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Emergence of phase clusters and coexisting states reveals the structure-function relationship
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The Brain Connectome Project has made significant strides in uncovering the structural connections within the
brain on various levels. This has led to the question of how brain structure and function are related. Our research
explores this relationship in an adaptive neural network in which synaptic conductance between neurons follows
spike-time synaptic plasticity rules. By adjusting the plasticity boundary, the network exhibits diverse collective
behaviors, including phase synchronization, phase locking, hierarchical synchronization (phase clusters), and
coexisting states. Using graph theory, we found that hierarchical synchronization is related to the community
structure, while coexisting states are related to the hierarchical self-organizing and core-periphery structure. The
network evolves into several tightly connected modules, with sparsely intermodule connections resulting in the
formation of phase clusters. In addition, the hierarchical self-organizing structure facilitates the emergence of
coexisting states. The coexistence state promotes the evolution of the core-periphery structure. Our results point
towards the equivalence between function and structure, with function emerging from structure, and structure
being influenced by function in a complex dynamic process.
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I. INTRODUCTION

The brain neural network, consisting of numerous intercon-
nected neurons, is one of the most complex network systems
in nature [1–3]. Understanding brain function, i.e., how this
intricate biological system operates, remains one of the most
fundamental challenges of modern science. Network theory
offers an intuitive framework to examine relationships be-
tween interconnected brain mechanisms and their bearing on
behavior [4]. This provides a physical perspective to under-
stand the complexity of the brain. By modeling the brain
as a network constructed of neurons (nodes) and synapses
(edges) [5], the quantitative analysis of graph theory [6] can
be applied, from which the equivalence between the function
and structure of neural networks can be understood. This
is the general framework for the emerging field of network
neuroscience [7].

The small-world phenomenon is an example of macro-
scopic behavior prevalent in the nervous system [8]. Small-
world structure was discovered in several experimental studies
of structural and functional brain networks in humans and
other animals [9–12]. It reflects a balance between integrating
global information and maintaining local segregation [13].
Reduction of small-worldness indicates a potential decrease in
information exchange efficiency and associative memory ca-
pacity [6] and is related to neurodegenerative diseases [1]. In
addition, community modularity and core-periphery structure
have also been observed in the paradigm-biological rat and
macaque brain connectome [14–16]. Recent work suggests
that the core-periphery structure of the human brain plays a
critical role in language-processing tasks [17]. As the Brain
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Initiative Cell Census Network project continues to develop,
brain connectomes are being uncovered from multiple tem-
poral and spatial scales [18–23]. Therefore, it is crucial to
explore the relationship between brain structure and function.

For this purpose, we constructed an adaptive neural net-
work (ANN) that utilizes spike-time-dependent plasticity
(STDP) rules to adjust the synaptic conductance between
neurons. The collective dynamical behavior of the ANN is
controlled by the boundaries of the plasticity rule, result-
ing in the phase clusters and coexisting states. The former
manifests as several phase synchronization clusters in the
network, while the latter is characterized by the termination of
spiking activity in partially interacting neurons. Clustering of
dynamics has been observed at multiple scales of brain struc-
ture and function, such as in functional magnetic resonance
imaging (fMRI) data where brain networks form functional
clusters [24–29]. The disruption of the clustering state may
be involved in certain brain diseases [30,31]. Recent studies
found stable partial synchronization patterns (phase clusters)
associated with hierarchical multilayer structures in the phase
oscillator model (Kuramoto model) [32–34]. We found that in
ANN, the network structure spontaneously forms a commu-
nity modular structure, dividing network nodes into multiple
densely connected modules with sparsely intermodule con-
nections, resulting in phase-synchronized clusters.

