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Many physical and biological systems rely on the progression of material through multiple independent
stages. In viral replication, for example, virions enter a cell to undergo a complex process comprising several
disparate stages before the eventual accumulation and release of replicated virions. While such systems may
have some control over the internal dynamics that make up this progression, a challenge for many is to regulate
behavior under what are often highly variable external environments acting as system inputs. In this work, we
study a simple analog of this problem through a linear multicompartment model subject to a stochastic input
in the form of a mean-reverting Ornstein-Uhlenbeck process, a type of Gaussian process. By expressing the
system as a multidimensional Gaussian process, we derive several closed-form analytical results relating to the
covariances and autocorrelations of the system, quantifying the smoothing effect discrete compartments afford
multicompartment systems. Semianalytical results demonstrate that feedback and feedforward loops can enhance
system robustness, and simulation results probe the intractable problem of the first passage time distribution,
which has specific relevance to eventual cell lysis in the viral replication cycle. Finally, we demonstrate that
the smoothing seen in the process is a consequence of the discreteness of the system, and does not manifest
in systems with continuous transport. While we make progress through analysis of a simple linear problem,
many of our insights are applicable more generally, and our work enables future analysis into multicompartment

processes subject to stochastic inputs.
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I. INTRODUCTION

Many biological processes comprise multiple independent
stages. Viral replication, for example, is a multistage pro-
cess whereby virions enter a cell through endocytosis, are
unpackaged before DNA replication, repackaging, and release
[Fig. 1(a)] [1-3]. Similar multistage processes are evident in
bacteriophage replication [4] and progression through the cell
cycle [5], pervasive at the molecular (i.e., cascade reactions
[6]) and macroscopic (i.e., transport through discrete layers
[7]) levels, and even manifest in social processes such as
queuing [8]. A challenge for many systems is to modulate
the impact of what are often highly variable external envi-
ronments. For instance, while the intermediate stages of viral
replication may be optimised to achieve high levels of virion
multiplication, the system has either no, or only very limited,
control over the number of virions entering the cell [9,10]. For
lytic viruses, should the number of virions present inside a cell
exceed capacity the cell will lyse, destroying the system and
ceasing replication [11].
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The time until cell lysis—more broadly, the time until the
first occurrence of any event within a stochastic process—can
be modeled as a first passage time (FPT) and is dependent,
among many other factors, on the variability and the au-
tocorrelation of the process [12,13]. Statistics such as the
variance, autocorrelation function, and the FPT, are com-
monly studied in scalar stochastic systems in biology [12,14].
Many linear and nonlinear systems described by continuous
or discrete-space random walks have closed form solutions
available for the aforementioned statistics, and if not for
the FPT distribution itself, then for the mean, variance, and
higher order moments of the FPT [12,15,16]. Analysis of
higher-dimensional systems (i.e., described by more than one
first-order differential equation) has, to date, been restricted to
a fixed number of dimensions; most commonly two or three,
where the velocity or acceleration of a particle is described
by a stochastic process [17,18]. General techniques for anal-
ysis, such as through the Fokker-Planck equation, quickly
suffer from the curse of dimensionality, and dimension re-
duction techniques may yield lower-dimensional stochastic
processes that lack the Markov property typically exploited in
analysis.

Motivated in particular by the viral replication cycle, in
this work we study the properties of a linear n-compartment
model subject to an independent external input, which we
model using a mean-reverting Ornstein-Uhlenbeck process
[Fig. 1(b)]. While the presentation and analysis of stochastic
models is ubiquitous throughout the biological literature, ef-
forts have been largely restricted to the study of the effects of
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FIG. 1. Multicompartment model of viral replication subject to stochastic input. (a) The general viral replication cycle. Virions enter a cell
and progress through a multistage process, before accumulating following repackaging. (b) We study a linear analog of the virus problem,
namely a system subject to random input, /(¢), modeled as an Ornstein-Uhlenbeck process with mean i, reversion strength 6, and noise
magnitude o. A realization of the input is shown in panel (c). Material then progresses through n compartments at constant rate k. (d) A

realization of the system in panel (b), where X, () models the concentration of material in each compartmentv =1, 2, ...,

passage through the compartments has a smoothing effect.

intrinsic noise, process noise, and fluctuating parameter val-
ues, including for analysis of viral replication dynamics
[19-23]. Meanwhile, there has only been a very small amount
of work focused on analysis of the statistical properties of
largely deterministic systems subject to independent stochas-
tic input [24]. In the context of control and state-space
estimation, our model parallels highly studied linear state-
space models such as autoregressive models and the linear
Kalman filter [25]. Given the scarcity of general knowledge
related to the behavior of multicompartment models subject to
input noise, we are motivated to study a simple linear analog
of the viral multicompartment problem subject to a single
Ornstein-Uhlenbeck input.

