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Random Apollonian networks with tailored clustering coefficient

Eduardo M. K. Souza 1 and Guilherme M. A. Almeida 2

1Departamento de Física, Universidade Federal de Sergipe, 49100-000 São Cristóvão, Sergipe, Brazil
2Instituto de Física, Universidade Federal de Alagoas, 57072-900 Maceió, Alagoas, Brazil

(Received 17 January 2024; accepted 26 April 2024; published 21 May 2024)

We introduce a family of complex networks that interpolates between the Apollonian network and its binary
version, recently introduced in E. M. K. Souza et al. [Phys. Rev. E 107, 024305 (2023)], via random removal of
nodes. The dilution process allows the clustering coefficient to vary from C = 0.828 to C = 0 while maintaining
the behavior of average path length and other relevant quantities as in the deterministic Apollonian network.
Robustness against the random deletion of nodes is also reported on spectral quantities such as the ground-state
localization degree and its energy gap to the first excited state. The loss of the 2π/3 rotation symmetry as a
treelike network emerges is investigated in the light of the hub wavefunction amplitude. Our findings expose the
interplay between the small-world property and other distinctive traits exhibited by Apollonian networks, as well
as their resilience against random attacks.
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I. INTRODUCTION

Network theory is the backbone of modern research on
complex systems [1]. The so-called complex networks can be
applied in a variety of fields such as health sciences [2], the
internet [3], social networks [4], transportation [5], quantum
systems [6,7], and more. A pivotal goal in exploring complex
networks is to disclose universal properties that can accurately
describe the physics of seemingly distinct systems.

Paradigmatic complex networks include the Watts-Strogatz
[8], Barabási-Albert [9], Erdös-Rényi [10], and Apollonian
networks [11]. These structures have been explored for
decades, shedding new light on various kinds of coopera-
tive physical phenomena. Some of these networks share the
small-world property [8] implying that any pair of nodes
are within reach by a small number of hops. Formally, this
property is valid when the average shortest path length l ∝
log N , N being the total number of nodes, and the clustering
coefficient is relatively high, compared to that of a regular
network.

Apollonian networks (ANs) [11] have a special appeal
as in addition to being small world, are self-similar, Eu-
clidean, and scale free, which means that the connectivity
degree distribution P(k) obeys a power law. Because of its
ubiquitous topology, the AN offers an interesting platform
to explore, e.g., condensed-matter phenomena [12–15] and
quantum walks [6,16].

The AN is inspired by the old circle-packing problem of
Apollonius. The network is generated in a simple recursive
way. It starts (generation n = 0) with three nodes forming
a triangle. Subsequent generations are obtained by adding a
new node inside each triangular face and connecting it to the
corresponding nodes occupying the corners. Figure 1 shows
the third generation (n = 3) of the AN.

Recently, a subclass of those networks—coined binary
ANs—was introduced by us in Ref. [17]. Based on the con-
cept of the binary Pascal’s triangle, a bit (0 or 1) can be

associated to each node of the AN as a result of a modulo-2
addition performed on the bits linked to the nodes that con-
tain it. Applying this scheme from generation n = 0, one can
easily realize that a nontrivial output is obtained only when
one bit is different from the other two (as depicted in Fig. 1).
By removing all the edges where connecting nodes have
opposite bits, two treelike (and therefore bipartite) networks
take form. Interestingly, they obey their own growth rules and
inherit many of the characteristics of the original AN such
as the scale-free and small-world properties but display zero
clustering [17].

For this reason, the binary ANs are not strictly classified
as small-world networks. [8]. To fulfill the condition, they
would need to have a clustering coefficient C at least higher
than that of a random network, as observed in many real-world
networks. This coefficient can be decisive for, e.g., influencing
the spread velocity of a disease outbreak [18] or rendering
a network more vulnerable to attacks [19]. The celebrated
Watts-Strogatz model [8], for example, interpolates between
a regular ring lattice (high clustering) and a random graph
(short path length). Indeed, metrics employed to assess the
small-world property are often based on the interplay between
clustering and path length [20,21].

In this Letter we define a network that interpolates between
the standard AN and one of its binary subnetworks by means
of a procedure involving random removal of nodes. This al-
lows us to vary the clustering coefficient from C = 0.828 [11]
to C = 0 [17], respectively, while maintaining the scaling of
the path length. Rather than quantitatively evaluate the small
worldness of the network, we want here to address how the
variation of C affects other physical properties of interest. On
the one hand, this approach allows us to weigh down to what
degree the small-world property shapes the overall behavior
of the network. On the other, it unveils how the unique set of
characteristics of the AN emerge from its constituent parts, as
well as their resilience against random attacks.
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FIG. 1. (a) Third generation (n = 3) of the AN. The binary ANs
[17] are highlighted by the round and square nodes corresponding to
bit 0 and 1, respectively. Here we consider the whole AN and assign a
probability p that a node is removed (and so its edges) from the bit-0
subset. Thus, by controlling that parameter we go from the standard
AN (p = 0) to the bit-1 subnetwork (p = 1).