The coexistence of multiple brain states is another impor-
tant issue in neuroscience [35]. Switching between coexisting
states plays an important role in neural signaling and inter-
actions [36–38]. Moreover, the coexistence of multiple brain
states has been proposed as a fundamental mechanism for
associative content-addressable memory storage and pattern
recognition in neural systems [35,39–41]. We found that
at higher STDP rule boundaries, the coexisting state can
be promoted by phase relations and specific topologies of
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interacting neurons. The topology is primarily determined
by hierarchical self-organizing and core-periphery structure.
Additionally, STDP rule boundaries can control the switching
of phase-synchronization modes and coexisting states, while
also influencing the network topology.

The structure of this paper is as follows: In Sec. II,
we introduce an adaptive neural network composed of
Hodgkin-Huxley neurons, where the plasticity of the con-
nections between neurons is constrained by STDP rules. In
addition, diagnostic tools for collective activities and net-
work topologies are given. The main results are presented
in Sec. III, while in Sec. IV, we summarize and discuss the
potential implications of our findings.

II. MODEL

A. Adaptive neural network model

We consider an ANN consisting of N = 100
Hodgkin-Huxley (HH) neurons, where the dynamics of
individual HH neural membrane potentials can be given by
[42]

Cm
dVi

dt
= −gK n4

i (Vi − EK ) − gNam3
i hi(Vi − ENa)

− gL(Vi − EL ) + Iext + Isyn
i , (1)

where Cm = 1µF/cm2 is the capacity of the cell membrane,
and V is the membrane potential of the neuron. EK = −12 mV
and ENa = 115 mV are the Nernst potentials for the potas-
sium and sodium ions, respectively. EL = 10.6 mV is the
potential at the time when the leakage current is zero. gK =
36 mS/cm2, gNa = 120 mS/cm2, and gL = 0.3 mS/cm2 de-
note the maximum conductance of potassium, sodium, and
leakage currents, separately. The gating variables ni, mi, and
hi, which characterize the average proportion of working
channels opening, obey the following equation [42]:

dyi

dt
= αyi(1 − yi ) − βyiyi (yi = ni, mi, hi ). (2)

The αy and βy in Eq. (2) are the switch rates of ionic channels
which depend on voltage and are described as follows:

αni = 0.01(Vi − 10)

1 − exp[−(Vi − 10)/10]
,

βni = 0.125exp(−Vi/80),

αmi = 0.1(Vi − 25)

1 − exp[−(Vi − 25)/10]
,

βmi = 4exp(−Vi/18),

αhi = 0.07exp(−Vi/20),

βhi = 1

1 + exp[−(Vi − 30)/10]
. (3)

The term Iext is the bias current which controls the excitability
level of the neuron [43]. Depending on the Iext value, the HH
model can exhibit silence (fixed point), bistability (coexis-
tence of fixed point and limit cycle), and repetitive spike firing
(limit cycle) [44]. Bistability in individual neuron dynamics is
achieved by strategically adjusting the external input current
Iext, within the range that delineates the emergence of stable

and unstable limit cycles through saddle-node bifurcation (at
Iext = 6.26 µA/cm2) and the subcritical Hopf bifurcation (at
Iext = 9.78 µA/cm2). This range signifies the convergence of
the previously mentioned unstable limit cycle with the stable
fixed point equilibrium. The size of the attractor basin at
the fixed point (limit ring) decreases (increases) rapidly with
Iext [44].

In Eq. (1), Isyn
i denotes the total synaptic current received

by neuron i. Neurons in the network are connected by directed
excitatory chemical synapses. The synaptic current takes the
form

Isyn
i =

N∑
j=1( �=i)

gi j (t )α j[Vsyn − Vi(t )], (4)

dα j

dt
= − α j

τsyn
+ δ(t − t j ), (5)

where α j is the fraction of open receptor channels for neuron
j. t j denotes the time when the jth neuron spiking event is
triggered. Then, it decays exponentially with time constant
τsyn = 3 ms. Synapses are excitatory if Vsyn is greater than
the resting potential (around 0 mV). In this study, Vsyn was
fixed at 70 mV. Information transmission delays are inherent
to the nervous system due to the limited speed at which ac-
tion potentials propagate across axons [45,46]. Considering
the heterogeneity of the neural network, axonal conduction
delay was taken from a Gaussian distribution with a mean of
10 ms and a standard deviation of 2 ms. The set of parameters
enriches the dynamics of the HH neural network [47].

