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Synergistic and antagonistic effects of deterministic and stochastic cell-cell variations
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By diversifying, cells in a clonal population can together overcome the limits of individuals. Diversity in
single-cell growth rates allows the population to survive environmental stresses, such as antibiotics, and grow
faster than the undiversified population. These functional cell-cell variations can arise stochastically, from noise
in biochemical reactions, or deterministically, by asymmetrically distributing damaged components. While each
of the mechanisms is well understood, the effect of the combined mechanisms is unclear. To evaluate the
contribution of the deterministic component we developed a mathematical model by mapping the growing
population to the Ising model. To analyze the combined effects of stochastic and deterministic contributions we
introduced the analytical results of the Ising-mapping into an Euler–Lotka framework. Model results, confirmed
by simulations and experimental data, show that deterministic cell-cell variations increase near-linearly with
stress. As a consequence, we predict that the gain in population doubling time from cell-cell variations is
primarily stochastic at low stress but may cross over to deterministic at higher stresses. Furthermore, we find
that while the deterministic component minimizes population damage, stochastic variations antagonize this
effect. Together our results may help identifying stress-tolerant pathogenic cells and thus inspire novel antibiotic
strategies.
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I. INTRODUCTION

Despite identical genetic makeup, cells in a population are
never the same. This phenotypic diversity is functional and
allows clonal populations to outperform individual cells. As
an example, just variations in Escherichia coli doubling times
alone have been found to be sufficient for a population to
grow faster than individual cells, a phenomenon referred to
as entropic gain [1]. Variations in doubling times are also
beneficial for dealing with stresses—sudden changes in the
environment, such as heat, antibiotics, etc., that disrupt cel-
lular homeostasis by damaging proteins and DNA. Slowly
growing cells tend to be more stress-resilient [2] and by di-
versifying into fast-growing stress-sensitive and slow-growing
stress-tolerant cells [3] populations can both grow fast in a
stress-free environment and survive sudden stresses. Other
well-established functional outcomes of phenotypic diversity
include improved multicellular migration [4] and functional
roles in gene circuits [5].

The phenotypic diversity in single-cell growth rates is
commonly attributed to stochastic fluctuations in protein
numbers [1,6] or metabolism [7]. However, recent findings
indicate the presence of a deterministic component as well:
Cells can diversify through a process known as asymmetric
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damage segregation (ADS) [Fig. 1(a)] [4,8,9]. In this pro-
cess, at cell division, the damaged proteins of a mother cell
are split asymmetrically between the two daughter cells. The
damaged proteins are functionally impaired due to misfold-
ing or aggregation caused by external stressors, such as heat
shock, antibiotics, or oxidative conditions. The accumulation
of damaged proteins leads to slower physiological processes,
including cell growth. Given that cells with a higher bur-
den of damaged proteins grow slower [10–15], the primary
consequence of ADS is that the differences in damaged pro-
teins in two sister cells result in different growth rates. The
difference in growth rates between sister cells is further am-
plified at every division along the lineages that consistently
avoid or inherit the damage [illustrated for E. coli bacteria by
the green-shaded and top lineage in Fig. 1(a), respectively].
Between these extremes lie the lineages with all the other
combinations of damage inheritance. Thus, ADS generates a
structured population tree with correlated lineages [Fig. 1(a)]
while increasing the population growth and decreasing the
mean damage in the population [8,16,17]. ADS is a general
phenomenon [18,19] across cell types and organisms from
bacteria [10,20] to more complex organisms such as yeasts
[9,11] and mammalian cells [21–24] including neuronal stem
cells [25].

Under physiological conditions cells experience both ran-
dom and deterministic effects [1,8]. However, it remains
unclear how the stochastic and deterministic components in-
teract and together contribute to population fitness. Do the
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FIG. 1. (a) Schematic illustration of damage redistribution in a population of dividing cells. The doubling time T of the cell is slowed
down by the accumulated damage [10,16] [Eq. (2)], and all cells acquire environmental damage (each red star in the schematic corresponds
to λ amount of damage). At division, the damage is inherited asymmetrically resulting in different doubling times in the two sisters [Eq. (3)].
Green shading marks the lineage starting from an old cell of age j where cells consequently evade damage, i.e., the lineage � = ONNN.
(Model parameters in the schematic: a = 1, tmin = 0, μλ = 1). (b), (c) The distribution of ADS doubling times (b) and noise [variations from
average doubling time (c)] extracted via noise-filtering [Eq. (1)]. (d) Histogram of noise distribution around ADS distribution based on a
grid of (NADS, Nξ ) = (100, 100) bins using the data from Stewart et al. [10] illustrates the absence of statistical dependence between noise
and ADS.

two sources of diversity interact positively by adding together
or perhaps even amplifying the effects of each other? Or do
they antagonize each other? In addition to their conceptual
importance, answering these questions could help identifying
slow-growing stress-tolerant cells and thus inspire novel an-
tibiotic strategies.

In pursuing these general questions with application across
cell types, we used E. coli as a model system. Leveraging
methods developed for our previous study [16], we combined
published experimental data on ∼40 000 cells, theoretical
modeling developed here and numerical simulations, and
arrived at three novel results. First, we find that despite
noise dominating the experimental distribution of the cells’
doubling times, the contributions from ADS and noise are
statistically independent, so that the diversity from ADS cre-
ates a “scaffold” on top of which the diversity from random
noise is added. Second, we show that the deterministic con-
tribution from ADS can be described analytically by mapping
the growing population of cells to the Ising model [26,27].
Analytical results, confirmed by simulations and experimental
data, suggest the nearly linear relationship between population
diversity and stress. Furthermore, assuming that the coeffi-
cient of variation for stochastic component does not increase
with stress, we predict that the entropic gain crosses over
from stochastic at low stress to deterministic at higher stresses.
Third, we find that while stochastic and deterministic effects
add together in reducing population doubling time, they an-
tagonize each other in reducing population damage levels.

II. RESULTS

A. Experimental data analysis finds statistical
independence of ADS and noise

Previous experimental analyses have found that the dou-
bling times of E. coli cells exhibit significant stochastic

variations in doubling times in addition to the deterministic
variations introduced by ADS [8,10,13,15,16]. To analyze the
combined, stochastic and deterministic, effects we first sought
to understand the relationship between ADS and non-ADS
diversity, and to that end, we re-analysed experimental data
by Stewart et al. [10] and our own previously published
experiments [16] together covering 40 thousand individual
cells from 144 colonies (details of all experimental datasets
provided in Table I).

The rod-shaped E. coli divide along the middle by inserting
new cell wall, resulting in a so-called old pole (existing cell
end) and new pole in each new sister cell. It has been found
that ADS localizes protein damage (misfolded proteins) at the
old pole [14,15]. The propensity for damage accumulation at
a given old pole increases with the pole age—the number of
cell divisions that particular pole has participated in.

Because only a fraction of the mother cell’s accumulated
damage is inherited by the old pole at each division [13,15],
a series of consecutive damage evasion events (consecutive
new-poles) is required for full cellular rejuvenation. Con-
versely, in the old pole, the impact of damage is compounded
over time as newly damaged proteins are added to the existing
pool by ADS. In other words, since the amount of accumu-
lated damage determines the reduction in single-cell growth
rate, the order of inheritance influences the contribution of
ADS to the cell’s doubling time.

We used this understanding to separate the stochastic con-
tributions of noise from the deterministic contribution of ADS
by grouping cells with the same full lineage history �, e.g.,
� = ONNN for the lineage highlighted in green in Fig. 1(a)
where O and N correspond to the inherited old and new pole,
respectively. We took the median doubling time of each group
as an estimate of the ADS contribution to the doubling time
of cell i from group �, T ADS

�,i [Fig. 1(e)]. The variation in dou-
bling times within a group is caused by an ADS-independent
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TABLE I. Overview of experimental data used and results for χ2 contingency table tests of statistical independence between ADS and
noise distributions for all experimental conditions. The listed P value is the probability of finding a similar or worse χ2 statistic under the
null hypothesis that the two distributions are statistically independent. For all tests we have used (NADS, Nξ ) = (100, 100) for 9801 degrees of
freedom [DOF = (NADS − 1)(Nξ − 1)]. The 0.95 confidence level for this χ2-distribution is 1.0032 × 104. Mutant MC4100�clpB cells were
engineered with ClpB-YFP on plasmids activated by lacIq. KM = kanamycin, an antibiotic.