The choice to study a simplified linear stochastic model
allows us to formulate the multicompartment problem as a
multidimensional Gaussian process, enabling us to draw on
the significant body of literature devoted to the study of the
statistical properties of the statistical properties of such sys-
tems [26-28] to formulate a series of analytical expressions
for key statistics unique to stochastic processes including the
variance, covariance, and autocorrelation function. Alterna-
tive approaches to a more theoretical analysis could include
the study of system response to pure waves and input pulses;
however, the goal of this work is to study the simple model
directly. While we are not able to solve explicitly for the
probability density function of the FPT, we present a series
of numerical and approximate analytical results that provide
insight into the FPT, and the rate at which the mean FPT scales
with the number of compartments in the system. We then ap-
ply our linear model to study how the behavior or robustness
of biological systems can be modified through perturbations to
unidirectional progression through the system. Viral replica-
tion, for example, is known to be a highly stochastic process,
and progression through replication stages is very often not
unidirectional [2].

6. It is evident that

II. MATHEMATICAL MODEL

The problem presented in Fig. 1(b) can be expressed as the
linear system of stochastic and ordinary differential equations

dl(t) = —0((t) — p)dt + o dW (1),
dXi(t) = @) — kXi(2))dt,

dX,(t) = kXo_1(t) — kX, ())dt, v=2,....n. (1)

Here, we denote by I(¢) the random input, modeled as an
Ornstein-Uhlenbeck process with mean w, noise magnitude
o, and reversion strength 9; by X, (¢) the concentration of
material in compartment v; and by k the progression rate of
material from one compartment to the next. All parameters
are real and positive, and W () represents a Wiener process
such that W (r + n) — W(¢) is normally distributed with mean
zero and variance 7).
More compactly, we write

dX(t) =—-OX({#) — pn)dt + SdW(t), 2)
where we define
0 0 0 0
-1 k 0 0 |
e=]0 :—k k of. u=u<®2_21e1),
0 .O 0 k

0
S = (0 0) G

for X(t) = [I(t), X,(t), ..., X,()]". For notational conve-
nience, we interchangeably refer to I(t) as Xy(¢) (i.e., the
input is thought of as compartment v = 0). Equation (2)
demonstrates that the system is a multidimensional Ornstein-
Uhlenbeck process and, therefore, a Gaussian process. We
refer to ® as the connectivity matrix, as it plays a role similar
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to that in graph and network theory, defining the connectivity
between compartments in the system. Therefore, provided
the system remains linear, we can arbitrarily express systems
with any network structure (i.e., with nonlocal feedbacks or
multiply connected components) using Eq. (2). The form of
I, which contains the lower block matrix @, corresponding
to ® with the first row and column excluded, simplifies for
the system in Fig. 1 and Eq. (1) to [u, u/k, ..., ,u/k]T. Un-
less otherwise stated, we fix 8 = u =k =1 and o = 0.5 as
default parameter values when producing simulation results.

There are various initial conditions that we consider in
this work, based on the assumption that a stationary limiting
distribution for X(#) exists (since 6, k > 0, this is always
true for the form of ® expressed above, and more generally
provided that all eigenvalues of ® have positive real part
[26]). The first relevant initial condition is where X is entirely
specified. We refer to this choice as the fixed initial condition.
For the virus-cell lysis problem, we may be interested in
setting Xog = [, 0, ..., O]T; i.e., the concentration is zero in
all compartments, and the input is initiated at its mean. A
second, more biologically realistic initial condition, is where
all compartments are initiated with zero concentration, but
where the input is initiated from its stationary distribution
I1(0) ~ N (u, 02/(26)). We refer to this as the partially fixed
initial condition. The final initial condition, of interest given
that it greatly simplifies some of the analysis, is where all
compartments are initiated from the joint stationary distribu-
tion for the system. We refer to this as the stationary initial
condition and the system as a whole in this case as the sta-
tionary system.

J

(1)

EI] ... — e_@)(lz_fl)z(tl)

If t; > 0 for all i such that X(t;) = X, then Eq. (8) corre-
sponds to the joint stationary distribution of X,, ,,. and, along
with E(X(#,)) = u, fully defines the system as a stationary
Gaussian process. Furthermore, we can derive the distribution
for all initial conditions [i.e., Egs. (5b), (6), and (7)] from
the joint stationary distribution from marginalizing or con-
ditioning the joint stationary distribution accordingly (this is
straightforward for the multivariate normal distribution, see
Ref. [29]).

