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The random language model [Phys. Rev. Lett. 122, 128301 (2019)] is an ensemble of stochastic context-free
grammars, quantifying the syntax of human and computer languages. The model suggests a simple picture of
first-language learning as a type of annealing in the vast space of potential languages. In its simplest formulation,
it implies a single continuous transition to grammatical syntax, at which the symmetry among potential words
and categories is spontaneously broken. Here this picture is scrutinized by considering its robustness against
extensions of the original model, and trajectories through parameter space different from those originally
considered. It is shown here that (i) the scenario is robust to explicit symmetry breaking, an inevitable component
of learning in the real world, and (ii) the transition to grammatical syntax can be encountered by fixing the deep
(hidden) structure while varying the surface (observable) properties. It is also argued that the transition becomes
a sharp thermodynamic transition in an idealized limit. Moreover, comparison with human data on the clustering
coefficient of syntax networks suggests that the observed transition is equivalent to that normally experienced
by children at age 24 months. The results are discussed in light of the theory of first-language acquisition in
linguistics, and recent successes in machine learning.
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Language is a way to convey complex ideas, instructions,
and structures through sequences. While ubiquitous in every-
day life, it also has a central role in computer science and
molecular biology. One can ask if these disparate applications
of language have any common features. The answer, appar-
ently, is positive: the formalism of generative grammar, due to
Post and Chomsky [1,2], though initially developed for human
language, was immediately applied to computer languages,
where it has remained important [3], and it has also been
applied to the molecular languages spoken by the cell [4,5].
Other idiosyncratic applications highlight the flexibility of the
approach [6].

Generative grammar models the syntax of language by a set
of rules that, upon repeated application, yield “grammatical”
sentences. In this framework, for any grammatical sentence,
there is a latent “derivation” structure that encodes the syntax
of that sentence; some examples are shown in Fig. 1.

In the computer science and linguistics literature, research
on generative grammars focuses on classifications and algo-
rithms: classifications of grammars based on the complexity
of the rules, corresponding classifications on the types of
simple computers (automata) that can read languages, and
algorithms to parse text. Many results exist on the time and
resource cost of parsing [3]. Yet, if we admit that languages
are always used by systems embedded in the physical world,
then new questions arise: How much energy does it take to
parse a grammar of a given complexity [7]? How does a
child navigate the space of all potential languages to hone
in on the one taught to her? More broadly, one can ask, in
the spirit of statistical physics, whether large grammars will
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show universality of the same type familiar from equilibrium
statistical mechanics.

As an inroad to these questions, in Ref. [8] the se-
nior author proposed the random language model (RLM), a
simple ensemble of context-free grammars (CFGs), the class
of grammars most relevant to human and computer language.
In its stochastic version, a context-free grammar assigns a
probability (or more generally a weight) to each rule. Ref-
erence [8] explored the information-theoretic properties of
grammars as functions of the variance of rule weights, the
number of hidden categories, and the number of words.

The main result of Ref. [8] is that the entropy of text
produced by a context-free grammar depends strongly on
the variance of the weights, such that two regimes are seen:
a simple one in which, despite the presence of stochastic
rules, sentences are nearly indistinguishable from uniform
random noise; and a complex one in which sentences convey
information. The transition between these regimes could be
understood as a competition between Boltzmann entropy and
an energylike quantity.

This work left many open questions:
(i) Is the schematic learning scenario of Ref. [8] robust to

inevitable complications of real-world human language learn-
ing, such as explicit symmetry breaking?

(ii) Is the transition shown in Ref. [8] a true thermodynamic
phase transition in an appropriate thermodynamic limit?

(iii) Can the RLM be solved analytically?
(iv) What are the energy costs of physical systems that use

CFGs to produce text?
In this work, we address (i) and (ii) and comment on (iii);

(iv) will be addressed elsewhere. We first show how previous
theory implies that the RLM transition can be reached by
increasing the heterogeneity of surface rules, and we confirm
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FIG. 1. Illustrative derivation trees for (a) a simple English sen-
tence, and (b) RNA secondary structure (after [4]). The latter is a
derivation of the sequence “gacuaagcugaguc” and shows its folded
structure. Terminal symbols are encircled. Figure reproduced from
[8].

this numerically. Then we consider the learning problem and
motivate the RLM with a bias. Simulating this, we see that
the RLM transition is preserved, but shifted due to the bias.
A simple theory can rationalize the initial onset of nontrivial
sentence entropy. To compare with human data in Ref. [9]
we measure the clustering coefficient of a sentence graph,
constructed from sampled sentences. This clustering is small
until the RLM transition, where it begins to grow. Such a
growth in clustering is also observed in syntactic networks
made from human data, and it supports that the RLM tran-
sition is equivalent to that typically experienced by children
around 24 months. Finally, we discuss these results in light of
linguistic theory on first-language acquisition.

