxφ

)2
, (41)

instead of Eq. (4).
Based on the free energy proposed here, i.e., Eq. (40), we

perform numerical simulations to obtain the minimum energy
state. We find a similar phase diagram as Fig. 2(a) and similar
clustering patterns, see Fig. S1 (see Supplemental Material,
[48]).

F. Experimental relevance

Given the default parameter set defined in Table I, we find
that the spontaneous curvatures of the triple and critical points
are in the order of c0,max ∼ 0.1 nm−1. As discussed in Sec. II,
such value lies within the range previously reported for the
cell membrane [13,43–45].

Our study indicates that the cluster size (quantified by an
effective diameter dcluster = 2

√
Acluster/π with Acluster being

the area of individual clusters) is regulated by the chemical
potential hφ and the spontaneous curvature c0,max (Figs. 2 and
4). Given the default parameter set defined in Table I, our
numerical simulations show that the cluster size dcluster can
range from ∼30 nm to ∼200 nm. Such a range of cluster size
is consistent with previously reported experiments [6,8].

The transition from nascent adhesions (circular clusters)
into focal adhesions (line structures) is associated with an
increase in the strength of actin fibers, which may either push
or pull on the adhesion sites [49,50]. We propose that the
strengthening effect of actin fibers on adhesion sites could
be encompassed by a decrease in the height difference e0 be-
tween the adhered state and the detached state. Starting from
a condition of circular clusters (modeling nascent adhesions),
we find that a decrease in the height difference e0 leads to lines
(modeling focal adhesions); see Fig. 6.

We also find that increasing the membrane surface tension
σ leads to the disappearance of clustering patterns, either
in favor of the homogeneous dilute state (for large spon-
taneous curvature) or to the homogeneous dense state (for
small spontaneous curvature). Such a transition is echoed by
experimental observations that show the role of membrane
surface tension on the assembly of cadherin aggregates [51]
or the disassembly of integrin-based fibrillar adhesion [17].

V. CONCLUSION

In conclusion, we have proposed a theoretical framework
that accounts for a curvature-sensing mechanism to inves-
tigate the cluster formation phenomenon of cell adhesion
proteins, e.g., integrins. Through theoretical analysis and nu-
merical simulations, we show that coordinated cell adhesion
and spontaneous curvature can lead to clustering patterns.
Our simulations reveal various patterns of clusters, including
hexagonal-arranged circular dots, long-curved stripe struc-
tures, and Turing-like patterns. We further show that these
pattern transitions can be interpreted by the Swift-Hohenberg
theory. We expect our findings to be useful in the near future
to interpret experimental results on the clustering of integrins
under various types of perturbations of the cell membrane
properties.
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APPENDIX A: HOMOGENEOUS STEADY STATE

1. Uniqueness condition

A necessary condition to have only one solution to the
condition g = 0 is that the derivative of g remains positive.
Such derivative reads

dg

dφ
= κc2

0,max − k0e2
0 + kBT

a

1

φ(1 − φ)
, (A1)

whose minimum in φ reads

min
φ∈(0,1)

{
dg

dφ

}
= κc2

0,max − k0e2
0 + 4

kBT

a
. (A2)
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ĉ
c

e
k

 0
(
)
1

x

( ) 0x
 1 2 O

ne hom
ogeneous state

Three hom
ogeneous states

FIG. 8. Phase diagram of the number of homogeneous states,
regulated by the rescaled chemical potential ĥφ = hφ/(k0e2

0 ) and
the rescaled spontaneous curvature ĉ0,max = c0,max

√
κ/(e0

√
k0 ). This

phase diagram is obtained by the numerical solution of Eq. (10).
The region surrounded by the yellow line refers to the cluster phase
(βmin < 0), obtained by linear stability analysis. See Sec. II C and
Table I for other parameter values.

The later quantity remains positive under the condition

|c0,max| >

√
k0e2

0

κ
− 4kBT

aκ
. (A3)

Under this condition, there is one and only one homogeneous
state, regardless of the value of hφ , see Fig. 8.

2. Dilute and dense limits

We further analyze the behavior of solutions to the equa-
tion g(φ) = 0 in the following dilute and dense limits:

(1) In the dilute phase, i.e., φ̄ → 0 (in which ē → e0), we
have

g(φ̄ → 0) � kBT

a
ln φ̄ + k0e2

0 − hφ. (A4)

In such a dilute phase limit, the condition g(φ̄) = 0 leads to
the following expression:

φ̄ = exp

[
a
(
hφ − k0e2

0

)
kBT

]
. (A5)

Equation (A5) suggests that the existence of a dilute phase
φ̄ ≈ 0 requires that a(hφ − k0e2

0)/kBT � 0.
(2) For the dense phase, i.e., φ̄ → 1 (correspondingly,

ē → 0), we have

g(φ̄ → 1) � −kBT

a
ln(1 − φ̄) − hφ + κc2

0,max = 0. (A6)

We thus have the estimation of the dense phase as

φ̄ � 1 − exp

[
−a

(
hφ − κc2

0,max

)
kBT

]
. (A7)

Equation (A7) suggests that the existence of a dense phase
φ̄ ≈ 1 requires that hφ � κc2

0,max + kBT /a.