B. Quantifying smoothing in linear
multicompartment processes

The structure of S, whereby noise enters the system
only through the first compartment independently of other
compartments, results in a simpler form of the stationary
covariance matrix, given by Eq. (6) and which we now de-
note simply by X, compared to the standard multivariate
Ornstein-Uhlenbeck process. In particular, X, depends only
upon the first column of (® & ©)~!. In the Supplemental
Material [30], we provide a full derivation for analytical

X (# )6—97 (2—t1)
(1)

III. RESULTS AND DISCUSSION
A. Preliminaries

The multivariate Ornstein-Uhlenbeck process conditioned
on the initial condition X has exact solution [26,27]

X(®)[Xo ~ N(m(), X(1)), “)
where

m() = p+e X — ), (5a)
vec(X(1)) = a2 (@ @ @) ' (I — e ®®®ye;,  (5b)
and where @ is the Kronecker sum. It follows directly that the

stationary distribution, should it exist, is given by
lim X(r) ~ N, Too) and vec(To)=02(O @ @) le;.
(6)
We highlight that the nonstationary covariance matrix
[Eq. (5b)] does not depend on the initial condition X, and

that the mean m(¢) is an affine transformation of the initial
condition Xy. Therefore, for Xg ~ A (mg, %), we have that

X))~ N +e ®m—p), () +e ®Tpe @), (7)

This expression reduces to the fixed initial condition
for Xy =0, to the semifixed initial condition for Xy =
diag(a2 /(26),0, ..., 0), and to the stationary initial condition
for ¥y = oo

The final result for the multivariate Ornstein-Uhlenbeck
process that is relevant is the joint distribution of X, ,, . =
[X(r1), X(t2), ... 1", which is multivariate normal with covari-
ance matrix

X (# )6—97 (t5—t1)
T(tp)e OB ] (8)

(

expressions for X, in two cases: the first where 8 = k, and
the second where both 6 and k are allowed to vary freely. In
this section, we summarize and discuss the main results.

For 6 = k, elements of the symmetric matrix X, are given
by the recurrence relation

zgéj—l) + E(oio—l,j)

Z(o:gj)z , Lj=2,3,... )]
2
subject to the boundary conditions
2 o yLi-D
LD — o and XU — = i=1,2,... (10
< 720 * r+6 o

The recurrence relation yields

i) — Gzr(i+ Jj— 1)

ST OrGe W

for covariances relating to the compartments themselves (i.e.,
i,j=2,3,...). Thus, the stationary variance of compartment
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FIG. 2. Variance and autocorrelation function for the linear multicompartment model. (a) Stationary standard deviation as a function of
compartment number [compartment v = O refers to /(¢)]. Shown are mean =+ std from numerical simulations constructed from 10 replicates
of 100 simulations (gray), and the corresponding analytical solution (color). (b) Simulated and analytical ACFs for compartment v = 3.
(c) Second derivative of the ACF at £ = 0 for 8 = k = 1 calculated directly from Eq. (14) (diamonds), and using the analytical expression in
Eq. (16) (solid). (d—f) Analytical ACFs for I(¢) (gray dashed) and X, (¢) (color of increasing brightness for v = 1,2, ..., 6). Unless otherwise

stated, the other parameters are fixed at = u =k = 1, and o = 0.5.

v > 1 is given by

2
o
sz — E(u+1,v+1) ~

e 203 /vmr’
where we have applied Stirling’s approximation [33] to derive
an asymptotic expression for the large compartment number,
v > 1, limit. In Fig. 2(a), we compare both the exact and
asymptotic expressions for the stationary variance to a numer-
ical approximation produced through repeated simulation of
the SDE. Even for v = 1, the asymptotic expression produces
excellent agreement with simulation results.

Relaxing the restriction that & = k yields a closed form
solution for X, which simplifies along the diagonal to yield

1-6/k
ol — o2 B(_z/ D, v)
v k20(1 — (6/k)?)” B(v, v)

where B(-,-) and B(:, -, ) refer to the Beta function and
incomplete Beta function, respectively. We show both analyt-
ical and simulation results for o> in this more general case in
Fig. 2(a).

Taken all together, the results in Fig. 2(a) show that the
variance dissipates as the compartment number increases.
However, this happens relatively slowly: the analytical ex-
pression for 6 = k provides a rate of decay of order v=—'/2,
Importantly, the expression in Eq. (12) indicates that the vari-
ance does, indeed, tend to zero as v — 00. To the best of our
knowledge it is not possible to derive a similar expression for
general 6, however we provide in the Supplemental Material

12)

; 13)

[30] a simple proof that ovz 4 < o2 for & > 0 to show that the
variance is a strictly decreasing function and in fact tends to
zero for large compartment numbers. From this, we also gain
insight into the asymptotic behavior of the solution for small
or large 6. As 6 — oo, ag — 0, and so the system becomes
fully deterministic. In the problem itself, this represents a
large mean reversion strength, so that effectively I(z) = u Vt.
For 6 = 0, the input function becomes purely Brownian mo-
tion and the stationary solution does not exist.