I. BRIEF REVIEW OF THE RANDOM LANGUAGE MODEL

To establish notation, here we briefly review the RLM.
Without loss of generality, CFGs are assumed to be in Chom-
sky normal form, so that rules either take one hidden symbol
a to two hidden symbols b, c, or one hidden symbol a to an
observable one, B. These are quantified by weights Mabc and
OaB, respectively. For a sentence o j, j = 1, . . . , � with deriva-
tion σ j, j = 1, . . . , 2� − 1 on the tree T , define πabc(σ )
as the (unnormalized) usage frequency of rule a → bc, and
ρaB(σ, o) as the (unnormalized) usage frequency of a → B.
Let the number of hidden symbols be N and the number of
observable symbols be T . Then consider the energy function

E (σ, o; M, O) = −
∑
a,b,c

πabc log Mabc −
∑
a,B

ρaB log OaB. (1)

All logarithms here and in what follows are natural (base
e). The Boltzmann weight e−βE counts derivations with a
multiplicative weight (Mabc)β for each usage of the interior
rule a → bc, and weight (OaB)β for each usage of the surface
rule a → B. We furthermore assign a weight to the tree itself:
if each hidden node gets a weight q and each surface node
gets a weight p, then a rooted tree with � leaves gets a weight
q�−1 p�. The relative probability p/q controls the size of trees;
as in Ref. [8], we fix q = 1 − p and set p = 1/2 + δ, where
δ � 1 to get large trees.

Given the grammar, the probability of a derivation is then

P (T , σ, o|M, O) = 1

Z
q�−1 p�e−βE . (2)

Note that although we write the weight of a derivation
in a Boltzmann-like form, the actual form of the weight is
simply the conventional definition of a stochastic context-free
grammar.

The RLM is an ensemble of CFGs. In Ref. [8] it was
argued that a generic model will have log-normally distributed
weights, so that the probability of a grammar is

PG(M, O) ≡ Z−1
G J e−εd sd e−εsss , (3)

where sd and ss are defined by

sd = 1

N3

∑
a,b,c

log2

[
Mabc

M

]
, ss = 1

NT

∑
a,B

log2

[
OaB

O

]
(4)

and J = e− ∑
a,b,c log Mabc−

∑
a,B log OaB . Here M = 1/N2 and O =

1/T . It is straightforward to show that εd and εs satisfy

sd = (2ε̃d )−1, ss = (2ε̃s)−1, (5)

where · denotes a grammar average and ε̃d = εd/N3, ε̃s =
εs/(NT ).

Two arguments were given in Ref. [8] for the log-normal
distribution: first, since languages must be comprehensible
to a variety of speakers at any moment, they cannot evolve
rapidly. If they evolve slowly under independent multiplica-
tive adjustments to the weights, then a log-normal distribution
follows by the multiplicative version of the central limit theo-
rem [10]. Indeed, the log-normal distribution is ubiquitous for
the distributions of positive random variables, such as transi-
tion weights, in real-world systems [11]. In this interpretation,
εd and εs are general control parameters for the ensemble.

A second independent argument is to assume that sd and ss

are the relevant quantities to characterize grammars over the
course of learning; then a log-normal follows by a maximum
entropy argument. The quantities sd and ss could be motivated
a priori as appropriate measures of heterogeneity, or a posteri-
ori by the observation that they control the Shannon entropy of
sequences (along with N and T ). In this interpretation, εd and
εs are Lagrange multipliers that enforce the expected values
of sd and ss.

In either interpretation, εd and εs are key parameters for
the model because they control how strictly rules are fol-
lowed, through Eq. (5): when they are large, then Mabc ≈ M
and OaB ≈ O, so that derivations just create uniform random
noise, as confirmed by Shannon entropies. Instead when they
are small, the rules become highly specific and strict.

Let us show how β can be scaled out of the problem.
Consider the grammar and derivation average of a generic
observable of a derivation O (σ, o):

O = 1

ZZG

∫
dMdO J (M, O) e−εd sd (M )e−εsss (O)

×
∑
σ,o

e−βE (σ,o;M,O)O (σ, o). (6)

Making a change of variable Mβ

abc = M ′
abc, Oβ

aB = O′
aB we get

O = 1

βN3+NT

1

ZZG

∫
dM ′dO′ J (M ′, O′) e

− εd
β2 s′

d (M ′ )

× e
− εs

β2 s′
s (O′ ) ∑

σ,o

e−E (σ,o;M,O)O (σ, o), (7)
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where s′
d (M ), s′

s(O) are defined as in (4) with the replacement

M → M
β
, O → O

β
. It follows that the parameters εd , εs, and

β do not affect observables independently, but only in the
ratios εd/β

2 and εs/β
2, up to the other trivial modifications. In

particular, increasing temperature is equivalent to increasing
εd and εs. For this reason, in Ref. [8] these parameters were
called deep and surface temperatures, respectively. From now
on we set β = 1.

The model (3) was called in Ref. [8] the random language
model (RLM). The properties of the sentences as a function
of grammar heterogeneity were studied in Refs. [8,12,13].
The main result of Ref. [8] is that as εd is lowered, there is
a transition between two regimes at εd ≈ N3 logα N , where
α = 1 or 2 depending on the quantity considered. Theory
in Refs. [12,13] predicts this scaling (with α = 1) and also
predicts that the transition can be reached by fixing εd but
lowering εs.

Theory for the RLM was developed in Refs. [12,13], with
final results obtained in the replica-symmetric approximation.
For a text of m sentences and total length �, the result of
Refs. [12,13] is that the Boltzmann entropy of configurations
is

SRS = (� − m) log(gN2/h) + � log(gT h)

− �

4ε̃s
− � − m

4ε̃d
+ S�,m, (8)

where S�,m is a combinatorial coefficient independent of the
other parameters, and g and h are couplings that control the
size of trees. In the considered limit of large trees, g = h ≈
1/

√
8.