APPENDIX B: APPROXIMATION OF THE
CRITICAL POINTS

1. Triple point

We find that the triple point is well approximated by the
endpoint of the three homogeneous states region, see Fig. 8.
Here we provide an analytical expression for such am end-
point, denoted (hcr,1

φ , ccr,1
0,max). Letting minφ∈(0,1){ dg

dφ
} = 0 in

Eq. (A2), we obtain

ccr,1
0,max =

√
k0e2

0

κ
− 4kBT

aκ
. (B1)

In addition, under the condition g(φ̄ = 1/2) = 0, we find that

hcr,1
φ = 1

2

[
k0e2

0 + κ
(
ccr,1

0,max

)2
]

= k0e2
0 − 2

kBT

a
. (B2)

2. Critical point

The critical point (hcr,2
φ , ccr,2

0,max) is defined by the conditions
φ̄ = 1/2 and βmin = 0. With φ̄ = 1/2, the coefficients βi (i =
0, 1, 2, 3) read

β0 = 4
k0e2

0kBT

a
+ k0e2

0κc2
0,max − k2

0e4
0,

β1 = 4
σe2

0kBT

a
+ k0e2

0Dφ + σe2
0κc2

0,max

− 2k0e3
0κc0,max,

β2 = 4
κe2

0kBT

a
+ σe2

0Dφ,

β3 = κe2
0Dφ. (B3)

The βmin = 0 condition reads

β0 + β1q2
s + β2q4

s + β3q6
s = 0, (B4)

where qs is given by Eq. (24). Solving Eq. (B4) gives the
critical point (hcr,2

φ , ccr,2
0,max).

In the limit of Dφ = 0, the βmin = 0 condition simplifies to

σ 2κ2c4
0,max − 4σk0e0κ

2c3
0,max

+
(

4k2
0e2

0κ + 8σ 2 kBT

a
− 16k0κ

kBT

a

)
κc2

0,max

− 16σk0e0κ
kBT

a
c0,max

+ 16k2
0e2

0κ
kBT

a
+ (16σ 2 − 64k0κ )

(
kBT

a

)2

= 0.

(B5)

Solving for c0,max, the root of the above equation corresponds
to the critical value ccr,2

0,max. In the limit σ → 0, Eq. (B5) further
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simplifies to

(σc0,max − 2k0e0)2 ≈ 16
k0kBT

a
, (B6)

which leads to the critical value:

ccr,2
0,max ≈

2k0e0 ± 4

√
k0kBT

a
σ

(σ → 0). (B7)

Based on the upper bound estimation of c0,max for the cluster
formation region, see Eq. (25), ccr,2

0,max should satisfy ccr,2
0,max <

2k0e0/σ (σ → 0). We thus exclude the larger root (+ sign)
and obtain

ccr,2
0,max ≈

2k0e0 − 4

√
k0kBT

a
σ

(σ → 0). (B8)

The critical value hcr,2
φ is related to ccr,2

0,max:

hcr,2
φ = 1

2

[
k0e2

0 + κ
(
ccr,2

0,max

)2
]

≈ 1

2

⎡⎣1 + 4κk0

σ 2

(
1 − 2

√
kBT

ak0e2
0

)2
⎤⎦k0e2

0. (B9)

Further, the condition ccr,1
0,max = ccr,2

0,max yields the following
critical rest-length height:

ecr
0 = 2

(
4κk0 + σ 2

4κk0 − σ 2

)√
kBT

ak0
≈ 2

√
kBT

ak0
(σ → 0), (B10)

and a critical membrane-substrate binding stiffness

kcr
0 ≈ 4

kBT

ae2
0

(σ → 0), (B11)

below which the homogeneous steady states are always stable.
In agreement with these predictions, we find that no stable
clusters form for e0 < ecr

0 or k0 < kcr
0 in our numerical simu-

lations, see Fig. 6.