While compartment variances and covariances are statis-
tics relating to the process at a single time point, the
autocorrelation function (ACF) provides insight into how
smooth the resultant time series is. By deriving an analytical
expression for e~®, we can obtain an analytical expression for
the ACF. While this is relatively straightforward for the 6 = k
case, it is, however, significantly more involved in the more
general case, for which the expression obtained is no more
helpful that the analytical expression for the autocorrelation
function involving the calculation of ¢~ directly (Supple-
mental Material [30]). For & = k we obtain

pu(0) == corr (X", X)) = e | Fi(—v, —2v,2k€), (14)

where (Fi(---) is the confluent hypergeometric function.
Equation (14) can be expressed as

pu(€) = e‘“(l + ke + Zci,u(ke)’), (15)

i=2
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where coefficients ¢;,, depend on i and v, which yields a
simple expression for v = 1. We also obtain the scaling of the
autocorrelation as a function of v by calculating the curvature
of the ACFat¢ =0,

k2
1—-2v

where ’ indicates a derivative with respect to the lag, £. In
Fig. 2(b), we compare analytical expressions for the ACF to
those obtained through simulation, and in Fig. 2(d)-2(f) we
show the ACF for the system in Fig. 1 for & = 0.5, 1, and 2.
In Fig. 2(c) we compare the analytical expression for the ACF
curvature [Eq. (16)] to that calculated directly from Eq. (14)
using numerical methods.

As expected, we see qualitatively from the results in
Fig. 2 that further compartments remain correlated for longer.
Considered alone, the stationary process X, (¢) is itself an,
albeit non-Markovian, Gaussian process, fully defined by
its variance and autocorrelation function. Therefore, should
we normalize each compartment by its respective standard
deviation, X, (t)/0,(t), the properties of the resultant pro-
cess are encoded entirely in the ACF. Given the system in
Eq. (1), we expect X, (¢) to be v-times differentiable [the input,
I(t) = Xo(¢) is nowhere differentiable] and therefore expect
that further compartments will be smoother. For v > 1, we
can see such smoothing directly from the ACF curvature in
Eq. (16). For a small increment, £ < 1, we have that p, (£) ~
1 + (p!/(0)/2)€?* and therefore p,, (£) ~ py,(wy, 1,{), Where

i O 1 _ 2
P pj/z( ) _ i (17)
PLO) | T=2m
gives the dilation factor. Should we take v; = 1, then X, (¢)
varies a factor of w;, = +/2v — 1 more slowly than X; (¢).

Py (0) =

) (16)

C. Intrinsic noise

By modeling the internal dynamics using a system of
deterministic ODEs, we have implicitly assumed that the
dimensional size of each compartment is sufficiently large
relative to the input that we can neglect intrinsic noise. In
this section, we relax this assumption and apply the linear
noise approximation [34] (also known as the system-size ex-
pansion) to study the relative contribution to the stationary
variance from both fluctuations in the input and from intrinsic
noise arising for intermediate system sizes. We assume that
X,(t) = VX, (t) corresponds to a dimensional concentration
of material, where X, (t) ~ O(V) such that V is the system
size.

The governing equations for the internal compartments
become

dX, = (kX,_(t) — kX,(t))dt
+Vk/V(AW,_1 —dW,),

The system can still be viewed as a multivariate Ornstein-
Uhlenbeck process, although S [Egs. (2) and (3)] is no longer
a single-element matrix but has elements on both the main and
lower diagonal.

As fluctuations driven by the Wiener processes W, for
v > 1 are independent of fluctuations in the input, we can

v=2,...,n  (I8)

Stationary Std

FIG. 3. Adjustment to stationary variance due to intrinsic noise.
Stationary standard deviation as a function of compartment number
for (colored curves) systems of various system sizes. The V — oo
limit (gray solid) corresponds to Eq. (13). Also shown are mean +
std from numerical simulations constructed from 20 replicates of 200
simulations (gray), and asymptotic approximations constructed using
Stirling’s formula (black dashed). Other parameters are fixed at 6 =
u=k=1,ando =0.5.

decompose the stationary variance into contributions each
from the input signal and intrinsic noise. The full derivation
of the stationary variance for systems with finite V are given
as Supplemental Material [30]. In summary, the stationary
variance is now given by

1 rQv—1)
T = Of + ?(1 - 22U1F(U)2> ' (19)
——
Eq. (13) Intrinsicnoise

Of particular note is that the contribution from intrinsic noise
is both independent of k and bounded below by a minimum
contribution of 1/(2V) for v = 1. In Fig. 3, we compare
simulation results to both Eq. (19) and the large system-size
case, V — oo, which we denote as before by ovz.