B. Synaptic plasticity rules

Spike-time-dependent plasticity (STDP) is a process that
produces changes in the synaptic strength. According to the
STDP mechanism, the synaptic weight gi j for each synapse
is updated with a nearest-spike pair-based STDP rule [48]. It
is calculated taking into consideration the times between the
spikes of the postsynaptic neuron ti and the presynaptic neuron
t j . The change in the excitatory synaptic weights �gi j due to
the time difference �ti j = (t j − t j ) is given by [49,50]

�gi j =

⎧⎪⎪⎨
⎪⎪⎩

Pexp(−�ti j/τP ) if �ti j > 0

− Dexp(�ti j/τD) if �ti j < 0

0 if �ti j = 0.

(6)

The terms P = 1 and D = 1.05 represent potentiation and
depression rate parameters, respectively, utilized to govern
the extent of synaptic modification by the STDP rule. The
potentiation and depression temporal windows of the synaptic
modification are controlled by τP = τD = 20 ms, respec-
tively. Each time a spike event occurs, synaptic weights are
updated by Eq. (6), where gi j → gi j + rSTDP�gi j . rSTDP =
0.001 mS/cm2 is the update rate of synaptic weights. The
minimal and maximal excitatory synaptic weights are consid-
ered in the interval [gmin, gmax]. In this study, gmin is set to
0, so the network structure evolves. The bounds on the STDP
learning rule are determined by gmax, which is the parameter
we focus on next.
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C. Functional and structural connectivity dynamics

To investigate neuronal synchronization and symmetries,
we employ the conventional Kuramoto order parameter as a
diagnostic tool for the entire network, as defined by [51]

Rk
T (t ) = 1

N

∣∣∣∣∣∣
N∑

j=1

eikϕ j (t )

∣∣∣∣∣∣, (7)

where “i” is the imaginary unit
√−1 and ϕ j (t ) is the neural

phase associated with the spikes of each neuron j, given by

ϕ j (t ) = 2π
t − t j,k

t j,k+1 − t j,k
. (8)

t j,k is the time when the kth spike happens in the jth neuron
(t j,k < t < t j,k+1). After the last spike occurs of the jth neuron,
ϕ j (t ) is set to 0. These silent neurons are eliminated when

computing Rk
T (t ). Briefly, we only calculate the phase syn-

chronization and correlation between the spiking neurons. The
functional connectivity (FC) between neurons is defined by
phase correlations. Thus, the FC at any moment is an N × N
matrix with matrix elements:

FCx,y(t ) = 1

T0

∫ t+T0

t

∣∣∣∣1

2
(eiϕx (τ ) + eiϕy (τ ) )

∣∣∣∣dτ. (9)

We computed 2000 FC matrix windows in the 20 s at 10
ms intervals. Each window was calculated at a length of
sliding window, T0 = 400 ms, to ensure the reliability of the
results. We compute the correlation of FC matrices across
windows, yielding a 2000 × 2000 functional connectivity dy-
namics (FCD) matrix for each run. Correlation was measured
by the Pearson correlation coefficient rP between the matrix
elements from different windows. The networks function sim-
ilarly (i.e., phase locking between all neurons) when rP is
close to 1, and differently when rP is close to 0.

Similar to the FCD method, we obtain 2000 structural con-
nections (adjacency matrix) at 10 ms intervals and compute
the Pearson correlations rP for the different windows to obtain
a 2000 × 2000 structural connection dynamics (SCD) matrix.
The network structure is similar when the correlation is close
to 1 and different at 0.