Now, by a standard argument [14], the Boltzmann entropy
of configurations is equal to the Shannon entropy of the proba-
bility distribution over configurations. This latter quantity can
be written as the entropy of forests at given m and �, plus the
conditional entropy of hidden configurations on those trees,
plus the conditional entropy of leaves on those configurations.
Each of these entropies can be written as the corresponding
rate multiplied by the number of symbols. There are � observ-
able symbols and 2� − m hidden symbols, but all roots are set
to the start symbol. Thus

SRS = Sforest(�, m) + (2� − 2m)Hd + �Hs|d , (9)

where Hd is the entropy rate of hidden symbols, and Hs|d
is the conditional entropy rate of observable symbols, given
the hidden ones. These configurational entropies are trivial at
ε̃d , ε̃s = ∞ so that we can write

SRS(ε̃d = ∞, ε̃s = ∞)

= (� − m) log(gN2/h) + � log(gT h) + S�,m

= Sforest(�, m) + (2� − 2m) log N + � log T .

The factors of log N and log T cancel from this equality, as
they must. As a result, we obtain Sforest(�, m) and finally

SRS = Sforest(�, m) + (� − m) log(N2) + � log(T )

− �

4ε̃s
− � − m

4ε̃d
. (10)

Comparing with (9) and noting that this equation must hold
for all �, m (with �, m → ∞, �/m finite), we deduce

Hd = log N − 1

8ε̃d
, Hs|d = log T − 1

4ε̃s
, (11)

in the replica-symmetric approximation. Since these entropies
cannot be negative, they give lower bounds on the validity
of the replica-symmetric approximation (in ε̃d , ε̃s space). At
small enough ε̃d or ε̃s, the approximations used to derive (11)
must break down. It also follows from this that the normal-
ized entropies Hd/ log N and Hs|d/ log T should collapse with
ε̃d log N and ε̃s log T , respectively.

Note that Ref. [8] measured Hs, not Hs|d . In general, the
Bayes rule for conditional entropy is Hs|d = Hs − Hd + Hd|s.
When ε̃s is small, then knowing the observable symbols also
fixes their POS tags, so Hd|s ≈ 0 and Hs(ε̃s � 1) ≈ Hs − Hd .
However when ε̃s is large, then knowing the hidden symbol
tells you nothing about the observable symbol, so Hs|d ≈ Hs.
Thus generally we expect that as a function of ε̃s, Hs behaves
similarly to Hs|d .

We emphasize that although εd and εs play parallel roles
in the distribution, and in many aspects of theory, they are
distinct parameters with asymmetric control over observables,
since the hidden structure of trees affects sentences but not
vice versa. Roughly speaking, we can demarcate four regimes.
To explain these, we use the example of phrase structure,
where observable symbols are words and hidden symbols are
abstract categories, like noun phrase (NP), verb phrase (VP),
verb (V), and so on. In syntax trees, the hidden symbols that
appear just above the leaves are called part-of-speech (POS)
tags—symbols like verb, noun, adjective, and so on.

If ε̃d log N 	 1 while ε̃s log T � 1, then sentences will
consistently match words with their POS tags, but there will
be no syntactic structure connecting the words together. Con-
versely if ε̃d log N � 1 while ε̃s log T 	 1, then sentences
have structure, but the final observable words are randomly
assigned from POS categories. If both of these parameter
combinations are large, then sentences lack all structure; while
if both are small, then sentence structure is complete. This
phase diagram is sketched in Fig. 2, along with three paths
through the space.

As a consequence, one can discuss learning by different
routes through (ε̃d , ε̃s) space (in addition to variations in N
and T , which could also be considered). In particular, theory
predicts that the RLM transition can be probed by fixing ε̃d

and lowering ε̃s. We now show that this prediction is verified
by numerics.

A. The RLM transition is encountered
by increasing surface heterogeneity

We simulated the RLM with T = 1000 and ε̃d ≈ 0.03 at
various values of N and ε̃s. For each parameter value, 60
distinct grammars were constructed, and 200 sentences were
sampled for each grammar. The results for the surface entropy
are shown in Fig. 3(a); as predicted by theory, the entropy
begins to drop from its trivial value at ε̃s ≈ 1/ log T ≈ 0.1.

Since ε̃d is fixed as ε̃s varies, there is no variation in the hid-
den parts of the derivations: the quantities shown in Ref. [8] to
quantify the RLM transition, like the deep entropy Hd and the
order parameter Q2, are flat as ε̃s varies. Instead the transition
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FIG. 2. Schematic phase diagram of the RLM, in the replica-
symmetric approximation. Text is grammatical in the lower-left
region, demarcated approximately by ε̃s log T ≈ 1, ε̃d log N ≈ 1
(light dotted). Three paths γ j through the diagram are sketched: γ1

at fixed ε̃s, considered in [8]; γ2 with ε̃s = ε̃d , discussed below; and
γ3 at fixed ε̃d , also discussed below. All logarithms are base e.

can be quantified by the surface analog of the order parameter
Q2. For a surface rule a → B define

PaB(M, O) = 〈δσα,a(T δoα,B − 1)〉, (12)

averaged over all surface vertices α and over all derivations.
Here σα is the hidden symbol and oα the observable one.
P measures how the application of this rule differs from a
uniform distribution. An Edwards-Anderson-type order pa-
rameter for surface structure is

P2 =
∑
a,B

P2
aB, (13)

where the overline denotes an average over grammars. This
quantity is shown in Fig. 3(b). As expected, P2 increases from
a small value at high ε̃s around the transition point.