For sufficiently large v, we can again apply Stirling’s ap-
proximation [33] to see that the contribution from intrinsic

noise behaves like
! 1 : (20)
\%4 2Jmv )’

Thus, while o7 vanishes, o7, tends towards 1/V as v — oco.
Moreover both these limits are approached at rates of order
v~Y2, For all compartments, the contribution to the station-
ary variance from intrinsic noise is O(V '), which compares
(for the & = k case) to the contribution from the input of
O(c?073v~1/?). Therefore, the model that neglects intrinsic
noise is valid not only for systems with sufficiently large sys-
tem sizes, but also for systems with low compartment numbers

where 62073 > V1,

D. First passage time (FPT)

Motivated by the viral replication problem, we are now
interested in studying the FPT distribution of individual com-
partments. That is, the time at which X, (¢) first crosses the
threshold value X, (t) = a from below, for a > X,,(0). To ef-
fectively compare FPT distributions between compartments,
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FIG. 4. First passage time distributions for the linear multicompartment model. (a), (d) Realizations of a three compartment system initiated
using (a) the fixed initial condition and (d) the partially fixed initial condition. Solutions are terminated at = 7 : X3(tr) > q, yielding 7 as the
FPT. (b), (e) Distribution function for the FPT constructed from (color) 1000 realizations of the SDE and (dashed black) a finite difference
solution to Eq. (21). (¢), (f) Mean, 2.5% quantile, and 97.5% quantile for the FPT distribution constructed from (gray) 1000 realizations of the
SDE and (black) a finite difference solution to Eq. (21). Shown in red-dashed is an approximation to the mean FPT constructed by scaling the
FPT for v = 1 based on matching the second-derivative of the autocorrelation function [Eq. (16)]. The barrier for each compartment is located
at a = ao, where @ = 1. Other parameters are fixedat = u =k = 1, and o0 = 0.5.

we scale the threshold by the associated stationary standard
deviation of the relevant compartment such that a = u + ao,,
where o, is given by Eq. (12) and  is specified. Formally, we
define the FPT by t = inf{r : X, (t) > a} and its associated
probability density and distribution functions by f(zr) and
F (1), respectively. We focus on fixed and partially fixed initial
conditions where we ensure that X, (0) < a, demonstrated in
Figs. 4(a) and 4(d), respectively, forv =3 and a = 1.

It is not generally possible to derive an analytical ex-
pression for f(¢), nor to formulate a closed-form integral
equation that can be solved numerically. The only gen-
eral way to solve for f(¢) is through a numerical solution
to the Fokker-Planck equation, a v 4+ 1 dimensional partial
differential equation. However, following the procedure for
Markovian Gaussian processes [17,18] we are able to formu-
late a reasonable approximation for v = 1, although we revert
to simulating the FPT for the more general case.

Denote by p,(x,t) the density of the random variable
X, (t), and by p, (x, t, ) the joint density with the first passage
time. By marginalizing p, (x, ¢, T) with respect to T we have
that

o0 t

pu(a,t)=/ pu(a,t,f)df=/ K@, v)f(r)dr, (21)
0 0

where K(t, ) = p,(a, t|t) is the density of X (¢) given the

first passage time t. The upper limit of ¢ in the second inte-
gral arises since p,(a, t|t) = 0 for all # < t; in other words,

should a passage not have occurred by time ¢, then X, () < a
and so the particle cannot be at location X, () = a. Equa-
tion (21) is a Volterra equation of the first kind and, while
generally difficult, can be solved numerically provided K (¢, )
can be computed. As I(t) = Xy(¢) is Markovian, po(a, t|t) =
pola, tla, T) is readily available and for certain parameter
combinations, Eq. (21) can be solved analytically to give the
FPT density of the Ornstein-Uhlenbeck process [35,36].

For v > 0 the conditional probability p, (a, t|T) cannot be
calculated exactly; further we find that the standard approach
of approximating p,(a, t|t) = p,(a, t|a, t) [17] provides rel-
atively poor results. To obtain a more accurate approximation,
we note that the full state process X(¢) is Markovian, and
that X,(s) = a and X)(s) > O if and only if s is a passage
time. By Eq. (1), X/ (s) is a linear combination of other states,
and so the random variable [X, (s), X, (s)] is Markovian with a
multivariate normal distribution. Thus, we approximate

pula, tit) ~ py(a, t|1X(t) = a, X'(t) > 0). (22)

Note that Eq. (22) is not exact despite the full state being
Markovian as we have not conditioned on a point, but rather
the range X'(t) > 0; while the distribution of X’(s) is nor-
mal, the distribution of X’(7) is not necessarily so. In future,
additional approximations based on so-called FPT functionals
could potentially be constructed [37]. We find that a numerical
solution to Egs. (21) and (22) gives a reasonable approxima-
tion to f(7) for v = 1 [Fig. 4(b)].
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Results in Figs. 4(b) and 4(e) show the FPT distribution
function, F(t), for both the fully and partially fixed initial
conditions for § = k = 1, respectively. The colored curves
are produced from 1000 realizations of the SDE model, and
the black curves from a numerical solution to Eq. (21).
An interpretation of S(t) = 1 — F (1) is that of the survival
probability: should a passage indicate system failure, S(7)
represents the probability that a system is functional at time t.
For the virus-cell lysis problem, we interpret this as the prob-
ability that cell lysis has not occurred, and viral production is
ongoing. Visual inspection of the results in Fig. 4 reveal little
difference between both initial conditions, particularly for
larger compartment numbers. This observation is unsurprising
upon comparison between the magnitude of the mean FPT,
E(r) ~ O(10), and the largest eigenvalue of —@, L = —1,
demonstrating that the influence of the initial condition decays
like exp(—t) [Eq. (5a)], much faster than the mean FPT.