Experiment Source Cell type No. of cells Stress χ2 P value

Stewart et al. Ref. [10] MG1655 35,049 UV, low 7.965 × 103 1
Mutant 37 ◦C Ref. [16] MC4100�clpB 1756 Heat, low 2.873 × 103 1
Mutant 42 ◦C Ref. [16] MC4100�clpB 1704 Heat, 2.851 × 103 1

medium
Mutant 37 ◦C with Ref. [16] MC4100�clpB 1804 Antibiotic, 2.517 × 103 1
0.5 µg/mL KM medium
WT 37 ◦C Ref. [16] MC4100 2090 Heat, low 3.720 × 103 1
WT 42 ◦C Ref. [16] MC4100 2084 Heat, 4.267 × 103 1

medium
WT 37 ◦C with Ref. [16] MC4100 1948 Antibiotic, 3.491 × 103 1
0.5 µg/µl KM medium

stochastic noise T ξ

�,i, such that the doubling time of cell i from
group �, T�,i can be represented as a sum of deterministic and
stochastic components:

T�,i = T ADS
�,i + T ξ

�,i. (1)

This method for separating stochastic and ADS effects is a
more accurate extension of our previously published method
[16] since it bins cells based on the entire lineage history as
opposed to only the last two generations. The origins of the
noise T ξ

�,i could be time-additive noise (randomness in cell
division machinery) [1], noisy single-cell growth rates (e.g.,
due to noisy gene expression [28]) and a range of possible
cell-size control mechanisms leading to variations in cellular
lifetimes [29–33]. No matter the source, the noise can be
modeled by the functional form of Eq. (1) under appropriate
considerations; see Supplemental Material [44] Sec. S1 for
details.

We used the method to extract the distributions of doubling
times for ADS and noise T ADS, T ξ . For illustration, in Fig. 1
we show the results from the dataset by Stewart et al. In line
with previous reports [8], we observe that the distribution of
T ADS [Fig. 1(b)] is more narrow than the noise distribution T ξ

[Fig. 1(c)].
To understand their combined effects on populations, we

then analyzed whether the distributions of ADS and noise
exhibited any significant correlation. For this, we used a χ2

contingency table to test for statistical independence between
T ADS and T ξ , with the null hypothesis that the distributions
are statistically independent. To perform the test we binned
each of the distributions of fADS(T ADS) and fξ (Tξ ) into NADS

and Nξ bins, resulting in a NADS × Nξ table of the number
of noise counts (individual cells) Ni, j per ADS bin i and
noise bin j, and the number of ADS counts per ADS bin∑

j Ni, j [Fig. 1(d) illustrates the table for the data of Stewart
et al.]. Assuming that noise is independent of ADS, the
number of cells in each entry i, j in the NADS × Nξ table
should be given by the relative amount of cells per ADS
bin i, pi = ∑

j Ni, j/
∑

i

∑
j Ni, j , multiplied by the total

number of noise cells for noise bin j, Ñ j = ∑
i Ni, j (summed

across all ADS bins i for noise bin j). Comparing these
expected number of cells per entry in the NADS × Nξ table
to the actually recorded number is then done via the statistic
Q = ∑NADS

i=1

∑Nξ

j=1(observedi, j − expectedi, j )
2/expectedi, j =∑NADS

i=1

∑Nξ

j=1(Ni, j − piÑ j )2/piÑ j . The test statistic Q
approximately follows a χ2 distribution with (NADS − 1)
(Nξ − 1) degrees of freedom.

Across experiments, we found that the ADS distribution
is statistically independent from the ADS distribution; see
Table I. This proves that ADS acts independently of stochas-
tic noise to produce phenotypic diversity in populations. It
also shows that the diversity in doubling times introduced
by ADS shapes the population-distribution of doubling times
by providing a deterministic “backbone” distribution which
is widened further by random noise. Because the population
benefits from more diversity, this suggests synergistic benefits
to the population could emerge from the combination ADS
and noise.

B. Analytical model for deterministic ADS population dynamics

The statistical independence of ADS and stochastic effects
allows us to analytically investigate the impacts of ADS in
isolation before addressing the effects of the interaction with
stochastic diversity. To this end, we developed an analytical
model to analyze the deterministic ADS. Most previous ana-
lytical treatments of growing populations focus on effects of
stochastic dynamics either along lineages or the environment
[34–39] and converge on entropy of lineages for increasing
population growth. Work on ADS has been focused on the
low-asymmetry regime and included effects such as cell-size
control [29,40,41] or on individual lineages isolation [13].
In our model, we sought to describe how single-cell ADS
inheritance dynamics shape the growth of the population and
variations in single-cell doubling time and damage.

We considered the simplest possible model for ADS which
describes a clonal population growing in an environment with
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FIG. 2. Mapping of population with asymmetric damage segregation to statistical physics. (a) Schematic illustration of the analogy between
lineages in a growing population and 1D Ising model [illustrated lineage is the same highlighted by green shade in Fig. 1(a)]. For a lineage,
the history of damage inheritance corresponds to a unique configuration of spins on an Ising chain. The damage accumulation/evasion events
shown above each cell [their fraction of inheritance of ancestor damage via Eq. (3)] correspond to the values of the spins (±1, red arrows)
in the analogous Ising chain. (b) Each lineage in a population tree maps to a microstate in an Ising model. Select lineages are marked with
the corresponding spin states as in panel (a). (c) Population growth rate as predicted by the theory [lines, Eq. (6)] agrees with numerical
simulations (circles), as illustrated for a = 0.3 (blue, bottom line) and a = 1 (black, top line). Results for the reported damage-dependent
asymmetry, a(D) ([16], red, large circles) overlap with those for a = 1. Both tmin = 22 min and μλ are in relevant ranges for E. coli under
experimental conditions [16]. (d) The population growth gain from ADS increases with stress for low ADS (a = 0.3, top dashed line) and high
ADS (a = 1, bottom dashed line). The growth gain is quantified by the difference of mean population doubling times 〈T 〉 with and without
ADS.

constant (sublethal) stress [Fig. 1(a)] [16]. In each generation
n, each cell accumulates an amount of damage λ in response
to the environmental stress, and in addition inherits Dinh(n)
amount of damage from its mother that together add up to
the total damage D(n). The doubling time of the cell T (n)
is slowed down by the accumulated damage, resulting in the
following single-cell model:

D(n) = λ + Dinh(n),

T (n) = tmin + μD(n), (2)

where tmin (a constant) is the shortest-possible cell doubling
time set by basal, non-ADS processes and μ is the propor-
tionality constant between damage and doubling time. The

single-cell times T (n) are related to the growth rate of the
cell γ by γ = ln 2/T (n). Experimental studies of bacteria and
yeast suggest that a linear relationship between T (n) and D(n)
is a reasonable first-order approximation [11,15,16,42,43]. At
division, the amount of inherited damage is determined by

Dinh(n + 1) = 1 + sna

2
D(n), (3)

where sn = 1(−1) indicates whether a cell in generation n
accumulates (evades) damage relative to its sibling [Fig. 2(a),
top panel]. The amount of asymmetry is described by the
parameter a (0 � a � 1).
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TABLE II. Equivalence table relating Ising model to growing
populations with ADS.

Interacting spin particles Growing pop. with ADS

Microstate Lineage
Ensemble Population
Spin up/down (sn = ±1) Inherit larger/smaller fraction

of damage 1+sna
2

Single-particle energy Single-cell doubling time T

Total energy E Elapsed time t
Number of particles n Number of generations n
Hamiltonian H Total lineage time

Ttot (n, {s}) = ∑n
i=1 Ti

Number of states � Number of dividing lineages
�L

Despite the simplicity of this single-cell model, deriv-
ing expressions for the emergent population dynamics is not
straightforward because of the nontrivial coupling between
cell-generations and time: Cells from different generations
may be present at the same time, e.g., cells dividing at time
tk+3 in Fig. 1(a) are in generations n + 2 and n + 3. We over-
came this challenge by drawing on an unexpected connection
between the nonequilibrium process of growing populations
with ADS and equilibrium statistical physics of ferromagnetic
particles (Ising model). In brief, the increment in population
size dNcells(t ) = Ncells(t ) − Ncells(t − dt ) at time t is given
by the number of lineages dividing exactly at time t . Thus,
the population growth rate can be obtained as the rate of
growth of the total number of lineages �L(t ) dividing at time
t , which are the lineages where the total accumulated lin-
eage time Ttot (n, {s}) = ∑n

i=1 T (i, {s}) is equal to the elapsed
time t , i.e., lineages satisfying Ttot (n, {s}) = ∑n

i=1 T (i, {s}) =
t . Using Eqs. (2) and (3) we find (see Appendix B1 for
details)

Ttot (n, {s}) ≈ ntmin + μ

(
2λn + aλ

n∑
i=1

(
si + si−1

2

)

+ a2λ

2

n−1∑
i=1

sisi−1

)
. (4)

Mathematically, determining the number of dividing lin-
eages �L(t ) is equivalent to the well-described problem of

determining the number of states � with a given energy for a
1D system of ferromagnetic particles (Ising model) in equilib-
rium statistical physics [Fig. 2(a)], i.e., the number of possible
ways the Hamiltonian H of the system evaluates to the energy
level E , H = E [Fig. 2(b) and Table II]. We invoke this by
defining H = εTtot (n, {s}) (ε is a conversion factor between
energy and time) and focusing on the large-generation limit of
n → ∞ (the thermodynamic limit) where the microcanonical
and grand canonical ensembles are equivalent, resulting in the
partition function

Z ≈ 2ne−βεn[(2−a2λμ 9+2a2

8 βε)μλ+tmin]. (5)

We thus are able to derive approximate expressions for
an equivalent equilibrium physical system with the same
characteristics as the nonequilibrium biological system in
the high-temperature limit (βε 	 1) where ADS has a large
influence. In effect, this maps each lineage to a particular
microstate in the Ising model [Fig. 2(b)], and a full summary
of the equivalence between statistical physics and growing
populations with ADS is provided in Table II.