D. Network measurement

Complex networks tend to exhibit structural ordering. One
such structure is known as a core-periphery structure, in which
a tightly connected group of core nodes is surrounded by a
sparsely connected group of peripheral nodes. Our goal is to
identify this core-periphery structure by assigning nodes to
either the core or peripheral group in a way that optimizes the
coreness quality function [52],

QC = 1

vC

⎡
⎣ ∑

i, j∈Cc

(gi j − γCḡ) −
∑

i, j∈Cp

(gi j − γCḡ)

⎤
⎦. (10)

Cc is the set of all nodes in the core, while Cp is the set of
all nodes in the periphery. The weight between nodes i and
j is denoted as gi j , and the average edge weight (averaging
over all weights, including zeros) is represented by ḡ. γC is a
resolution parameter controlling the size of the core; without

FIG. 1. Emergence of coexisting states in neuronal networks.
(a) Dependence of the relative abundance of spiking neurons (Psp) on
STDP rule boundaries (gmax). For comparison, the Psp (purple line)
of the static initial network is also plotted in the figure. We divide
the gmax parameter space into three parts based on the functional
and structural properties of the system. The brown bars mark the
next three cases that we focus on: gmax = 0.005, 0.012, and 0.1.
(b) Relative abundance of spiking neurons (Psp) in the two-parametric
space of gmax and external current Iext . Solid lines indicate the bound-
aries between different types of collective dynamics: silent (green),
spiking (red), and coexisting states.

loss of generality, we set it to 1. vC is a normalization constant.
In effect, in maximizing coreness, we seek to maximize the
number and weight of intracore connections, while minimiz-
ing the number and weight of intraperiphery connections.

To evaluate the community structure in the network, we
use a Leuven-like locally greedy algorithm [53] to optimize

FIG. 2. STDP rule boundaries dominate the functional and
structural connectivity dynamics (FCD and SCD) of the network.
(a)–(c) Upper panels: Kuramoto order parameter moments for the
three cases in Fig. 1 (gmax = 0.005, 0.012, and 0.1). Middle panels:
FCD matrices for the three cases in Fig. 1 (gmax = 0.005, 0.012
and, 0.1). The large brown square-shaped blocks along the diagonal
indicate that the network was in phase coherence over this period.
Lower panels: SCD matrices for the three cases in Fig. 1 (gmax =
0.005, 0.012 and 0.1). rP tends to 1 representing a constant structure.
The network structure of phase clusters (gmax = 0.005) is stable,
whereas the network structure in the coexisting state (gmax = 0.012,
0.1) is evolving.
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FIG. 3. Snapshots of neuronal phase distribution; from top to bottom: t = 0.1, 1, 3, and 12 s. The network starts evolving with a uniformly
random initial phase. For visualization, we rerank the neurons according to their phase at t = 0.1 s. Nsp is the number of spiking neurons in the
network, and all neurons are spiking neurons (Nsp = 100) in the unlabeled subplot. The inset in the subplot shows the distribution of the phase
in polar coordinates.

the modularity quality function,

QM = 1

vM

⎡
⎣∑

i, j∈C

(
gi j − γM

s js j

vM

)⎤
⎦δi j, (11)

where C is the set of network nodes, and si and s j are the
summed weights of edges connected to node i and node j,
respectively. γM is a resolution parameter controlling the size
of communities which we set to 1; vM is a normalization con-
stant. Additionally, we employ the Kronecker delta function
δi j , which equals 1 when nodes i and j belong to the same
community, and 0 otherwise [52]. By maximizing the strength
and number of connections within communities, modularity
maximization yields a partition of the network into densely
connected communities with minimal intercommunity con-
nections.

III. RESULTS

Numerical simulations of the neuron network are carried
out using the Euler method with a fixed time step of 0.01 ms.
The initial state of the neuron is spiking, with a uniformly
random distribution of phases between 0 and 2π . Starting
from a fully connected network with randomized weights,
the weights of the neural network are updated by the STDP

rule. The initial weights are distributed randomly: log10(gi j ) ∈
[−4, gmax]. Results show that the collective dynamics in the
adaptive neural network (ANN) are extremely rich: under the
control of the boundaries of the STDP rule, the collective
behavior emerges as phase cluster and coexisting states, which
manifests as a termination of spiking activity of partially in-
teracting neurons. First, we demonstrate the coexisting states
in ANN.