The most obvious result from Figs. 4(b) and 4(e), as
one might expect from the analysis of compartment smooth-
ing in the previous section, is that the FPT is generally
larger for further compartments; accounting for differences
in the stationary variance by comparing compartments across
the same value of & indicates that further compartments can be
thought to be more robust to external noise. Not only does the
expected FPT increase [equal to the area under the survival
function S(7)], but so too do the lower quantiles, evidenced
by the time taken for the distribution function F'(7) to visually
become nonzero. We investigate these qualitative observations
further in Figs. 4(c) and 4(f), by calculating the mean, 2.5%
and 97.5% quantiles for the FPT for each compartment. Aside
from an overall increase in the FPT, there is a notable increase
in the interquantile range or variance for larger compartment
numbers.

By normalizing the location of the threshold by the com-
partment standard deviation, the FPT is almost entirely a
function of the ACF for each compartment. The compartment
variance still plays a role for the initial conditions consid-
ered in Fig. 4, as the relative distance between the initial
condition X, (0) = 0 and the threshold depends on o,. The
settling phase, however, occurs relatively quickly: for k = 1,
the system settles to equilibrium like exp(—#), much faster
than the typical FPT. Thus, the compartment smoothing effect
characterised by p,(£), which provides the temporal scale,
is the primary factor that drives increases in FPT for fur-
ther compartments. In Figs. 4(c) and 4(f), we show that the
small-lag ACF dilation factor, given analytically by Eq. (17),
provides an excellent match to numerical results for the mean
first passage time, confirming qualitatively that, similarly to
the compartment variance, the FPT scales like /v. Additional
results (Supplemental Material [30]), constructed for various
values of k and hence various ACFs, demonstrate strong cor-
relation (Spearman correlation of —0.987) between the ACF
curvature and the expected FPT.

E. Production before system failure

While for many systems the FPT, t, may itself be of pri-
mary interest, for others it may be a so-called FPT functional
that is important [37]. For the virus-cell lysis problem, for
example, of primary interest may be the total amount of virus

produced by the system prior to cell lysis: a viral genotype
that maximizes per-host-cell virion production may have a
fitness advantage over others. Also seen in the virus literature
is that this so-called “burst-size” declines with cell size [38],
potentially linking the structure of a particular viral replication
network to an optimal cell size and, by extension, an optimal
cell type.

We define cumulative production as the total amount of
material to pass out of the system, A(f) = fé kX,(t)dt, and
investigate A(t) through simulation in Fig. 5 for v = 6 and
0 =k = 1. Results in Fig. 5(a) show that A(tr) is highly
correlated with 7. We expect this, as both initial settling and
ACF decay occur much faster on average than t. Thus, for
the linear system considered in this work, we hypothesise
that a genotype that maximises the expected FPT could be
considered equivalent to one that maximizes the production
prior to lysis.

In Figs. 5(b) and 5(c) we perform a parameter sweep to
determine the distribution of A(7) as a function of the thresh-
old location, &, and the compartment transfer rate, k. Clearly,
for thresholds that are larger, and crossed more infrequently,
we see an increase in A(t). We view the threshold location as
a feature of the host-system: for the virus-cell lysis problem,
this is a biological feature of the host cell, and not a feature
of the viral genome. Of direct interest is the relationship
between k and A(7). The results in Fig. 5(c) show that systems
with large compartment transfer rates have lower cumulative
production than those that operate slowly. While we cannot in-
terpret the expression for the ACF curvature [Eq. (16)] exactly
for 6 # k, the expression does suggest that the ACF curvature
is proportional to k2, thus increasing the rate at which material
travels through the system is detrimental to robustness.

In the virus-cell lysis problem, these results appear to sug-
gest that production can be maximized should the system tune
itself to operate slowly (i.e., small values of k). However, this
observation ignores potential tradeoffs induced by immune-
response mechanisms in the host [39]: while production in
an isolated or experimental system might be maximized by
slow material progression, operating quickly carries advan-
tages of lysis occuring due to material production, and not
through an immune response of the host organism. Analysis
of more complicated, nonlinear, compartment processes may
also yield nonmonotonic relationships between fitness and
speed or other parameters; such analysis is, however, beyond
the scope of the present work.