To characterize the emergent population dynamics from
deterministic ADS, we derived expressions for the popula-
tion growth rate GADS, the mean single-cell doubling time
〈T 〉ADS and the standard deviation of doubling times σT,ADS

[Eq. (6)]. The growth rate is derived from the total num-
ber of states dividing at time t (see Table II) which is
found from the contribution across different generations n
as

∑
n �L(n, t ). Since the distributions of �L is narrowly

peaked around a generation n∗ so we use the saddle-point
approximation

∑
n �L(n, t ) ≈ �L(n∗, t ) and derive the popu-

lation growth rate as G = 1
t ln �(n∗, t ). Furthermore, we have

calculated the mean single-cell doubling time 〈T 〉ADS and the
standard deviation of doubling times σT,ADS using statistical
moments of the thermodynamic distribution, i.e., 〈T 〉ADS =∑

{s} T (n) e−βH(n,{s})/Z . Table III lists all approximations used
in the derivation of this model and Supplemental Material
[44] Fig. S1 shows that the impact of the approximations is
small. It is important to note that we aimed to characterize
the properties of the “active” part of the population. Thus
only dividing cells are included when calculating population
averages (see Appendix A1 for detailed argumentation). In
other words, the properties of the growing cells, those that
are between the division cycles, do not contribute to the
averages.

GADS(a, λ, μ, tmin) = S̃(a, λ, μ, tmin) ≈ 8λμ + 4tmin − 2ϕ(a, λ, μ, tmin)

a2(9 + 2a2)λ2μ2
,

〈T 〉ADS(a, λ, μ, tmin) ≈ tmin + μλ

[
2 − S̃

a2λμ

4
(a2 + 9) + S̃2a4λ2μ2 27

8

]
,

σT,ADS(a, λ, μ, tmin) ≈ λμa

4

√
20 + a2(4 + S̃λμ[−44 − 45S̃λμ + a2{2 + 9S̃λμ}]),

ϕ(a, λ, μ, tmin) =
√

2
√

8λμtmin + 2t2
min − λ2μ2[9a2 ln 2 − 8 + a4 ln 4], (6)
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TABLE III. Assumptions and simplifications made during derivation of results.

Assumption Implication

Nearest-ancestor interaction (nearest-neighbor Dtot (n, {s}) → 2λn + aλ
∑n

i=1(si + si−1
2 ) + a2λ

2

∑n−1
i=1 sisi−1

in equivalent physical system) dominates
High temperature βε 	 1
Thermodynamics limit n → ∞
Periodic boundary conditions on Ising chains sn = s1

in equivalent physical system
Constant environmental stress λ is a constant
Use saddle-point approximation to

∑
n �(n, t ) ≈ �(n∗, t ).a This picks the single largest-contribution

solve
∑

n �(n, t ) generation as function of a, μ, λ and tmin

an∗ is the largest summand to
∑

n �(n, t ).

where S̃ = S/(kBt ) is the normalized entropy of dividing lin-
eages expressed in terms of the thermodynamic entropy S and
the elapsed time t which is a measure of lineage diversity.
Furthermore, to obtain a simpler expression for σT,ADS we as-
sumed in the expression above tmin � 15 min. An approximate
expression valid for all values of tmin is given in Eq. (B6).
We furthermore use the short-hand notation S̃ instead of
S̃(a, λ, μ, tmin) on the right hand-side.

Interestingly, all these population characteristics can be
expressed in terms of the entropy of dividing lineages S̃ (pop-
ulation diversity), with the population growth rate GADS itself
being mathematically identical to S̃. Thus, the entropic gain
in the population growth rate by ADS alone (the increase in
population growth rate driven by lineage entropy) �GADS =
GADS(a) − GADS(a = 0) is equal to the increase in lineage en-
tropy from ADS �GADS = S̃(a) − S̃(a = 0) (where S̃(a = 0)
is given by S̃(a = 0) = ln2/(tmin + 2μλ), see Appendix B3).
This deep connection between population diversity and pop-
ulation growth establishes that population growth is driven
by entropy of lineages. This effect is similar in concept to
the effects from stochastic variations presented by Wakamoto
et al. [1,36].

We confirmed our theoretical predictions by comparing
to an agent-based numerical simulation we introduced in
our previous work [16] [Figs. 2(c), 2(d), and 3(a)]. See
Appendix C for the details of the simulations. Simulations
are in good numerical agreement with the analytical results,
also for the reported case of damage-dependent asymmetry
a = a(D) ≈ D6

D6+constant [16]. The results in Eq. (6), which have
been derived for the regime where ADS dominates, exhibit
different scaling behavior than results derived around a = 0
for models including cell-size control [40,41]. Having veri-
fied through simulation that our population-level results also
hold when cell-size control mechanisms are included (Ap-
pendix D), we have not investigated the differences in scaling
further.

Our theoretical results [Eq. (6), Figs. 2(c) and 2(d)] con-
firm previous findings that while the growth is reduced under
higher stresses, asymmetric damage segregation (a > 0) en-
sures faster growth than symmetric (a = 0) [13]. Furthermore,
the positive impact of ADS grows with stress λμ [Fig. 2(d)],
resulting in a dynamic, emergent population-benefit [16]
endowing the population with an antifragile stress behav-
ior [45]. This antifragility comes as a result of increased

diversification under stress; cells can diversify more when
they have more damage to redistribute. Here our analytical
results predict that this diversity, measured as the width of
the distribution of doubling times, increases linearly with
stress σT,ADS ∼ λ when a = 1 [Fig. 3(a)] and approximately
linear for damage-dependent asymmetry a(D), Supplemental
Material [44] Fig. S2.

C. Experimental verification of ADS population dynamics

We verified this emergent behavior by analyzing published
data for tens of thousand of cells from Stewart et al. [10]
and ourselves [16] for the stress-dependence of σT,ADS across
three different stresses and three different strains (see Table I).
We did this by assessing if the predicted width of the distri-
bution of doubling times σT,ADS [Eq. (6)]—a key theoretical
prediction—was confirmed by the experimental data when
correcting for non-ADS stochastic effects. Using the ADS-
filtered data, we fitted the deterministic ADS model to each
experimental condition and obtained the experienced stress
λμ (see Appendix A2 for methods details). Plotting the exper-
imental values of σT,ADS against these experienced stresses,
we found that the data across conditions was well-described
by our theoretical predictions [Fig. 3(b)]. The significantly
lower levels of perceived stress in data by Stewart et al. [10],
compared to our wild type strain [16], both grown at 37 ◦C,
may reflect differences between growing cells in rich (Luria
broth [10]) versus minimal media (M63 [16]). In calculating
the experimental values of σT,ADS we used all recorded cells
in the growing population since this ensemble gives the same
moments but higher cell count than using dividing cells at the
last time point (see Appendix A1). This experimental valida-
tion of stress-induced deterministic diversification [Fig. 3(b)]
together with the damage-structured population [Sec. II A,
Figs. 1(c)–1(e)] indicate the strong impact of the determin-
istic ADS on the population distribution and suggest that the
improved conditions for growth it provides are exploited by
real populations.