APPENDIX C: LINK TO THE SWIFT–
HOHENBERG THEORY

To better illustrate the connection of our theory to the
Swift-Hohenberg one, we here focus on a simple case where
we impose that e = e0(1 − φ); such an ansatz is motivated
by the form of the homogeneous state Eq. (10). In such a
simplified case, the free-energy density is reduced to

f = kBT

a
[φ ln φ + (1 − φ) ln (1 − φ)]

− 1

2
k0e2

0(1 − φ)2 + 1

2
κ (e0∇2φ + c0,maxφ)

2

− hφφ + 1

2

(
Dφ + σe2

0

)
(∇φ)2. (C1)

The evolution equation of φ, i.e., ∂φ/∂t = −δF/δφ, can
be expressed as

∂φ

∂t
= (

k0e2
0 − κc2

0,max

)
φ − κe2

0∇2∇2φ

+ (
Dφ + σe2

0 − 2κe0c0,max
)∇2φ

+ hφ − k0e2
0 − kBT

a
ln

(
φ

1 − φ

)
. (C2)

Letting δφ = φ − φ̄ with φ̄ being the homogeneous state
given by Eq. (10) and expanding Eq. (C2) to third-order terms
in δφ, we find that

∂δφ

∂t
=

[
k0e2

0 − κc2
0,max − kBT

aφ̄(1 − φ̄)

]
δφ

− (
2κe0c0,max − σe2

0 − Dφ

)∇2δφ

− κe2
0∇2∇2δφ + n(δφ), (C3)

where

n(δφ) = kBT

2a

(1 − 2φ̄)

φ̄2(1 − φ̄)2
(δφ)2 − kBT

3a

1 − 3φ̄(1 − φ̄)

φ̄3(1 − φ̄)3
(δφ)3.

(C4)

When the spontaneous curvature c0,max is large, i.e.,

c0,max >
Dφ + σe2

0

2κe0
� cth

0,max, (C5)

Eq. (C3) can be recast as a Swift–Hohenberg equation, see
Eq. (32).

APPENDIX D: PROTEIN INTERACTION EFFECT

The protein interaction effect can be mimicked by a free-
energy density,

fprotein = 1
2χφ2, (D1)

where χ quantifies the strength of protein interactions. Adding
this term into the free-energy density functional, we perform
the same analysis as described in Secs. III B and III C. The
homogeneous state (ē, φ̄) satisfies

ē = e0(1 − φ̄) (D2)

and(
χ + κc2

0,max − k0e2
0

)
φ̄ + kBT

a
ln

(
φ̄

1 − φ̄

)
− hφ + k0e2

0 = 0.

(D3)

The stability of the homogeneous state requires Eq. (22),
where β(q) = β0 + β1q2 + β2q4 + β3q6 now reads

β0 = k0e2
0

kBT

a

1

φ̄(1 − φ̄)
+ k0e2

0χ + k0e2
0κc2

0,max − k2
0e4

0,

β1 = σe2
0

kBT

a

1

φ̄(1 − φ̄)
+ σe2

0χ + k0e2
0Dφ + σe2

0κc2
0,max

− 2k0e3
0κc0,max,

β2 = κe2
0

kBT

a

1

φ̄(1 − φ̄)
+ χκe2

0 + σe2
0Dφ,

β3 = κe2
0Dφ. (D4)
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It shows that β0, β1, and β2 are increasing functions of χ ,
suggesting that a negative χ < 0 tends to destabilize the
homogeneous state.

APPENDIX E: SIMULATION SCHEME

We use the spectral method to solve the controlling Eqs. (8)
and (9). The time integration is performed using a backward
Euler scheme; the spatial derivatives are carried out using
a second-order central difference method. Simulations were
performed on a 256 × 256 two-dimensional lattice using pe-
riodic boundary conditions. The white noise is discretized as

η(x, t ) = �√
(�x)2�t

ϑ, (E1)

where ϑ is the standard normal distribution, �x and �t
are the space step and the time step, respectively. We set

�x = 1/16 and �t = 10−6 (nondimensional values) in our
simulations.

To approach the global energy minimum state, we perform
annealing simulations where we decrease the noise intensity
� gradually from � = 10 to � = 0. We decrease � qua-
sistatically, according to the iterative process: (1) relaxing the
system to reach a steady state with a noise level �(0) = 10
and (2) reduce the noise intensity to �(i+1) = �(i) + �� with
�� = −0.1. We repeat the above two steps until � = 0.

The initial conditions for fields e and φ correspond
to that of a homogeneous steady state with small per-
turbations, e(x, t = 0) = ē + εeϑe(x) and φ(x, t = 0) = φ̄ +
εφϑφ (x), where εe = 10−3 and εφ = 10−3; ϑe(x) and ϑφ (x)
are random valuables satisfying the normal distribution. We
checked that the final steady state does not depend on the
particular choice of the initial state; this suggests that the
global free-energy minimum is reached.
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