II. LEARNING A CONTEXT-FREE GRAMMAR

Now we consider the learning problem. How does a child
actually learn the specific grammar of their environment?

Our goal is not to completely answer this question, but
simply to motivate why and how the symmetry of symbols
should be explicitly broken. As a simple model, we suppose
that the speaker utters sentences by drawing them from a
stochastic grammar, which we take to be context-free. In a
stochastic grammar, the weights quantify their frequency of
use, which, for learners, is a proxy for their correctness. When
all the weights are equal, nothing is known, and the gram-
mar samples uniform noise (“babbling”). In contrast, when
the weights have a wide distribution, the grammar is highly
restrictive and the output sentences are highly nonrandom.

The learning scenario suggested in Ref. [8] was quite
generic: suppose the child knows, possibly due to physiologi-
cal constraints, that she is learning a CFG. Initially she knows
nothing of weights, so she starts at εd = εs = ∞. Her initial
speech will be uniform random noise. Now, as she tries to
mimic her caregivers, we assume that she tunes the grammar
weights. In doing so, the corresponding values of εs and εd ,
which could be defined from (5), will inevitably decrease.
Then, the prediction of the RLM is that the entropy of her
speech will remain high for some time, until quite suddenly it
begins to decrease. At this point her speech begins to convey
information.

This scenario is quite schematic. Let us try to make it more
concrete.

Consider first an optimal learning scenario. She hears sen-
tences γ , with words oγ

j , j = 1, . . . , �γ , and wants to find the
optimal grammar that produces them. It is natural to maximize
the log-likelihood of the grammar, given the data, given by

L (M, O; o) = logP (o|M, O), (14)

which is considered as a function of the grammar, with fixed
sentences {o}. We assume that the space of grammars that
she searches is the full set of possibilities, but of course
physiological constraints may also play a role. The sentence
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FIG. 3. The RLM transition can be encountered by lowering the surface temperature εs. Curves are shown at T = 1000, ε̃d ≈ 0.03, and
indicated values of N ; (a) the surface entropy drops around ε̃s ≈ 1/ log T , while (b) the surface order parameter P2 increases as ε̃s is lowered.
All logarithms are base e.
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FIG. 4. The RLM transition is robust to the addition of a Zipfian surface bias. Curves are shown at T = 100, ε̃d ≈ 0.03, and indicated
values of bias strength h; (a) the surface entropy vs ε̃s; bias increases from left to right; (b) the surface entropy vs an effective ε̃eff

s (ε̃s, h) (see
text). The onset of nontrivial surface entropy occurs at approximately ε̃eff

s ≈ 1, but its development is weaker at larger biases. In (c) the same
data from (b) are shown as an approach to the trivial value Hs → log T , valid as ε̃s → ∞. All curves intersect approximately at ε̃s ≈ 1. All
logarithms are base e.

probability is

P (o|M, O) =
∏
γ

∑
Tγ ,σ

γ

k

P (oγ , σ γ ,Tγ |M, O) (15)

=
∏
γ

1

Z

∑
Tγ ,σ

γ

k

e−E (oγ ,σ γ ,Tγ ;M,O)

︸ ︷︷ ︸
≡Z (oγ )

, (16)

where Z (oγ ) is then a partition function restricted to the given
sentence oγ . In principle, she can estimate these quantities by
speaking: every sentence she speaks adds a contribution to the
denominator Z . If she feels that her caregiver understood it,
then she also adds a contribution to the numerator Z (oγ ).

Unfortunately computing these restricted partition func-
tions is difficult, both analytically and for the child. So we
consider a simpler, more idealized scenario. She keeps track
of a lexicon

{tree, mama, toy, book, open, close, eat, sleep, up, down,. . .},

how many times she’s heard each word, and also the cate-
gories to which each word belongs

{noun, verb, ad ject ive, . . .},

called part-of-speech (POS) tags.
She thus obtains an estimate ρ̃aB of the joint word & POS

frequency, ρaB. Then she maximizes the likelihood of ρ̃,

L (M, O; ρ̃ ) = logP (ρ̃|M, O) (17)

= log
∑

{T ,σ,o}
δρ(o,σ ),ρ̃P (T , σ, o|M, O), (18)

where ρ(o, σ )aB is the count of word B and POS tag a in the
text of total length �, i.e.,

ρ(o, σ )aB =
�∑

j=1

δo j ,Bδσ j ,a. (19)

The Kronecker δ in (18) counts only texts with the right
number of each word and POS tag. We have

δρ(o,σ ),�ρ̃ =
N∏

a=1

T∏
B=1

δρ(o,σ )aB,ρ̃aB (20)

=
∏
a,B

∫ 2π

0

dλaB

2π
eiλa,B (ρ(o,σ )aB−ρ̃aB ) (21)

≡
∫

Dλ ei
∑

a,B λa,B (
∑�

j=1 δo j ,Bδσ j ,a−ρ̃aB )
. (22)

The energy depends on the words through the term

∑
a,B

ρaB log OaB =
∑
a,B

⎡
⎣ �∑

j=1

δo j ,Bδσ j ,a

⎤
⎦ log OaB (23)

which has the same dependence on the text and POS tags. So
we can write

L (M, O; ρ̃ ) = log
1

Z

∑
{T ,σ,o}

∫
Dλ e−iλ:ρ̃e−E (T ,σ,o|M,O(λ),

(24)

where

log O(λ)aB = log OaB + iλaB (25)

is a shifted surface grammar (in the complex plane). Note,
however, that when a saddle point is attained (as will be the
case for large texts), iλ will be real, so that the grammar is
real-valued, as it must be.