D. Synergistic contributions of stochastic and deterministic
diversities to population growth

Having established and validated the population-level
model for ADS, we next focused on the central question of
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FIG. 3. The interplay of stochastic and deterministic sources of diversity under stress. (a) Analytical predictions [Eq. (6), dashed lines] of a
linear increase of the effects of ADS with stress confirmed by simulations (circles), as illustrated by 〈T 〉ADS − tmin (top dashed line) and σT,ADS

(bottom line). Errorbars show sample error of the means from the simulations (Appendix C). The same trends hold for damage-dependent
asymmetry, although exact linearity is not satisfied, see Supplemental Material [44] Fig. S2. (b) Comparison of model predictions for σT,ADS

with experimental results across all stresses. Squares mark heat-stress, triangles antibiotic (kanamycin) stress and circle marks low UV stress
(Stewart et al. [10]). Perceived experimental stress levels μλ are inferred by fitting the model to the ADS-filtered data (Methods). Each mark
represents the average over all cells with those particular experimental conditions, while the red line is the simulation results from 100 repeat
simulations of a(D)-model (line indicates 50th percentile, with the shaded region indicating 25th−75th percentile). C Synergistic contributions
of noise and ADS to the population growth rate. Points mark simulation results, while lines are the analytical results [Eq. (7)]. The gain in
population growth from noise alone, �G(a = 0, ξ ), is in green [Eq. (E8); bottom line at small μλ]; from ADS alone, �G(a = 1, ξ = 0),
is in red [Eq. (6); decreasing middle line] and from combined noise and ADS, �G(a = 1, ξ ), is in blue [Eq. (7); top line]. Errorbars mark
95% confidence interval on fitting exponential growth to the number of cells across 10 repeat simulations (Appendix C2). (d), (e) Benefits of
doubling time, B〈T 〉, and damage, B〈D〉, defined in Eq. (8), under various combinations of noise and ADS in a case of low (d) and medium (e)
damage induced by heat stress [16]. While the population benefits from both noise and ADS in reducing population doubling time (compare
results for B〈T 〉), noise antagonizes the beneficial effects of ADS in decreasing population damage (compare results for B〈D〉). For simulations
with noise, we show the mean across 10 realizations. Here the asymmetry is set to be damage-dependent, a(D); however, results are similar
for a = 1. Asterisks indicate statistically significant differences with p < 5.0 × 10−8 (bootstrap, t-test, see Appendix A3).

the interaction between the deterministic diversity from ADS
and random, stochastic noise. To investigate this we analyzed
the entropic gain for the population growth rate, i.e., the
changes in population growth rate to modulations in lineage
diversity S̃. In other words, we consider the increase in pop-
ulation growth rate �G̃ = G(a, ξ ) − G(a = 0, ξ = 0), where
ξ denotes noise, and where lineage entropy is controlled via
noise level ξ and asymmetry a. Adding noise to the model
in Sec. B is not straightforward, so to answer this question
we turned to the Euler–Lotka model of population growth
which allowed us to relate the population diversity resulting
from the combined existence of ADS and noise [with the
probability density of doubling times ffull(TADS, Tξ )] to popu-
lation growth G(a, ξ ) [46–48]. Since the distributions of noise
and ADS-induced doubling times are statistically independent
(Sec. II A) we found a simplified expression for G(a, ξ ) by
expanding each of these distributions in statistical cumulants

and applying series inversion [49,50] (Appendix E1). To ac-
count for the fact that noise amplitudes scale with stress (we
assume coefficient of stochastic variations, CV in single-cell
growth rates to be conserved across stresses), we scaled the
noise amplitude relative to the mean doubling time 〈T 〉ADS

(Appendix E), resulting in the final expression

�G̃ = G(a, ξ ) − G(a = 0, ξ = 0)

≈ ln 2

〈T 〉ADS
+ 1

2

[
σ 2

T,ADS

〈T 〉ADS
+ C2

V 〈T 〉ADS

](
ln 2

〈T 〉ADS

)2

− ln 2

tmin + 2μλ
, (7)

where 〈T 〉ADS, σ
2
T,ADS are given by Eq. (6), G(a = 0, ξ =

0) = ln 2
tmin+2μλ

(Appendix B3) and CV = 0.23 is inferred from
experimental data in Ref. [16] (available in Supplemental
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Material [44] Sec. III.10). These analytical results [Eq. (7),
Fig. 3(c), blue line] capture the general trend of the simulated
results [Fig. 3(c), blue (top) and red (decreasing) dots].

With all parameters constrained by the data, our analytical
and simulation results show that the relative importance of
the deterministic ADS and stochastic processes in shaping the
population growth changes with stress [green (bottom) and
red (decreasing) lines in Fig. 3(c)]. At low stresses, the benefit
from ADS (green; bottom) is small and noise (red; decreasing)
dominates, while ADS dominates for large stresses. Even
when noise dominates, ADS remains present and contributes
as illustrated by our results in Sec. II A. The experimental es-
timates of the perceived stress μλ [Fig. 3(b)] all fall below the
cross-over point, μλc ≈ 4, suggesting that noise dominates in
the tested conditions. Furthermore, the estimates of the per-
ceived stress allow us to read off the relative contributions of
deterministic and stochastic components [Fig. 3(c)] for each
of the experimental conditions. Thus, for example, in mutant
cells experiencing kanamycin stress with μλ ∼ 2 [triangles
in Fig. 3(b)], ADS accounts for about 24% of the gain in
growth rate, �S̃. While the contribution from ADS is minor,
it is significant [Figs. 3(c)–3(e)] and may dominate under the
experimental conditions where perceived stresses are higher.

E. Stochastic and deterministic effects antagonize each other
in reducing population damage levels

We have previously shown that by concentrating damage
in a few slowly growing cells, ADS decreases the average
damage in a population [16]. We then asked how the measured
levels of noise impact the ADS-induced reduction in popula-
tion damage and mean doubling time.

To quantify the effects we considered how the population
benefits from the diversity generated by either noise alone,
ADS alone, or both ADS and noise combined. We use the
case with a = 0 and “no noise” (ξ = 0) as a reference point
and define benefits as the decrease in population damage and
mean doubling times relative to their reference values:

B〈T 〉 = 1 − 〈T 〉(a, ξ )

〈T 〉(a = 0, ξ = 0)
,

B〈D〉 = 1 − 〈D〉(a, ξ )

〈D〉(a = 0, ξ = 0)
, (8)

here B〈T 〉 and B〈D〉 are the benefits from the diversity in the
population-mean doubling time 〈T 〉 and damage 〈D〉.

Please note that the benefit scores defined here are different
from the ones in Ref. [16], as the current formulation is more
intuitive showing an increase in benefit with increasing stress.

The results [Figs. 3(d) and 3(e)] for E. coli doubling times
mirrored our results for the entropic gain in population growth
rate [Fig. 3(c)]. The benefit in doubling time is dominated by
noise B〈T 〉 ∼ 0.04 and ADS provides a minor but statistically
significant increase of ∼0.01. The roles of ADS and noise are,
however, distinctly different in reducing population damage.
While ADS alone significantly reduces population damage,
with B〈D〉 ∼ 0.05 at higher stress, noise antagonizes this effect
decreasing the benefit by ∼0.01 [Figs. 3(d) and 3(e)].

To understand these seemingly contradictory outcomes of
noise, consider the dynamics along a single lineage. With-
out noise, cells which consecutively inherit the new-pole
[sn = −1 in Eq. (3)] will have less damage and will divide

faster. However, in the presence of noise, this is no longer the
case: Noise interferes with the ordered chains of damage in-
heritance through the lineages so that it is no longer cells with
the lowest amounts of damage that have the shortest doubling
times; even though the average noise contribution along each
lineage is zero, the fastest-dividing cells—those which drive
the population growth—will on average have more damage
when noise is present. Consequently, the average damage 〈D〉
is higher when noise is present, leading to lower benefits B〈D〉.

III. DISCUSSION

While our study has been focused on E. coli, the determin-
istic and stochastic processes driving the discovered dynamics
are more widely present across unicellular and multicellular
organisms. Stochastic noise is ubiquitous in cell populations
[5,51] and more recent findings have established that ADS—
asymmetric partitioning of damaged proteins resulting in
slower growth of cells inheriting damage—also appear to be a
general phenomenon [9,11,12,18–25]. A particularly striking
example is the mammalian neuronal stem cells [25], where
much like in rejuvenated bacterial cell, by segregating damage
to the nondividing neuron, the stem cell reduces damage and
avoids senescence.

We have found the following key results. First, we an-
alytically show that stress induces deterministic cell-cell
variability through ADS which, in turn, results in determin-
istic changes to population growth [depends explicitly on
the entropy of lineages S̃, Eq. (6)]. Compared to most other
studies, this variability is deterministic and correlated through
generations, yet the effects on population growth are simi-
lar to those endowed by noise alone [1,36]. The impact of
slow-growing cells harboring more damage reduces as the
population grows, i.e., they have smaller overall impact. Being
an emergent property from just the inheritance dynamics, we
expect that the population benefits can be found across all cell
types with ADS. For neuronal stem cells where damage is
segregated to the nondividing neuron, the upshot of ADS is
that the dividing cells grow faster enabling more rejuvenation
for the organism.