A. Coexisting states in adaptive neural networks

After reaching the steady state within an evolutionary time
frame of 20 s, we calculated the relative abundance of spiking
neurons (Psp = Nsp/N) in the network, where Nsp represents
the number of spiking neurons and N represents the total
number of neurons. In a previous study of static networks [54],
coupling strength was an effective parameter for controlling
coexisting states. Therefore, the STDP rule boundaries gmax

in ANN also significantly affect the emergence of coexisting
states. Figure 1(a) demonstrates the dependence of the relative
abundance of spiking neurons Psp on gmax. Notably, the net-
work transitions from a spiking state to a coexisting state after
gmax exceeds a certain threshold (gmax ≈ 0.1), which aligns
with previous results for static networks [54]. In contrast to
the initial network with random weight distribution without
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STDP (called initial network in the following), the STDP rule
significantly reduces the silence threshold of the ANN.

Figure 1(b) shows the distribution of Psp in the (gmax, Iext)
parameter space. It is important to note that the collective
dynamics of the network are also influenced by neuronal
excitability (Iext). As we mentioned in Sec. II, the limit cycle
emerges after saddle-node bifurcation (Iext = 6.26 µA/cm2).
Below this threshold, only a stable resting state exists in indi-
vidual HH neurons, resulting in a silent network regardless of
gmax. However, for the parameter range of the bistable state
(Iext > 6.26 µA/cm2), Iext determines the relative attractor
basin sizes of the fixed point and limited cycle [44]. The
attractor basin size of the fixed point is negatively correlated
with Iext, which implies that as Iext increases, neurons require
larger synaptic currents to switch from the spiking to the
resting state. As a result, the gmax threshold (yellow solid line)
is shifted towards the upper right in Fig. 1(b) as Iext increases.

B. Functional and structural connectivity dynamics

The way neurons interact and the underlying network
structure play a crucial role in determining the collective
dynamics of the network. Previous results have shown that
spike termination (neuronal electrical activity switches from
spiking to resting) occurs when external stimulus and synap-
tic currents are in the proper phase [55]. In light of these
findings, we have undertaken a deeper investigation into the
relationship between the emergence of coexisting states and
neuronal phases in ANN. The evolution of the Kuramoto order
parameters Rk

T (t ) is shown in the upper panels of Fig. 2. It
can be noticed that ANN undergoes a phase asynchronous →
phase synchronous → phase asynchronous transition as gmax

increases.
The FCD of phase correlations between neurons is shown

in the middle panels of Fig. 2. We found that there are
two FCD modes. Following a brief transition stage, the net-
work exhibits short-duration phase coherence in Fig. 2(a),
and substable phase coherence in Figs. 2(b) and 2(c). In the
lower panels of Fig. 2, SCD also exhibits a different pattern,
which suggests that changes in function are closely related to
changes in structure. These varying FCD and SCD patterns
underscore the significant impact of STDP rule boundaries on
network function and structure, and imply a nexus between
structure and function.

After analyzing phase synchronization and correlation, we
found that the ANN exhibits three distinct states: (i) asyn-
chronous phase incoherence, (ii) synchronous phase coherent,
and (iii) asynchronous phase coherent. The phase distribu-
tions for the three cases are illustrated in Fig. 3. In case
(i), the neurons gradually form phase-synchronized clusters,
resulting in a phase-cluster state. For case (ii), ANN initially
forms phase clusters, followed by a coexisting state. The
coexisting state silences part of the neurons, inducing the sys-
tem to a synchronized phase-coherent state. Finally, for case
(iii), the system quickly enters the coexisting state and the
phase correlation is destroyed. As a result, the functional dif-
ferences in ANN are dominated by the STDP rule boundaries.