Finally, L becomes

L (M, O; ρ̃ ) = log
1

Z

∫
Dλ e−iλ:ρ̃Z (M, O(λ)), (26)

so the likelihood depends on a shifted grammar. If we can
evaluate this, then we can derive the maximum-likelihood
learning strategy, under the given assumptions.
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However L is evaluated, the natural learning strategy on
the grammars is simply to go in the gradient of increasing
likelihood:

dMabc

dt
= k

∂L

∂Mabc
, (27)

dOaB

dt
= k

∂L

∂OaB
, (28)

where k is the learning rate.
Roughly speaking, L is a difference of (minus) free ener-

gies: that of the RLM in the presence of a biased grammar (to
match the observed ρ̃), but subtracting off the original RLM
free energy. Thus the simple picture of [8] is slightly modified:
the learning scenario can be viewed as a free-energy descent,
but only along the directions that lower the free energy cou-
pled to the correct biased grammar; if a change in the grammar
equally affects Z (M, O(λ)) and Z (M, O), then it will cancel
out of L .

Let us try to understand (26) better. It involves the RLM
partition function for a biased O matrix. Note in general that

∂ log Z

∂ log OaB
= 1

Z

∑
{T ,σ,o}

ρaB e−E = 〈ρaB〉. (29)

Now it is known that natural languages exhibit Zipf’s law: the
probability of a word decreases as a power law of its rank.
Thus ρaB will exhibit such behavior, and by this computa-
tion so should the dependence of log Z on log OaB. Thus to
understand Z (M, O(λ)) we should simulate the RLM in the
presence of a bias iλ, which we take to have a Zipfian form.
We consider this next.

III. RLM WITH A BIAS

The learning scenario motivates considering the RLM with
a bias in the surface grammar. Consider

log O′
aB = log OaB + haB, (30)

where h is the bias, and O is given the distribution from the
RLM. Then O′ has the distribution

P (O′) ∝
∏
a,B

1

OaB
e−ε̃s

∑
a,B log2(O′

aBe−haB /O)

∝
∏
a,B

1

O′
aB

e−ε̃s
∑

a,B log2(O′
aB/O)eε̃s

∑
a,B haB log O′

aB/O. (31)

To disentangle the effect of the bias from that of εs, we take
haB ∝ 1/ε̃s. As a Zipfian form, we consider

haB = h

ε̃s

1

B
, (32)

where we arbitrarily order the words in decreasing rank. The
scalar h is the bias strength.

We simulated the RLM with Zipfian bias and a variety of
field strengths for T = 100 and ε̃d ≈ 0.03. The resulting Hs

is shown in Fig. 4. The RLM transition is present in all cases,
but its position depends on the bias strength h. A larger bias
causes the transition to occur earlier (at higher ε̃s). This is
intuitively clear, as the RLM transition was shown to induce
the breaking of symmetries among symbols [8]; since the

bias breaks this symmetry explicitly, the transition occurs at
higher ε̃s.

Inspecting Fig. 4(a), it appears as though the data for
different magnitudes of h (“bias strengths”) should collapse
with some rescaled version of εs. This suggests that a simple
model may capture the dependence on the bias. The transition
discussed in [8,12,13] is controlled by the heterogeneity of
the grammar, measured in the original model by (4), which
satisfies (5). Thus we can see how ss is renormalized by the
bias. We evaluate

ss(h) ≡ 1

NT

∑
a,B

log2

[
OaBehaB

O

]

= 1

NT

∑
a,B

∫
dOaB

OaB
√

π/ε̃s
log2

[
OaBehaB

O

]
e−ε̃s log2

[ OaB
O

]

= 1

NT

∑
a,B

∫
doaB√
π/ε̃s

(oaB + haB)2e−ε̃so2
aB

= 1

NT

∑
a,B

[
1

2ε̃s
+ (haB)2

]

= 1

2ε̃s
+ h2. (33)

We can define a renormalized ε̃s by

1

2ε̃eff
s

= 1

2ε̃s
+ h2. (34)

As shown in Fig. 4(b), this approximately collapses the initial
decay of Hs from its trivial value. Looking at this initial decay
on a logarithmic scale [Fig. 4(c)], all curves appear to cross at
a common point ε̃eff

s ≈ 1.
We also simulated the RLM with a staggered field of

the form haB = h/ε̃s × gB, where gB takes only three values
1,

√
1/T , and 1/T for the first, second, and third of the sym-

bols, respectively. The form and scaling is chosen to have a
similar overall amplitude as the Zipfian bias. We found that
for the same values of h as above, there was no effect of the
bias on Hs. We return to this later.