Second, our analyses show that while operating on differ-
ent time-scales, both the deterministic (ADS) and stochastic
(noise) sources of diversity accelerate population growth (as
compared to a nondiversified population) and their effects
add up. It furthermore suggests that the “speed limit” on
population growth proposed by Hashimoto et al. [1] can be
circumvented if multiple sources of diversity are present.

Under varying stresses, the additive effect provides the
population with the best of both contributions: under low
stress the growth-benefit from diversity is dominated by the
noise, while the benefits of ADS become more prevalent un-
der higher stresses yet retaining the baseline growth benefit
from noise. We find that in all the investigated experimental
conditions the stress is not high enough for the determinis-
tic component to dominate, however, even under the lowest
perceived stress (low-level UV stress by Stewart et al.), the
contribution of ADS is nonetheless significant [Figs. 1(c) and
1(d)]. Recently, Proenca et al. [8] estimated that in a stress-
free environment deterministic sources contribute 22% to the
variance of the doubling times. Although the numbers are not
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directly comparable to ours due to differences in experimental
systems, our results agree on that noise dominates distribution
of doubling times under lower stresses and as a consequence
has a major contribution to the entropic gain in population
growth rate.

Third, while the deterministic and stochastic components
both accelerate population growth, they have the opposing
effects on population damage. Deterministic ADS reduces
population damage because it effectively limits damage to
a few slowly growing cells. Stochastic variations in cell’s
growth rates counteract this effect because they disrupt the
coupling between cell’s doubling times and damage levels
(stochastically, cells with damage may grow fast and generate
more damage-containing progenitors). This interplay between
stochastic and deterministic variations suggest that to mini-
mize both population doubling time and mean damage, there
should be an optimal level of stochastic variations. With the
general applicability of ADS, it would be exciting to test this
hypothesis across cell types.

These findings are limited to populations where all lineages
are present, i.e., to sublethal stress levels. Beyond this, cells
die and disappear from the population, and thereby stop some
of the lineages which drive the ADS benefits. The remaining
lineages will continue to deliver some damage alleviation, but
the analytical results no longer hold. This may furthermore
also affect the interplay between stochastic and deterministic
sources of diversity so it is an open question if the com-
bination of synergistic and antagonistic effects will persist
(our third key result). It will be interesting to pursue these
questions in separate studies.

As our mathematical models for ADS, and ADS and noise
combined, are based on simplistic formulations and generally
applicable frameworks, we anticipate that these three key re-
sults will persist when other independent sources of variability
(stochastic and deterministic) are at play (e.g., multivariate
noise or other types of cellular damage, not limited to protein
aggregates). We furthermore also expect that the models can
also be used as a general framework for studying ADS across
organisms and cell types.

A. Potential application of findings to drug-tolerance

We finish with a speculative application of our findings
to a practical case of significant impact on public health.
Single-cell studies on drug tolerance suggest that there is a
common theme across drugs and organisms: A small fraction
of the population in a dormant state—cells growing slowly or
completely arresting their growth—survive exposure to drugs
[52,53]. Several mechanisms have been proposed to explain
the emergence of the tolerance: from diversity in lag times and
growth rates to toxin-antitoxin regulatory networks [53,54].
Similar studies in cancer cells are slowly emerging [52].
While these “executive” mechanisms are different, most are
assumed to be a result of bet-hedging—initiated by stochas-
tic fluctuations in protein numbers [3]. Alternate to random
bet-hedging, the dormant cells (and thus drug-tolerance) may
be generated by the deterministic processes such as asym-
metric damage segregation [8,16] or asymmetric partitioning
of the multidrug efflux pump (AcrAB-TolC) towards the old
pole [55].

Understanding the interplay between the stochastic and de-
terministic sources of diversity (of which tolerance-associated
dormancy is a specific case) can influence the development
of the novel antibiotic strategies. If the origin of the diversity
is stochastic, then we can estimate how many but not which
cells become tolerant, whereas if it is deterministic, then we
can, in principle, predict both how many and which cells are
likely to become tolerant. Thus, for example, in the cases of
asymmetric damage or AcrAB-TolC partitioning the pole-age,
the size of protein aggregates may serve as a marker for
dormancy and thus tolerance. In line with this, recent findings
show that cells with aggregates are more likely to tolerate
otherwise lethal stresses [56]. In this context, the uncovered
correlation between damage-history score and doubling time
suggests that slow growth in several consecutive generations
may serve as another marker for old-pole and dormancy.
Experimentally, this possible link between damage-history,
dormancy and antibiotic tolerance can be assessed by fluo-
rescent pulse-labeling of the cell wall [57].
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APPENDIX A: EXPERIMENTAL DATA ANALYSIS

1. Sampling growing populations: Statistical ensembles
to calculate instantaneous population averages

Picking out exactly the dividing cells at a particular point
in time is key to correctly sampling the data, especially when
it comes to the statistical moments (〈T 〉, σ〈T 〉, 〈D〉, σ〈D〉 and
the benefits B〈T 〉 and B〈T 〉), which we describe here. The main
takeaways from this analysis is that all historical cells can be
used to calculate population moments at a particular point in
time.

We have used our simulations to study which ensembles to
use; see Fig. 4. In the results below we focus on the impact on
damage, but similar results are found for doubling times; this
is as expected given the connection between these two quan-
tities as stipulated by Eq. (2). We first define the interrogation
time T0 which corresponds to the exact time at which the ADS
population model is applied (i.e., it corresponds to setting
t = T0). Using T0, we define the following three statistical
ensembles

(1) Ensemble 1: Compiling all cells dividing at any time
in the in time interval [0; T0].

(2) Ensemble 2: All cells dividing in the narrow interval
�T around T0, [T0 − �T

2 ; T0 + �T
2 ].

(3) Ensemble 3: All cells dividing after T0, ]T0; ∞[.
Ensemble 2 is the naïve approximation to the instantaneous

ensembles used in the theory. Using this ensemble to calculate
statistical moments gives the correct mean behavior as can be
seen from the green lines in Figs. 4(b) and 4(c). However,
although population moments calculated from Ensemble 2
gives the right average behavior, the uncertainty is higher
because this ensemble contains a smaller number of cells.

Surprisingly, Ensemble 1 gives the same mean behavior
for all relevant statistical moments as Ensemble 2; to see
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FIG. 4. Illustration of the three ensembles from Appendix A 1 for sampling data from experiments or simulations, with the data in the
figure coming from simulations using (λ,μ, tmin ) = (2, 1, 18 min) corresponding to the parameters of the experimental conditions under
highest stress (mutant MC4100�clpB strain exposed to antibiotic stress [0.05 µG/ml kanamycin)]. Using either ensembles 1 (blue) or 2
(green) to calculate the moments replicates the results of our theory (dotted lines) presented in Eq. (6), but ensemble 3 (red) gives the results
without ADS. (a) Time evolution of the instantaneous values D of the mean-population damage computed based on all cells dividing exactly
at the sampling time t using a = 0.8, with the number of dividing cells indicated for every fifth data point. D (black) converges towards the
theoretical population mean 〈D〉 from Eq. (6) (gray line) and settles after about 150–200 min, although some fluctuations persist beyond this,
for both the case where the initial cell in the population has 0 damage (top panel) and when the population starts from a cell with the average
damage (bottom panel). (b), (c) Results for the population mean damage 〈D〉 and standard deviation of damage σ〈D〉 for each of the three
ensembles (colors) and compared to theoretical results (black dotted lines). At both investigation times T0 = 210 min (b) and 300 min (c)
we find good agreement between theoretical predictions from Eq. (6) for infinite population (black dotted line) and the results from the finite
simulations using either ensembles 1 (blue) or 2 (green) for both initial conditions for the simulations (compare dashed and full colored lines).

this, compare blue lines to green lines (dashed or full). This
observation can be explained by a combination of two differ-
ent facts. First, the instantaneous averages D—the averages
calculated at just a single point in time—converge to the
long-term population average rather quickly, see Fig. 4(a),
which suggests that the underlying distributions are similar.
Therefore, adding together the underlying distributions at all
these times before calculating the moments simply increases
the population on which to calculate the moments. Second,
because of the exponential growth in the number of dividing
cells with time, the vast majority of the cells is from the few
last time points sampled; thus, any influence in skewing the
moments from the accumulated distribution from Ensemble 1
becomes increasingly small at longer simulation times.