To get a global view and compare the ANN with the initial
network to reflect the role of STDP rules, the dependence of
the Kuramoto order parameter moments on gmax is plotted

FIG. 4. Low STDP rule boundaries prompt the emergence of
phase clusters. The dependence of Kuramoto order parameter mo-
ments 〈Rk

T 〉t on gmax, (a) with and (b) without STDP. The results
were statistically averaged over a time period of 10–20 s. For most
initial conditions, two or three phase clusters emerge spontaneously,
as shown in Fig. 3(a). However, one can also observe a single phase
cluster (i.e., synchronized states) for some initial conditions. There-
fore, 〈Rk

T 〉t has a large standard deviation for a small gmax. The inset
plots in (b) show the phase distribution for gmax = 0.005 at the times
t = 0.1, 1, 3, and 12 s.

in Fig. 4 for the cases with and without STDP. In general,
the order parameter Rk

T is sensitive to clusters with a 2π/k
phase interval across the population. Therefore, high values
of R2

T and R3
T and low values of R1

T for case (i ) represent
the emergence of phase-cluster states. Static networks remain
in an incoherent state due to the heterogeneity introduced by
randomly distributed synaptic delays and weights, regardless
of gmax. In contrast, STDP can facilitate the network to form
phase clusters.

To further understand the underlying mechanism of phase
clusters and the coexistence state, we examine the expression
level of the core-periphery and the community structure of
the ANN in Fig. 5. For case (i), the ANN forms a strong
community structure, with several densely connected modules
and sparse connections between modules in the network. This
leads to the formation of several phase-synchronized clusters,
as shown in Fig. 3(a). This can be further demonstrated in
Fig. 6. In Fig. 6(a), after a brief transient, the neuronal phase is
near stable above two phase clusters with a phase difference of
π (R2

T approximately equal to 1). When neurons are reordered
in terms of the community structure divided by Eq. (11), it is
clearly observed that neurons in the same module are form-
ing synchronized clusters. To measure the phase-clustering
degree of modules in the network, we define the mean module
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FIG. 5. STDP rules allow the network to evolve into the core-
periphery and community structure. (a) Schematic of the evolution of
the network structure. According to the STDP rule, fully connected
networks with random edge weights evolve into sparse networks
with significant core-periphery and community structures. (b) De-
pendence of the coreness (QC) and modularity (QM ) on STDP rule
boundaries (gmax). Note that QC (QM ) is obtained by calculating the
ratio of the coreness (modularity) of the ANN to the initial network
in Eqs. (10) and (11). Therefore, QC (QM ) greater than 1 implies that
the STDP rule makes the ANN evolve towards the core-periphery
(community) structure. For case (i), the STDP rule suppresses the
core-periphery structure making the community structure overex-
pressed. In contrast to Fig. 4, when there is only one phase cluster, the
community structure is insignificant and, therefore, QM has a large
standard deviation for small gmax. For case (iii), the core-periphery
structure is overexpressed.

clustering degree:

σ (t ) = 1

NM

NM∑
i=1

max
ϕc∈[0,2π]

Pi(ϕc, t ). (12)

First, the network is divided into NM subsets (modules) by
Eq. (11). Pi(ϕc, t ) denotes the probability that the neuronal
phase in the ith module falls between ϕc − 1

2�ϕ → ϕc +
1
2�ϕ, where ϕc is the central value of the phase interval and
�ϕ is the width. Fix �ϕ = 2π/180 and find the maximum
Pi(ϕc, t ) by fine-tuning ϕc. It reflects the clustering degree
of the neuronal phases in the ith module. Finally, the mean

FIG. 6. ANN spontaneously forms phase clusters according to
the community structure. (a) Kuramoto order parameter moments
R1

T (t ) and R2
T (t ) for case (i) (gmax = 0.005). (b) Snapshots of neuronal

phase distribution. The data come from Fig. 3(a), but here we reorder
the neuron index according to the modules divided by Eq. (11).
(c) Evolution of mean module clustering degree σ (t ) and modularity
QM (t ). Neuronal phases gradually evolve towards clustering, while
the community structure of the network is also improved.

module clustering degree σ (t ) is obtained by averaging each
module.