IV. COMPARISON WITH HUMAN DATA

How does the RLM compare to first-language acquisition
in children?

In previous work, syntactic networks were built from data
of children’s utterances between 22 and 32 months of age
[9], with data from the Peters corpora [15,16]. The networks
were built from dependency structures, with a mix of auto-
mated and manual procedures. These structures are graphs
that connect observable symbols, related to but distinct from
phrase structure trees. Their aim is to represent, in a linear
fashion, the dominant relationships between words, for exam-
ple, subject-verb, or modifier-head. In Ref. [9], a variety of
network-theoretic quantities showed a clear transition around
24 months of age; for example, both the word degree (the
number of other words used with a given word) and the
clustering coefficient (measuring the extent to which words
are clustered) increase dramatically at this transition. Quanti-
tatively, the clustering is found to be less than 0.01 before age
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FIG. 5. Example syntax forest (a), dependency graph (b), and directed sentence graph (c) obtained from human data. Note that the word
“fix” appeared in the dependency graph of [9] but not in the syntax tree shown therein.

22.5 months, and above 0.08 after 24 months. The maximal
value shown is 0.2 at age 26.5 months.

If the RLM is to apply to first-language acquisition, then
we should be able to see similar behaviors in these quantities,
in appropriate graphs constructed from syntax trees. However,
the latter are not equivalent to the dependency graphs. In the
setting of the RLM where words have no semantic meaning,
there is no unambiguous way to create dependency structures.
Therefore, we build “sentence graphs” as follows: we take
the observed sentences (o1, o2, . . . , o j, . . .) and add a link to
the graph from B to A if o( j) = B, o( j + 1) = A, for some
observable symbols A and B and index j. This directed graph
includes many true dependency relations, but also spurious
ones that would be absent in a more complete analysis. It gives
a first approximation to the dependency graphs.

To illustrate the similarities and differences between our
graphs and those in [9], in Fig. 5(a) we reproduce the subset of
syntax trees shown in [9], along with their dependency graph
in Fig. 5(b). In Fig. 5(c) we show our directed sentence graph.
One can see that the undirected structure of the graphs is very
similar, while the direction of links is not always the same.
For example, for the phrase “telephone go right there” the
dependency graph identifies “go” as the head and points links
towards it, while in our directed graph the links follow the
final phrase ordering. As a result of this incomplete matching
of the edge directions, we investigated both the directed graph
described above, along with the undirected version where
edges are not directed.

In first-language acquisition, both the size of the vocabu-
lary and the manner in which the words are used changes as
the child learns. For simplicity, in comparison with the RLM
we will consider a situation in which the vocabulary is fixed.
This is motivated by the fact that, in the RLM, the position
of the transition scales with εd log N if controlled by εd and

N , or εs log T if controlled by εs and T : these show a weak
logarithmic dependence on the number of symbols/words, so
that we expect the ε’s to characterize the dominant changes
during learning; future work could consider an explicit model
for how N and T change during learning. Therefore, in what
follows we focus on the clustering coefficient and the degree
distribution, both of which can be meaningfully compared
regardless of N and T .

Initially, we consider the path γ3 in Fig. 2. We confirmed
that the results are very similar along path γ2 (results not
shown).

We investigated the clustering coefficient both for the di-
rected graph, constructed as above, and the undirected graph
constructed by adding the reverse links. The resulting clus-
tering coefficients are shown in Figs. 6 and 7. As the bias is
varied, a clear increase is observed around ε̃eff

s ≈ 0.1, con-
sistent with the drop in sentence entropy. Similarly, as N
is varied, the clustering also increases around the transition
point. Since a very similar behavior is observed for both our
directed and undirected graphs, we expect that the match
between this result and that found in [9] is not a coincidence.

The linguistic interpretation of this behavior is interesting
[9]: the transition marks the point where the child begins to
use functional items like a or the to connect many words. It
thus represents the learning of a particular class of grammati-
cal rules.

Reference [9] also looked at the degree distribution of
dependency graphs, finding that below the transition, graphs
were scale-free with P (ds) ∼ 1/d1.3

s . No information was
given on the behavior of the distribution during learning.
To compare with the degree distributions measured in [9],
we measured the degree distribution of our sentence graphs,
shown in Fig. 8. We find that a power-law regime can be
discerned, P (ds) ∼ 1/dγ

s , but with an exponent that depends
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FIG. 6. The clustering coefficient of word graphs increases at the RLM transition for T = 100 and indicated Zipfian biases, with strength
h. Both (a) directed and (b) undirected graphs show a similar increase of clustering around the transition point ε̃eff

s ≈ 1. In both plots, the bias
increases from right to left at the top.

on ε̃s. In general, we find that the exponent decreases in mag-
nitude as ε̃s decreases. At ε̃s = 10−2.2, the exponent matches
what was observed in [9], but we note that this result does
not appear to be stable at lower ε̃s, where a hump develops
at large degree. Moreover, other corpora show various expo-
nents: in Ref. [17], texts in Czech, German, and Romanian
show exponents 2.3, 2.2, and 2.2, respectively.1 Therefore,
both the human data and the RLM show scale-free behavior in
the nontrivial regime. A more complete analysis of the human
data over the course of learning would permit a more refined
comparison.