Ensemble 3, however, gives very different results as can be
seen from the red lines in the figure: instead of converging to
the theoretical results, moments computed from this ensemble
do not contain any of the benefits of ADS; in fact, they very
explicitly give the results of no ADS (a = 0) presented in
Appendix B 3. The reason for this is that Ensemble 3 in-
cludes all cells from all generations, whereas the beneficial

contributions from ADS are driven by the “upconcentration”
of cells of shorter lifetimes across different generations via
positive feedback in single-cell growth; by sampling all cells
across all times, the upconcentration driven by ADS is re-
moved.

Based on these findings we have used Ensemble 1 for all
experimental results in this paper since it gives truthful results
for population moments while also reducing the uncertainty.

2. Inferring experimental stress levels and noise distribution ξ

Perceived stress μλ of experiments were inferred by fitting
out discrete, agent-based ADS simulation model to noise-
filtered experimental doubling times (filtered using Eq. (1)
with the damage-dependent asymmetry a(D); see Ref. [16]).
Starting from a single cell, the simulation model was fitted
using least-squares at all generations along all lineages using
the noise-free simulations instead of the theoretical results
from Eq. (6) to better utilize all the information. For data from
Ref. [10] we fixed tmin (cannot be inferred independently) and
fitted μ and λ; for data from Ref. [16] we fixed μ for pairs of
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experiments with same stressor but different stress levels and
allowed λ to take different values at each settings. tmin and a
were kept fixed for all experiments.

Using above fitting procedure we obtained population-
optimal values for μ and λ allowing us to predict the doubling
time for each cell in each population.

3. Statistical significance of increase in σ under different stresses

Calculating the statistical significance of the difference of
widths σ of population-distributions of ADS doubling times
T ADS under different stresses [Fig. 3(b)] is complicated by the
fact that the ADS null distributions also change between ex-
periments. These null distributions are obtained by randomly
shuffling cells between lineage bins and then applying the
ADS filtering afterwards [Eq. (1)]; see details of null distri-
butions in Ref. [16].

To account for the varying null distributions we calculated
the statistical significance of increases in width using boot-
strapping. Thus, we computed the statistical significance of
the difference

�σ = σ high stress − σ low stress, (A1)

for both bacterial strains (�ClpB mutant and WT) and both
types of stress (heat and kanamycin).

APPENDIX B: MATHEMATICAL POPULATION MODEL
FOR ASYMMETRIC DAMAGE SEGREGATION

1. Expressions for damage and doubling time for individual
cells and the whole lineage

For motivation, we first write out the damage in the first
few generations for a population starting with a single cell
with 0 initial damage,

Generation 1 : λ,

Generation 2 : λ

[
1 + s2a

2
+ 1

]
,

Generation 3 : λ

[(
1 + s3a

2

)[
1 + s2a

2
+ 1

]
+ 1

]
,

where si denotes the sign multiplying the asymmetry param-
eter a as in Eq. (3) (si = ±1). This sign si indicates the spin
state. This leads to the following expression for the damage
in generation n of any cell starting form a single cell with 0
damage in generation

D(n, {s}) = λ
[
1 + 1 + sna

2
+

(
1 + sna

2

)(
1 + sn−1a

2

)

+
(

1 + sna

2

)(
1 + sn−1a

2

)(
1 + sn−2a

2

)
+ . . .

]
,

(B1)

= λ

⎡
⎣1 +

n∑
j=1

2− j

⎛
⎝ n∏

k=n− j+1

{1 + ska}
⎞
⎠
⎤
⎦, (B2)

where the dependence on {s} indicates that each possible
combination of the signs si provides a new solution. From
Eq. (2) we find for the associated single-cell doubling time
to the damage given in Eq. (B2),

T (n, {s}) = tmin + μλ

⎡
⎣1 +

n∑
j=1

2− j

⎛
⎝ n∏

k=n− j+1

{1 + ska}
⎞
⎠
⎤
⎦.

(B3)

Clearly, the damage and doubling time of each cell depends
on its entire lineage history because of the inheritance.

To derive results for the whole lineage, we first focus on the
total lineage damage Dtot (n, {s}) as a function of generation
number n from Eq. (B2),

Dtot (n, {s}) =
n∑

q=1

D(q)

=
n∑

q=1

λ

⎡
⎣1 +

q∑
j=1

2− j

⎛
⎝ q∏

k=q− j+1

{1 + ska}
⎞
⎠
⎤
⎦.

(B4)

It is clear that each division adds more complexity to the prob-
lem, as it introduces the possibility that even more damage
levels (and hence cell doubling times) can be reached by the
population. However, due to the factor 2− j , the importance of
the previous generations decays approximately exponentially;
consequently, we may approximate Eq. (B4) by writing out all
terms in Eq. (B2) and truncating after terms proportional to
sn−1 (truncating contributions beyond nearest ancestor (near-
est neighbors in the equivalent physical system),

Dtot (n, {s}) ≈ 2λn + aλ

n∑
i=1

(
si + si−1

2

)
+ a2λ

2

n−1∑
i=1

sisi−1,

(B5)
where the geometric series, e.g., λ(1 + 1

2 + 1
4 + 1

8 + . . .),
have been approximated by their limiting values,
limn→∞ λ

∑n
i=0 2−i = 2λ. Although these approximations

may seem very limiting, we show in Sec. S2 in the
Supplemental Material [44] that the error is only on the
order of a few percent. The expression for Dtot (n, {s}) above
together with Eq. (2) lead to Eq. (4).

2. Supporting expression for σT,ADS and expressions
for population moments of damage

The full expressions for the width σT,ADS =√
〈T (n)2〉 − 〈T (n)〉2 applicable for all values of tmin

[extending the simplified expression presented in Eq. (6)] is

σT,ADS ≈ μλa

4

√
20 + a2[4 + β∗ελμ(−44 − 45β∗ελμ + a2{2 + 9β∗ελμ[1 + β∗ελμ(27 + a2{2 − 18β∗ελμ})]})], (B6)
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where

β∗ε = ln �(t, n∗)

t
= 8λμ + 4tmin − 2 ϕ(a, λ, μ, tmin)

a2(9 + 2a2)λ2μ2
,

(B7)
and ϕ(a, λ, μ, tmin) is defined in Eq. (6).

Furthermore, results for the moments of damage distri-
bution across the population can be derived analogously,
resulting in

〈D(n)〉 = 〈T (n)〉 − tmin

μ

= λ

[
2 + 1

(9 + 2a2)2λ2μ2
[ϕ(a, λ, μ, tmin)

− 4λμ − 2tmin][27ϕ(a, λ, μ, tmin) − 54tmin

+ (27a2 − 27 + 2a4)λμ]

]
(B8)

σD,ADS = σT,ADS

μ
, (B9)

where σT,ADS is given by Eq. (B6).

3. Exact analytical treatment of the special case for a = 0

The special case of symmetric division (a = 0) is not han-
dled by our approximate analytical expressions because the
high-temperature approximation becomes invalid for a = 0
(all cells are completely identical—carrying the same amount
of damage and dividing at the same time—so all lineages
are degenerate and our statistical physics approach no longer
apply). However, noting that in this special case average
population-properties are identical to single-cell properties,
we can easily provide exact analytical expressions for the
population behavior.

Inheriting exactly 50% of the ancestor’s damage (a = 0),
the damage in generation n of a single cell starting from 0
damage at the first generation is given by

D(n) = λ

n∑
j=1

1

2 j−1
= 2λ for n → ∞. (B10)

In this large-generation limit all cells in the population have
the same amount of damage, and so

〈D〉 = 2λ and σD =
√

〈D(n)2〉 − 〈D(n)〉2 = 0, (B11)

where σD is the standard deviation of the population-
distribution of damage. From Eq. (2) we find for the
distribution of doubling times

〈T 〉 = tmin + μ〈D〉 = tmin + 2μλ and σ = μσD = 0.

(B12)

Finally, we derive an expression for the population growth
rate and normalized entropy (in the same limit of n → ∞, t �
1),

Ncells = 2
t

〈T 〉 = eGt ,

G = ln 2

〈T 〉 = ln 2

tmin + 2μλ
,

S̃ = S

kBt
= ln �L

t
= G = ln 2

tmin + 2μλ
. (B13)

APPENDIX C: SIMULATION DETAILS

We relied on our previously described brute-force simu-
lation approach [16]. Briefly, this method builds out the full
population tree up to Ngens generations, and calculates for each
cell the amount of damage and the doubling time based on the
basic inheritance rules of Eq. (2), using either constant asym-
metry a or damage-dependent asymmetry a(D). From this we
can assign to each cell k in generation n the birth time τ birth

k (n)
and death time τ death

k (n) [with τ death
k (n) = τ birth

k (n) + Tk (n)
where Tk (n) is the single-cell interdivision time], as well as
the damage Dk (n).

To speed up convergence of the simulations for cases with-
out experimental noise ξ , low-amplitude noise [sampled from
N (0, 1

5 tmin) normal distribution] is added to τ birth
k (n) for all

cells present between generations 2 and 5.