As shown in Fig. 6(c), σ (t ) and QM are maintained at
a high level after undergoing a transient process. The term
σ (t ) close to 1 means that neurons in the same module are
synchronous, and close to 0 means that they are asynchronous.
As a result, the ANN forms significant community structures
and neurons of the same module are synchronized, resulting
in a phase-cluster state. Interestingly, previous studies using
fMRI have identified similar modular structures in brain net-
works [56], which may be related to brain evolution, favoring
the emergence of complex dynamics and functional special-
ization [57].

In case (ii), the system shifts from phase clusters to a
coexisting state as the community structure of the network
weakens (decrease in QM). In case (iii), the core-periphery
structure of the network is significant, with the formation
of a strongly connected set of core neurons and a weakly
connected set of peripheral neurons in the network. Overall,
the community structure facilitates phase-synchronized
cluster formation, while the core-periphery structure
seems to be correlated with the emergence of coexisting
states.

C. Emergence of coexisting states and core-periphery structures

In this section, we focus on how coexisting states and
core-periphery structures are formed. The adjacency matrices
for the three cases are given in the upper panel of Fig. 7. The
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FIG. 7. Correlation of core-periphery structure with coexisting states. (a)–(c) The core-periphery structure dominates the emergence of
coexisting states in the three cases (gmax = 0.005, 0.012 and 0.1). Upper panels: adjacency matrix of the network at t = 20 s. Nodes are
ordered according to two sets, core and periphery, respectively. Middle panels: raster plots for the three cases, with each point representing the
occurrence of a spike event. Lower panels: distribution of spike termination times t in neurons. Spike termination times were defined as the
time when the last spike of the neurons occurred. The inset plot in the lower panel of (b) shows the evolution of Kuramoto order parameter
moments. Spike termination occurs in the phase-synchronized state.

nodes are divided according to two sets: core and periphery.
For the cases gmax = 0.005 and 0.012, the core-periphery
structure of the network is not significant (QC = 0.009 and
0.005 is small), while for the case of gmax = 0.1, a strongly
connected core set and a weakly connected periphery set are
visible (QC = 0.162). The emergence of coexisting states are
different mechanisms in Figs. 7(b) and 7(c). In Fig. 7(b), a
clear hierarchical structure can be seen, in which the projec-
tions between the two layers (core and periphery) are directed,
even though the core-periphery structure is not significant.

As in the upper panels of Fig. 7(b), the projection from
the periphery to the core, i.e., the lower-right corner of
the adjacency matrix, is significantly strengthened compared
to the projection from the core to the periphery, i.e., the
upper-left corner of the adjacency matrix. This hierarchi-
cal self-organizing structure allows core neurons to receive
more excitatory presynaptic currents (EPSCs). Furthermore,
in case (ii), the neurons are phase synchronized [as shown in
Figs. 2(b) and 3(b)]. The phase synchronization acts like a sig-
nal rectifier amplifier that amplifies the excitatory presynaptic
currents (EPSCs) of the core neuron set. Spike termination

occurs when EPSCs are in the proper phase [55]. In this inter-
mediate state (where gmax is relatively small), a few EPSCs
are not enough to induce a neuron to jump from a stable
limit cycle (spiking) to a fixed point (resting). Hierarchical
self-organizing structures and phase-synchronous behavior
amplify the EPSCs of core neurons, resulting in core neurons
resting while peripheral neurons are firing.

In Fig. 7(c), the ANN is in a phase-incoherent state [as
shown in Figs. 2(c) and 3(c)]. Since gmax is large, when
the phase relationship is appropriate, EPSCs can trigger the
neuron jump from the limit cycle (spiking) attractor basin
into the fixed point (resting) attractor basin, without phase-
synchronized amplification. Therefore, only those sets of
inappropriately phased neurons survive to form the core struc-
ture. As a result, core neurons are more spiking and peripheral
neurons are more resting.