Finally, we also looked at the clustering coefficient across
paths γ1 and γ2 in Fig. 2 (data not shown). We find that along
γ1, Cs is consistently high, ∼0.7–0.9, while along γ2, the
trajectory is very similar to that along γ3 shown in Fig. 7. This
supports the idea that the first-language-acquisition learning
curve does not take place at fixed small ε̃s. Overall, these re-
sults support the idea that the RLM captures the initial onset of
learning grammatical structure in first-language acquisition.

1These are the exponents of undirected graphs; exponents for in-
degree and out-degree graphs are similar.

V. FINITE-SIZE SCALING

True thermodynamic phase transitions only occur in the
thermodynamic limit, because in a finite system, the partition
function is an analytic function of control parameters. In the
RLM, there are two distinct ways in which systems can be
large: first, the sentence size � gives the size of derivation
structures, while N and T are the alphabet sizes, controlling
the potential complexity of grammars. For this reason, in [8]
the senior author tuned the control parameters such that sen-
tences were large (with a cutoff �max ∼ 1000), and moreover
crucial observables were shown at various N . The existence of
finite-size scaling in N over an appreciable range from N = 10
to 40, and here up to N = 80, shows that the basic phenomena
of the RLM are not particular to small or large N .

A recent work [18] questioned whether the RLM shows
a true thermodynamic phase transition. By a combination
of analytic and numerical arguments, the authors argue that
there is no phase transition at finite ε̃d and finite N in the
RLM. However, as already shown in [8], to obtain satisfactory
collapse of the data, quantities need to be collapsed with
ε̃d logα N , where α = 1 or 2 depending on the quantity con-
sidered. This is confirmed by theory that predicts α = 1; see,
for example, (11) (after division by log N to compare with
numerical results).
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FIG. 7. The clustering coefficient of word graphs increases at the RLM transition for T = 1000 and indicated N . Both (a) directed and
(b) undirected graphs show a similar increase of clustering around ε̃s ≈ 0.1.
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FIG. 8. Degree distribution of sentence graphs at indicated values of N and (a) ε̃s = 10−2.2, (b) ε̃s = 10−1.6, (c) ε̃s = 10−0.99. In all cases,
an approximate power-law regime can be discerned. The shown lines have exponents 1.3, 2, and 3 for (a), (b), and (c), respectively.

Reference [18] measured in particular the Binder cumulant

U = 1 − 〈(πa − 〈πa〉)4〉
3〈(πa − 〈πa〉)2〉2

, (35)

which is 0 if πa is Gaussian, and nonzero otherwise. Here
πa is the empirical probability of observing hidden symbol a,
related to the order parameter Q2. Reference [18] found that
U has a dip at the transition, which becomes infinitely deep as
N → ∞, suggesting that the RLM becomes a true thermody-
namic phase transition in this limit. Reference [18] suggests
that the ε̃d at which the minimum of U is obtained goes to
zero as 1/N1.61 but their fit is suspect: at the largest values of
N that they use (only N = 10), the plot of log ε̃d versus logU
has a distinct curvature, indicating that functional dependence
on N is not a power law. It would indeed be very strange if
U did not collapse with ε̃d logα N as all other quantities do.
The difference between N1.61 and log2 N in the range of small
N = 1, . . . , 10 considered by Ref. [18] is slight.

We measured the same quantity over an ensemble con-
trolled by ε̃d but found that the fluctuations in this quantity
were huge, indicating that it is not self-averaging. Instead
we found cleaner measurements of the Binder cumulant of
πB, the distribution of observable symbols, in the ensemble
considered above, dependent upon ε̃s. As shown in Fig. 9, Us

begins to differ from zero at the transition. On logarithmic
axes, this onset appears to collapse with a logarithmic factor of
N , but not the power law N1.61 reported in Ref. [18]; the much
larger range of N considered here allows us to distinguish
these collapses much easier than would be possible in the

range N = 1, . . . , 10. When the bias h is varied, a similar
behavior is observed (not shown).

It was mentioned in Ref. [18] that the behavior of the
Binder cumulant is similar to that observed in the 3D Heisen-
berg spin glass [19]. Thus, contrary to the title of Ref. [18],
the results within actually support the existence of the RLM
transition, in the limit N → ∞, in appropriately rescaled vari-
ables. Since true thermodynamic phase transitions reside in
universality classes, with a whole host of irrelevant variables,
this further supports the robustness of the RLM as a simple
model of syntax.

VI. DISCUSSION

The RLM encompasses all stochastic context-free gram-
mars and, as such, it is versatile. However, different applica-
tions may suggest different parameter ranges. This connects
with ongoing discussions in linguistics on the relevant formal-
ism to capture the syntax of human languages. For example,
in the classic rules-based approach of generative grammars,
a child has to learn both the syntactic rules and the lexicon;
in the RLM this means that their initial grammar would have
large ε̃d and large ε̃s.