1. Adding experimental non-ADS noise ξ

We obtained experimental noise distributions fξ from
Eq. (1), and applied this noise in simulations by extending
the single-cell growth [Eq. (2)] with additive noise ξn sampled
from the experimental noise distribution,

T (n) = tmin + μD(n) + ξn. (C1)

Our earlier results suggested that the the coefficient of
variation CV = σξ/〈T 〉 for the standard deviation of the noise
σξ increased slower that the CV for the deterministic variations
(about twofold difference [16]). For simplicity, we assumed a
constant coefficient of variation from stochastic sources and
scaled the experimental noise ξn at different stress levels with
the respective mean. We implemented this in the simulations
for a given set of a, tmin, μ and λ by scaling the noise f λ

ξ at
any stress λ according to CV 〈T 〉 with the theoretical mean 〈T 〉
from Eq. (6),

f λ
ξ = f λ(42 ◦C)

ξ

CV 〈T 〉(λ)

σξ (42 ◦C)
, (C2)

where CV = 0.23 and using the data from the mutant cell line
at 42 ◦C as reference.

2. Simulation data analysis: Calculating population properties

a. Growth rate

The number of cells in the population grows exponentially
in time Ncells(t ) ∝ eGt so we fit a linear model y(t ) = θ1t + θ0

to the logarithm of Ncells(t ) using Matlab’s fit procedure
from the Curve Fitting Toolbox to obtain the population
growth rate from the simulations while minimizing the influ-
ence of the last few time points. We omitted the first part of
the simulations to minimize the influence of the first few cells,
and we obtained the standard error SEG on the fitted values of
G directly from the built-in confint function.

b. Normalized entropy

Since the normalized entropy S̃ = S
kBt is equal to the pop-

ulation growth rate for both ADS and noise (see Eq. (B7)
and Refs. [1,36]), we obtain this from the simulations as
described for the population growth rate. For differences
of normalized entropies �S̃ = S(a�0,α�0)

kBt − S(a=0,α=0)
kBt we
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calculate the standard error via error propagation SE�S̃ =√
SE2

G(a�0,α�0) + SE2
G(a=0,α=0).

For repeat simulations [Fig. 3(c)], average results were
obtained as follows. Since linear regression is used to infer
the values of G from the simulations, this point estimate
has a Gaussian sampling distribution [58] and so the average
estimate across Nrep independent simulations can be obtained
as the average across the underlying sampling distributions
from each estimate. Additionally, since this distribution is also
Gaussian the confidence intervals are also obtained in regular
fashion. We used 95% confidence intervals.

c. Calculating moments

The moments of the population distribution equilibrate af-
ter an initial phase dominated by the few initial cells in the
population; see Fig. 4(a). Denoting by Mi the instantaneous
value of a particular moment M (e.g., 〈T 〉 or 〈D2〉) at the
discrete simulation output time t s

i , we take the mean instan-
taneous simulated value upon equilibration for the simulated
value of the moment,

M = M = 1∑
i>i∗ 1

∑
i>i∗

Mi, (C3)

where i∗ indicates onset of equilibration (taken to be i∗ =
2
3 Ngenstmin). The standard error of the moment is obtained from
the simulations using the same part of the simulated output,

SEM = 1

−2 + ∑
i>i∗ 1

∑
i>i∗

(Mi − M )2. (C4)

d. Calculating benefits BD, BT

The benefits, defined in Eq. (7) as BD = 1 − 〈D(a,ξ )〉
〈D(a=0,ξ=0)〉 ,

BT = 1 − 〈T (a,ξ )〉
〈T (a=0,ξ=0)〉 , describe the gain to the population

from noise and/or ADS. The benefits are calculated from
these definitions using the estimates of the population aver-
ages described above. Note that benefits cannot be computed
from a single simulation in isolation, but are comparing across
repeat simulations. The error of the benefits are obtained using
error propagation and relying on the standard errors of the
means of the statistical moments for 〈T 〉 and 〈D〉 under the
different values of a, ξ . Statistical significance of increase in
benefit [Figs. 3(d) and 3(e)] was calculated using two-sample
t-tests of full distributions from accepted cells (equilibrated
population).

3. Adding cell-size control to simulations

To evaluate the impact of cell-size control (Appendix D),
we reformulated the doubling time to depend on “sizer” divi-
sion rules:

T = 1

γ
ln

(
ld
lb

)
+ η, (C5)

[29]. Here, T is the cell doubling time, γ is the single-cell
growth rate, ld (lb) is the cell length at division (birth) and η

is time-additive noise. Here we approximated cells to be rods
with a constant radius.

The length l i(t ) of cell i grows exponentially in time,

l i(t ) = l i
b eγit , (C6)

where γi = ln 2/T ADS
i (n) is given by Eq. (2) for cell i in

generation n. For the “adder” rule, a constant additional cell
length �l is assumed to be added before division. For the
“sizer,” all cells are assumed to grow to the same length lfinal

before dividing. The respective expressions for the doubling
times are

T full,adder
i = 1

γ
ln

(
l i
b + �l

l i
b

)
,

T full,sizer
i = 1

γ
ln

(
lfinal

l i
b

)
. (C7)

Each simulation is started from a single cell, with the initial
length drawn from a normal distribution with mean 1 µm and
standard deviation 0.25 µm.

We have probed dividing the length in half both
deterministically and stochastically [with loffspring =
c lmother and (1 − c) lmother and c = 1/ν, ν ∼ N (2, 0.25)].

APPENDIX D: NUMERICAL VERIFICATION THAT
CELL-SIZE CONTROL AND DAMAGE-INDUCED

DECREASE IN SINGLE-CELL GROWTH RATE
ARE COMPATIBLE

It could be hypothesized that size-control mechanisms
through their impact of cell lifetime [29], may dominate ADS
effects on doubling time. Our results (Fig. 5) suggest that
the size-control has very little impact on the population-level
benefits from ADS.

The simulations in Fig. 5 are performed according to
(Appendix C). For illustration, we introduce �T between the
pure ADS and full (those including size-control) lifetimes,

�T = T ADS − T, (D1)

where T is given by Eq. (C5). Furthermore, we have also
explored the impact of stochasticity in cell length at division
by allowing for other than 50% split of mother cell length. No
explicit time-additive noise was added to cell lifetimes [i.e.,
η = 0 in Eq. (C5)].

The reason that the size control has little effect on ADS
benefits is as follows. Cells with more damage do take longer
to divide, but their lengths will not vary from faster-growing
cells because the growth of the cell’s length is also slower.
Because of this, cells with more damage do take longer to
divide, but their lengths will not vary from faster-growing
cells.

Our model retrieves the “timer” model if we do not explic-
itly model cell-size control.

APPENDIX E: POPULATION GROWTH
AND NORMALIZED ENTROPY FROM NOISE

AND ASYMMETRIC DAMAGE SEGREGATION
VIA THE EULER–LOTKA APPROACH

1. Euler–Lotka model and method of cumulant expansion

The starting point for these analyses is the Euler–Lotka
equation [46], which describes the growth of a population of
dividing individuals in terms of the number of births B(t ) as a

054404-13



VEDEL, KOŠMRLJ, NUNNS, AND TRUSINA PHYSICAL REVIEW E 109, 054404 (2024)

FIG. 5. Adding cell-size control to the system does not influence the conclusions of this study. For either model, the decrease in 〈T 〉 (a),
(d) predicted theoretically (dashed line) is still found both with (circles) or without (triangles) stochasticity in cell length at division. There is
also little difference between the average pure ADS lifetime (T ADS = ln 2/γ , blue) and the full average single-cell lifetime [including effects
of ADS as well as cell-size control and given by Eq. (C5), red] for all studied cases. Examples of distributions of �T , the variations between
pure ADS lifetimes and full single-cell lifetimes, have also been included for a = 0.5 (b), (c), (e), (f). These illustrate that the difference �T
between the full single-cell lifetime and the pure ADS lifetime [see Eq. (D1)] is very small when cells divide deterministically exactly at the
middle (panels B and E) because cell-size control ensures that any variations in cell length are quickly made negligible over few generations.
However, the variations are noticeable when the cells divide stochastically (c), (f), but these are evenly distributed around the ADS lifetime, so
these also do not impact the average population behavior because their contributions average to 0. Results calculated with λ = 2, tmin = 18 min,
μ = 1, Ngens = 20 and interrogated in a 20 min interval starting at 290 min; the first cell in the population has a random cell length drawn from
a normal distribution with mean 1 µm and standard deviation of 0.25 µm, for “sizer” the cells divide when the reach a length of 3 µm and for
“adder” they divide after adding 2 µm to their length at birth.