F. Nonlocal feedback to alter system robustness

Another way in which systems can potentially increase
their robustness to input noise is through nonlocal feedback
or feedforward loops. Such a phenomenon, where progression
through the virus life cycle is not unidirectional, is com-
mon with evidence in the virus literature: for example, the
complex network-like replication cycle seen in the human
ademovirus [40]. Hepatitus B, an enveloped DNS virus, re-
cycles new viral DNA that is awaiting repackaging back into
the nucleus [41,42]: analogous, in our simple linear model,
to a feedback from the final to an early compartment. A
similar late- to early-stage feedback is seen in positive-strand
RNA viruses in which newly replicated RNA strands are
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FIG. 5. Cumulative production at the first passage time. We investigate the cumulative production at the first passage time, denoted by
A(t) = for kX¢(t) dt, for a six compartment system. (a) Relationship between 7 and A(7) based on 1000 replicates of the SDE witha = k = 1.
We show both a scatter plot of the joint density and kernel density estimates constructed from the marginals. (b), (c) Mean, 2.5% quantile, and
97.5% quantile of A(t) constructed from 1000 replicates of the SDE as (b) a is varied, and (c) & is varied.

either encapsidated or reutilised in translation and replica-
tion [43]. More generally, positive- and negative-strand RNA
viruses have very similar replication structures and an iden-
tical feedback mechanism, but are, in part, distinguished by
their feedforward structures [44,45]. Less concretely, repli-
cation of the measles virus comprises several feedback and
feedforward mechanisms, particularly during the transition
and polymerase stages [46].

In this section, we investigate the relative change to the sta-
tionary variance and ACF curvature in the final compartment
of a system with an additional transfer from compartment n
to compartment m of magnitude ¢ [Fig. 6(a)]. A transfer with
m < n is considered a feedback, with m > n a feedforward.
Since the within system dynamics are deterministic, a transfer
with m = n has no net effect on the dynamics.

The results in Figs. 6(b) and 6(c) show that the output
variance can be reduced, potentially significantly, through a
feedback. For the system considered, a feedback from the
final to the first compartment has the largest effect, yielding
a reduction of over 30% in the stationary standard deviation.
In Figs. 6(d) and 6(e) we show a similar affect on the curvature
of the ACF. Interestingly, feedbacks from the second last com-
partment to the first compartment, or the last to the second,
yield the greatest reduction in the curvature of the ACF. We
also observe a nonlinear relationship between the magnitude
of the feedback and the ACF curvature. For example, a small
(¢ = 0.1) feedforward rate from the first to the last compart-
ment yields a reduction in the ACF curvature whereas a large
(¢ = 1) feedforward rate yields an increase in the curvature.

G. Continuum limit

While the focus of the present work is on multicompart-
ment processes, a natural extension is to investigate smoothing
in processes that occur on a continuum (for example, where
compartment number, v, is a continuous measure of how far
a particle has progressed through a system). Therefore, we
consider a refinement of the discrete process by dividing each
compartment into 1/A subcompartments, each of width A

m
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FIG. 6. System with nonlocal feedback. We investigate the ef-
fect of a nonlocal feedback (or feedforward) of magnitude ¢ from
compartment n to compartment /m on (b,c) the stationary standard
deviation of X4(¢), denoted og, and (d,e) the magnitude of the ACF
curvature, denoted |o¢(0)[. In all cases, a reduction in each statistic
corresponds to a potentially more robust system.
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FIG. 7. Material transport through a system approaching the continuum limit. (a) Compartments in the discrete system are divided into
subcompartments of “length” A, while the “transfer density” is kept fixed. (b)—(d) Solutions of the discrete system for decreasing A. All
systems are subject to identical input /(¢ ) (gray). In panel (d), the shifted input /(t — 10) is shown at v = 10 for comparison with the transported
concentrations. Other parameters are fixed: 6 = 4 =k =1 and 0 = 0.5. (e) Solution to the continuum limit approximation [Eq. (27)] for

A=1.

[Fig. 7(a)]. To maintain the effective total time a particle
spends in the system, we assume that the subcompartment
transfer rate becomes k = k/A such that

Xo() = 1(1),
dX; . k X % =0 23
o Z( i1(0) — Xi(®)), >0, (23)

where v = (i — 1)A. Note that to formulate the input as a
boundary condition, we have modified the original system
such that the input transfers to the first compartment at rate
k [i.e., X;(t) now experiences an input of kI(¢) compared to
the input of /(¢) in Eq. (1)]. This formulation is equivalent to
the original formulation for k = 1.

We denote x(v,t) = X;(¢), and take A — 0 to yield an
advection equation with Dirichlet boundary condition

o
ot v’
won= {0 =0
x(v,0) =0, v > 0. (24)
with exact solution
x(v,t) =1 —v/k). (25)

As an advection equation, this continuum analog of the
multicompartment system corresponds to exact (undamped)
transport of material through the system. We conclude, there-
fore, that the smoothing we see is a uniquely discrete effect.
This conclusion becomes obvious should each compartment

be viewed as a well-mixed segment of “length” A in v-space.
Transfer between each compartment represents flow across
the left boundary. As the “length” of each compartment be-
comes smaller, the left boundary approaches the right, and
thus the finite difference between successive compartments di-
minishes. Thus, smoothing can be viewed as a consequence of
within-compartment mixing, a feature of the discrete system
that vanishes as the size of each compartment tends to zero.