In the 1990s, Chomsky attempted to unify the CFGs of
human languages by proposing in the minimalist program [20]
that their deep structure was essentially identical, captured
by a merge function that allows one to create treelike deriva-
tion structures. Then variety among human languages would
be captured by variety in the lexicon. More generally, this
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FIG. 9. Binder cumulant of observable word distribution, for T = 1000 and indicated N . (a) This quantity begins to differ from 0 around
ε̃s ≈ 1, as expected. (b), (c) On a logarithmic axis, the onset appears to collapse with a logarithmic factor of N , but not the power law suggested
in [18]. All logarithms are base e.
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represented a shift from rules-based to constraint-based gram-
mars. Although the associated merge grammars are, strictly
speaking, different from CFGs, they maintain the core prop-
erty of creating trees, and they are similar to fixing a small
ε̃d so that deep structure is fixed. Then the learning problem
would fix a small ε̃d and allow the other parameters to vary,
for example like path γ3 in Fig. 2.

Along with the shift to constraint-based grammar, the min-
imalist program proposed that syntax requires an optimality
computation, which was not specified in detail. This has been
criticized as being unmotivated by core linguistic data [21], so
it is not accepted as mainstream by linguists. For this reason,
here we stay agnostic on the detailed description of learning
and the relevant parameter ranges in the RLM, and we focus
on universal aspects.

To learn a human language within the CFG framework,
the principles & parameters (P&P) scenario for first-language
learning was proposed [22]. In it, the task of learning syntax
is reduced to the setting of a small number of discrete param-
eters, usually considered to be binary [23]. Ongoing debate
surrounds the detailed taxonomy of parameters and associated
categorization of language, but regardless of these details,
the scenario suggests that learning will occur in a series of
discrete steps. Observables that quantify learning should then
also show discrete steps.

Meanwhile, connectionist models based on the physiology
of the brain use continuous variables to learn [24]. Debate on
how people learn past-tense suggested the utility of stochastic
rule-based models [25], like those considered in the RLM.
While the early connectionist models gave poor performance,
recent models do much better, without significant change in
the underlying structure [26]. Thus debate continues on the
correct approach to learn syntax, with some calling for a more
symbiotic approach between connectionism and generative
grammar [27].

The recent success of machine learning models at learning
language has further ignited this debate [28]. But while such
models are proof of the ability to learn language without
significant constraints, they currently rely on a huge database
to learn, and struggle with formal reasoning. Their connection
to first-language acquisition in humans is thus unclear.

At variance with the P&P approach, but more aligned with
stochastic models and neural networks, human data analyzed
in Ref. [9] as well as the RLM both suggest a single learn-
ing transition, with continuous (although in some cases quite
abrupt) variation in observables. In the RLM this statement
is robust to the inclusion of a bias, reflecting heterogeneity
in the environment.2 Thus, in all cases considered, the RLM
transition is unimodal, matching that seen in human data.

These results suggest two possibilities. The first is that
learning is truly a continuous process, in which what is
learned are weights (or probabilities) rather than discrete

2One may wonder if the specific Zipfian bias considered above is
itself too smooth to see a series of discrete transitions. To this end, we
also tested a bias taking on only three values. Over the same range of
bias strengths shown above, this bias did not have any effect on the
sentence entropy.

rules. Frequency effects are indeed ubiquitous in first lan-
guage acquisition [29], and there are proposals on how
measured frequencies can be used to infer rules [30]. More-
over, the recent successes of machine learning in natural
language processing [31] invariably use approaches with pa-
rameters that can be continuously tuned during the training
process. Thus the notion of discrete syntactic parameters that
are set during learning appears overly simplistic, and may fail
to account for the diversity of human languages, as has been
argued by linguists and psychologists, with vociferous debate
[32]. Instead our results suggest that learning is continuous;
after the RLM transition, the entropy of children’s speech con-
tinuously decreases, and concomitantly the grammar becomes
more and more certain.

The second possibility is that discrete rules are indeed
learned, but they are only detectible by sufficiently sensitive
order parameters. Recent work on learning semantic informa-
tion showed a mechanism for discretelike transitions hidden
within a continuous process [33]. Focusing on an input-output
correlation matrix, it was found that singular values of this
matrix are learned in a stepwise fashion; moreover, when
data are hierarchical, then these singular values are strongly
graded, leading to distinct learning transitions. If this scenario
also applies to learning syntax, then it remains elusive in the
data.

VII. CONCLUSION

The random language model was introduced in Ref. [8] as
a simple model of language. We showed here that the RLM
transition (i) can be encountered by a change in properties
of observable sentences, (ii) is robust to the inclusion of a
bias, and (iii) is apparently a sharp thermodynamic transition
as N → ∞, in appropriately rescaled variables. A compari-
son with human data [9] supports that the RLM transition is
equivalent to that experienced by most children at the age of
22–26 months over the course of first-language acquisition.

In future work, two avenues look promising: first, although
limited by the availability of quantitative data, more attempts
to make a quantitative comparison with human data would
be worthwhile; second, the astounding success of machine
learning models in modeling natural language, and the lack of
a theory to explain this, suggest that the RLM might shed light
on this process. Indeed, the RLM captures several features
of real-world data (long-range correlations, hierarchy, and
combinatorial structure) that are missing from most physics
models, and are needed to understand modern deep neural
networks [34].

Finally, the search for an analytical solution to the RLM
is ongoing. A promising approach [12,13] represents syntax
trees as Feynman diagrams for an appropriate field theory, but
this falls short of a complete solution. The results of [18], as
well as the results here, suggest that one should look for a
solution in the idealized limit N → ∞.
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