function of time t ,

B(t ) =
∫ ∞

0
B(t − τ )g(τ )b(τ ) dτ, (E1)

where g(τ ) is the distribution of doubling times in the popula-
tion and b(τ ) specifies the reproductive rate for cells present at
age τ . This equation holds independently of the mechanisms
leading to the doubling-time and reproductivity distributions,
i.e., it holds for both deterministic and stochastic cases. It
is rewritten assuming exponential population growth B(t ) =
N0eGt where N0 is a constant and G is the population growth
rate, and furthermore assuming that any dividing cell produces
two offsprint [b(τ ) = 2],

− ln 2 = ln
∫ ∞

0
e−Gτ g(τ ) dτ . (E2)

The right-hand side is the cumulant-generating function for
the random variable τ , a statistical function for which the co-
efficients of its Taylor-expansion are the statistical cumulants
of the generation specified by g(τ ) [59]. Assuming that the
population growth G rate is small, we rewrite Eq. (E2) by
truncating the Taylor series after the second-order term as

ln 2 ≈ κ1G − 1
2κ2G2, (E3)

where κn is the nth cumulant of the distribution of doubling
times g(τ ) [50]. The first two cumulants κ1, κ2 correspond
to the mean and variance, respectively. Using the method of
series inversion we express G uniquely as a series expansion
in terms of ln 2/κ1 [49,50],

G = ln 2

κ1
+ �

(
ln 2

κ1

)2

, � = 1

2

κ2

κ1
. (E4)

We show in Sec. S3 in the Supplemental Material [44] that
the error from these approximations is on the order of a few
percent for realistic conditions.

2. Population growth from noise alone

In the absence of asymmetry, all cells in the population
grow at the same rate due to ADS, and any variation between
single-cell doubling times is attributed to noise. We used this
when we extracted the noise distribution from the experimen-
tal data, and so this noise distribution has zero mean. We take
the population-mean single-cell doubling time to be given by
ADS with a = 0 [Eq. (B12)] and use the variance σ 2

ξ from the
noise distribution in the following.

Invoking κ1 = 〈T (a = 0)〉 and κ2 = σ 2
ξ and solving

Eq. (E3) for the population growth rate G yields the
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population growth rate from noise,

Gξ = 〈T (a = 0)〉
σ 2

ξ

⎡
⎣1 −

√
1 − 2 ln 2

σ 2
ξ

〈T (a = 0)〉2

⎤
⎦. (E5)

a. Scaling noise with stress using constant coefficient
of variation for noise

Using the assumption that the coefficient of variation for
noise CV = σξ/〈T 〉 is conserved with CV taken to be 0.23 (see
Sec. II D), we include this in Eq. (E5) and together with the
expression for 〈T (a = 0)〉 from Eq. (B12) find

Gξ = 1

C2
V (tmin + 2μλ)

[
1 −

√
1 − 2 ln 2C2

V

]
. (E6)

An interesting observation from this expression is that the
population grows slower under larger stress λ even though
the standard deviation of the noise σξ grows proportional to
the stress. This explains why the population growth under
noise alone decreases at large stress.

b. Population growth rate gain from noise alone

With the expression Eq. (E6) for the population growth
rate Gξ from the noise itself we obtain the growth rate gain
from noise alone by subtracting the baseline growth rate of a
population with ADS at a = 0 [see also Eq. (7)],

�Gξ = Gξ − GADS(a = 0). (E7)

From Eq. (E6) with Eq. (B13) for GADS(a = 0) we find

�Gξ = 1

C2
V (tmin + 2μλ)

[
1 − ln 2C2

V −
√

1 − 2 ln 2C2
V

]
.

(E8)

It follows from this expression that the entropy increase be-
comes smaller with stress, even as the noise amplitude grows
proportional to the increase in average single-cell doubling
time imposed by noise. This expression has been used in
Fig. 3(c).

3. Population growth and entropy increase
from ADS and noise together

To describe the population growth under both ADS and
noise we return to Eq. (E1), which becomes

1

2
=

∫ ∞

0

∫ ∞

−∞
e−G(τ+τξ ) ffull (τ, τξ ) dτξ dτ, (E9)

where ffull (τ, τξ ) is the joint probability distribution for ADS
(τ ) and noise (τξ ). Since ADS and noise are statistically

independent (see Sec. II A), we can rewrite the right-hand
side as

∫ ∞
0 e−Gτ fADS(τ ) dτ

∫ ∞
−∞ e−Gτξ fξ (τξ )2 dτξ where fADS

is the distribution of doubling times from ADS and fξ is the
zero-mean distribution of noise. Upon taking the logarithm
we find that the cumulant-generating functions for the contri-
butions from ADS and noise separate

ln

(∫ ∞

0

∫ ∞

−∞
e−G(τ+τξ ) fADS(τ ) fξ (τξ ) dτξ dτ

)

= ln
∫ ∞

0
e−Gτ fADS(τ ) dτ︸ ︷︷ ︸

Contribution from ADS alone

+ ln
∫ ∞

−∞
e−Gτξ fξ (τξ ) dτξ︸ ︷︷ ︸

Contribution from noise alone

.

(E10)

a. Solution from cumulant expansion

Each of the two terms in Eq. (E10) can be expanded in their
cumulants [see Eq. (E3)], resulting in

ln 2 ≈ Gfull〈T 〉ADS − G2
full

2

(
σ 2

ADS + σ 2
ξ

)
, (E11)

in which it has been used that the first cumulant is the mean
and the second cumulant is the variance, and where it has been
used that the mean damage is 0, 〈T 〉ξ = 0. Applying series
inversion [Eq. (E4)] to this expression results in

Gfull ≈ ln 2

〈T 〉ADS(a, μ, λ, tmin)
+ 1

2

[
σ 2

T,ADS(a, μ, λ, tmin)

〈T 〉ADS(a, μ, λ, tmin)

+ C2
V 〈T 〉ADS(a, μ, λ, tmin)

]

×
(

ln 2

〈T 〉ADS(a, μ, λ, tmin)

)2

, (E12)

where 〈T 〉ADS, σ
2
T,ADS are given by Eqs. (6) and (B6).

It is now straightforward to obtain an expression for the
population growth rate gain �G by subtracting G(a = 0, ξ =
0) from Eq. (E12),

�Gfull ≈ ln 2

〈T 〉ADS(a, μ, λ, tmin)
+ 1

2

[
σ 2

T,ADS(a, μ, λ, tmin)

〈T 〉ADS(a, μ, λ, tmin)

+ C2
V 〈T 〉ADS(a, μ, λ, tmin)

]

×
(

ln 2

〈T 〉ADS(a, μ, λ, tmin)

)2

− ln 2

tmin + 2μλ
, (E13)

which is given in Eq. (7) and used in Fig. 3(c).
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Kiviet, R. Hauschild, G. Tkačik, and C. C. Guet, Biased par-
titioning of the multidrug efflux pump AcrAB-TolC underlies
long-lived phenotypic heterogeneity, Science 356, 311 (2017).

[56] S. K. Govers, J. Mortier, A. Adam, and A. Aertsen, Protein
aggregates encode epigenetic memory of stressful encounters
in individual Escherichia coli cells, PLoS Biol. 16, e2003853
(2018).

[57] T. S. Ursell, J. Nguyen, R. D. Monds, A. Colavin, G. Billings, N.
Ouzounov, Z. Gitai, J. W. Shaevitz, and K. C. Huang, Rod-like
bacterial shape is maintained by feedback between cell curva-
ture and cytoskeletal localization, Proc. Natl. Acad. Sci. USA
111, E1025 (2014).

[58] L. Wasserman, All of Statistics—A Concise Course in Statistical
Inference (Springer, Berlin, 2004).

[59] N. G. van Kampen, Stochastic Processes in Physics and Chem-
istry, 3rd ed. (North-Holland Personal Library, Amsterdam,
2007).

054404-17

https://doi.org/10.1073/pnas.0700463105
http://link.aps.org/supplemental/10.1103/PhysRevE.109.054404
https://doi.org/10.1093/genetics/156.3.927
https://doi.org/10.1098/rsif.2019.0827
https://doi.org/10.1103/PhysRevLett.125.048102
https://doi.org/10.1016/j.tpb.2012.09.003
https://doi.org/10.1088/0034-4885/77/2/026601
https://doi.org/10.1158/0008-5472.CAN-14-2103
https://doi.org/10.1038/nrmicro.2016.34
https://doi.org/10.1038/s41579-019-0196-3
https://doi.org/10.1126/science.aaf4762
https://doi.org/10.1371/journal.pbio.2003853
https://doi.org/10.1073/pnas.1317174111