To further investigate the evolution of structure and func-
tion in ANN, we monitored the adjacency matrix every 0.1 s
interval and calculated the coreness QC , as well as the relative
abundance of spiking neurons Psp,c and Psp,p in the core and
peripheral sets. The results are shown in the upper panels
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FIG. 8. Evolutionary trajectories of core-periphery structures and coexisting states. (a)–(c) Evolution of the network structure and function
in the three cases of Fig. 1 (gmax = 0.005, 0.012, and 0.1). Upper panels: temporal trajectories of the network’s coreness QC and the relative
abundance of spiking neurons Psp,c and Psp,p in the core and periphery. Middle panels: core and periphery subset sizes change over time in the
network. Lower panels: evolution of the average coupling strength ḡ.

of Fig. 8. Clearly, the core-periphery structure weakens for
gmax = 0.005 and 0.012, while it strengthens for gmax = 0.1.
Furthermore, when the STDP rule reaches equilibrium (lower
panels of Fig. 8), the core-periphery structure is unstable for
gmax = 0.005 and 0.012, but stable for gmax = 0.1. In Fig. 8(b),
the spiking neurons in the core set are constantly kicked into
a resting state, while the majority of neurons in the peripheral
set remain spiking. This is reversed in Fig. 8(c). These results
support our analysis above.

It should be noted that in ANNs, unlike the static neural
networks considered in [54,58] where the topological mecha-
nism for realizing the coexisting state is the in-degree of nodes
(i.e., the number of presynaptic neurons), the synaptic conduc-
tances are adapted by the STDP rule, which ultimately realizes
a coexisting state based on the cooperation of phase relations
and particular topology of the interacting neurons, where the
topology primarily relies on the hierarchical self-organizing
structure and the core-periphery structure. Note that we do
not emphasize that topology structure is absolutely necessary
for the formation of phase clusters and coexistence states. The
particular structure promotes the collective dynamic behaviors
of the ANN, which in turn promote the formation of the par-
ticular structure. Therefore, function emerges from structure
and structure is adjusted by function.

IV. CONCLUSIONS

In this paper, we investigate the emergence of phase
clusters and coexisting states in adaptive neural networks

(ANNs). Beginning with a fully connected network featuring
randomized weights, the synaptic conductances of an ANN
are updated via STDP rules. It is found that the network
forms core-periphery and community structures. Community
structure is key to forming phase clusters. The network struc-
ture spontaneously forms several tightly connected modules
with sparse connections between them. As a result, phase-
synchronized clusters are formed.

In addition, networks spontaneously form hierarchical
self-organizing and core-periphery structures. This structure
causes bistable neurons to spontaneously jump from the limit
cycle (spiking) attractor basin to the fixed point (resting) at-
tractor basin. Thus, the coexisting state is associated with the
core-periphery structure. Furthermore, the STDP rules bound-
aries control the eventual structure of the network. Lower
boundaries are more likely to result in a community struc-
ture, while higher boundaries are more likely to lead to a
core-periphery structure. The STDP rules boundaries affect
the network’s functionality by affecting its structure, while the
network structure is adjusted by its dynamic behavior. Hence,
our findings demonstrate the correlation between structure
and function in ANN.

Overall, ANN can reveal equivalence between function and
structure. Function emerges from structure and structure is
adjusted by function, creating a complex dynamical process
where structure adapts to conform with the plastic rules, and
the collective behavior (function) of the network reflects the
changes on the synaptic weights (structure). Beyond the scope
of neuroscience, in the field of artificial intelligence, a recent
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framework introduced spatially embedded recurrent neural
networks, which focuses on the use of community modular
and small-world networks to solve inference [59]. As the
number of training epochs increases, community modular and
small-world structures are significantly expressed. Therefore,
understanding the relationship between structure and function
in ANN is not only valuable for comprehending cognitive
behavior in the human brain, but also for optimizing artificial
neural networks.
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