We perform a numerical experiment in Figs. 7(b)-7(d)
and simulate three systems subject to an identical input,
with identical total length n = 10, and with compartment
spacing reducing from A =1 to A =0.01. In effect, the
solution to the discrete system corresponds exactly to a
forward difference approximation to that of the advection
equation [Eq. (24)]. Smoothing in both the autocorrelation
and variance is evident in all cases with finite A, however,
it diminishes significantly for A = 0.01.

The advection equation given in Eq. (24) gives little insight
into the behavior as A — 0. To derive a continuum limit
approximation that captures the smoothing effects in systems
with small but finite A, we apply the method of multiple scales
and choose a “slow” scale of s = \/Z(i —-1) - kt/\/_fv
O(1) (the fast scale, considered in earlier analysis, is v =
(i — 1)A). This scaling yields

ox  kd’x
—=——Z 26
or 2 0s? (26)
or, in the original variables,
0x ox kA 9%x
— = —k—+——. 27
ot v + 2 9v? 7)
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Full details relating to the derivation of this high-order contin-
uum limit approximation are given as Supplemental Material
[30].

In Fig. 7(e), we provide a numerical solution to Eq. (27)
for A = 1, showing that this second continuum approximation
captures the smoothing effect seen in the discrete model.
The inclusion of the diffusion term with coefficient O(A)
demonstrates that, while the problem is singular, smoothing
is always present in the discrete system. This observation is,
in fact, a well known feature of the discrete system when
viewed as an approximate numerical solution to the advection
equation with an upwind spatial scheme. Such a scheme can
be simply seen to introduce artificial diffusion—effectively,
smoothing—with form identical to that given by the multiple
scales approach in Eq. (27).

IV. CONCLUSION

Multicompartment processes are ubiquitous in biology;
from linear progression through the cell cycle, to phage repli-
cation in bacteria and the propagation of viruses by hijacked
cellular machinery. Our analysis demonstrates that even a
fundamental linear multicompartment structure provides po-
tential advantages and benefits to the systems that employ
them. These results parallel filters and autoregressive models
in control theory that allow engineers to control and exploit
systems subject to noisy input [25,47,48].

Most notable is the effect of such systems to smooth and
provide an additional degree of control over external noise,
consequentially increasing resilience and robustness. The in-
clusion of feedback and feedforward loops can enhance this
effect, providing systems with additional degrees of control
and contributing to so-called perfect adaptation [48,49]. Such
loops provide a potential explanation for out-of-order progres-
sion in some systems, for example, whereby viral replication
does not occur as a unidirectional process [2]. Our work
demonstrates that feedback loops could yield a fitness ad-
vantage through more favourable statistical properties of viral
load compared with perfect progression through the replica-
tion cycle. Such results potentially explain the complexity in
the replication network structure seen in some viruses, for
example, in the human adenovirus [40]. Indirectly, these loops
(and by extension, more complicated network structures) pro-
vide systems with the ability to tune the first passage time
distribution, potentially yielding an optimal lysis time [13,50].
While we restrict our analysis to a single nonlocal feedback

or feedforward, future work may study more general optimal
network structures informed by more specific biological prob-
lems.

Analysis of a linear model system, subject to Ornstein-
Uhlenbeck-type noise, allows us to present closed-form
expressions for key statistics, providing a fundamental un-
derstanding that would be otherwise unavailable for more
complicated systems. We reveal that noise dissipates in sys-
tems with unidirectional flow, eventually vanishing in an
infinite-compartment system. However, we show that this ef-
fect is tied to a finite flow rate: scaling to yield continuous
flow through a continuum limit approximation reveals that
smoothing is a discrete effect, caused by within compartment
mixing. While many simple results are only available for the
constant flow rate assumption, arbitrarily connected linear
systems yield a multidimensional Ornstein-Uhlenbeck pro-
cess with statistical properties computable semianalytically
through the exponentiation of a connectivity matrix.

Importantly, we lay the foundation for future work to
explore the properties of more general multicompartment sys-
tems subject to external noise. For instance, study of the
interaction between the external timescales (i.e., autocorre-
lation of the external input) and the internal timescales (i.e.,
progression through the system) is highly relevant to specific
biological problems: in the virus-cell lysis problem, this inter-
action is relevant for immune system detection and, therefore,
infection clearance. Aside from external noise, other stochas-
tic features, including both between-cell and between-virion
heterogeneity and fluctuations in the replication process itself
are known to play an important role in within-host virus repli-
cation [3,10,51,52]. Despite these observations, the study of
multicompartment problems with the stochastic mathematical
models requisite to capture important features is presently
scarce, albeit a rich area for both mathematical and biological
insight.

Code used to produce the results are available on GitHub
at [53].
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