II. DILUTED APOLLONIAN NETWORKS

Let us build a variation of the AN by defining a probability
p that a node belonging to the bit-0 subnetwork (highlighted
as round nodes in Fig. 1) is removed alongside all the edges
attached to it. All the nodes independently respond to the same
removal probability. Hence, a diluted version of the AN is
obtained after removal of pN (0)

n nodes of the bit-0 subnetwork
on average. Given the number of nodes of the AN, 0-bit,
and 1-bit subnetworks are, respectively, N (AN)

n = (3n + 5)/2,
N (0)

n = (3n + (−1)n + 6)/4, and N (1)
n = (3n − (−1)n + 4)/4

[11,17], the diluted AN will have Nn = N (AN)
n − pN (0)

n nodes.
We mention that setting the p = 0 limit to the bit-0 sub-
network instead (by diluting the bit-1 nodes) provides with
qualitatively similar results. Hence, it will not be addressed
here.

III. RESULTS

Our analysis is based on the network adjacency matrix. We
consider undirected edges and define a symmetric adjacency
matrix A that contains all the information concerning the
network topology. Its elements Ai j = 1 when there is an edge
connecting nodes i and j, and Ai j = 0 otherwise. Note that a
general tight-binding Hamiltonian can be defined in terms of
the adjacency matrix with a proper energy unit. We will first
discuss structural properties evaluated on A in the local basis,
followed by its spectral properties. Calculations are done for
generations n = 5, 6, 7, 8 and averaged over 500,200,100,50
independent samples, respectively.

Let us begin with the clustering coefficient C, which will
guide us throughout this Letter. The local clustering coeffi-
cient is defined as

Ci = 1

ki(1 − ki )

∑
jl

Ai jA jlAli, (1)

FIG. 2. (a) Clustering coefficient C and (b) average shortest path
length l versus node removal probability p. Results are shown for
generations n = 5 (circles), n = 6 (squares), n = 7 (diamonds), and
n = 8 (triangles). In the AN limit (p = 0) C = 0.828 [11], whereas
C = 0 when p = 1, which reflects the treelike structure of the binary
ANs [17]. We note that l ∝ (log Nn)3/4 for all p and n.

with the degree ki = ∑
j Ai j being the number of edges

attached to node i and ki �= 0, 1 (Ci = 0 otherwise). The clus-
tering coefficient C ∈ [0, 1] is the average C = 1

Nn

∑
i Ci [8],

and thus is proportional to the number of triangles in the
network. Figure 2(a) shows C as a function of p. It goes from
C = 0.828, which corresponds to the AN (p = 0) [11], to
C = 0 when the bit-1 subnetwork (p = 1) is achieved [17].
The likelihood of broken links between both binary ANs
increases with p, diminishing the density of triangles in the
network. However, we observe that C remains considerably
high, close to the level that corresponds to the standard AN,
for probabilities as high as p ≈ 0.5. Also note that the system
size Nn does not affect the curve.

The other parameter that accounts for the small-world ef-
fect is the average shortest path length defined as

l = 1

Nn(Nn − 1)

∑
i �= j

di, j, (2)

where di, j is the length of the shortest path between nodes
i and j. As can be seen in Fig. 2(b), l slightly increases
with p, an expected tendency given the density of triangles
is diminishing. The important feature to address here is how l
scales with Nn. Assuming l ∝ (log Nn)β , we find the exponent
β = 3/4 for all values of p. Thus, the whole family of diluted
ANs falls in an intermediate class between small (l ∝ log Nn)
and ultrasmall [l ∝ log(log Nn)] networks.

So far we realize that the small-world character of the
AN is resilient to the random deletion of nodes. In addition,
only the clustering coefficient C is affected by the dilution
procedure. This suggests that the binary subnetworks are key
building blocks of the standard AN.

Small-world networks with a power-law degree distribu-
tion are generally robust against attacks of that nature due to
the presence of hubs [22]. In fact, the AN and the binary ANs
are scale free, a trait also portrayed by the diluted AN. The
cumulative degree distribution is defined as

P(k) =
∑
k′�k

m(k′, n)

Nn
, (3)
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FIG. 3. (a) Connectance ρ versus network size Nn in log-log
scale for the representative value p = 0.5, where N5 = 124 − 62p,
N6 = 367 − 184p, N7 = 1096 − 548p, and N8 = 3283 − 1642p.
The symbols represent the numeric data and the solid line depicts a
function ρ ∝ N−1

n . This scaling behavior renders the convergence of
the average degree 〈k〉, plotted in (b) against p for generations n = 5
(circles), n = 6 (squares), n = 7 (diamonds), and n = 8 (triangles).
The gray line is the function 〈k〉(p) = 6 − 2γ p + 2(γ − 2)p3. Note
that 〈k〉(0) = 6 (AN) and 〈k〉(1) = 2 (1-bit subnetwork), as expected.

where m(k, n) is the number of sites with a certain degree k
at generation n. Here we indeed observe that the diluted AN
is scale free, as characterized by the asymptotic form P(k) ∝
k−γ , with γ = ln 3/ ln 2 = 1.585 for all p.

The scale-free attribute implies, in the existence of a larger
number of low-degree nodes, that form dense communities
linked through local hubs. In the standard AN most of the
nodes have degree k = 3, precisely 3n−1 nodes for a given
generation n > 1. In the bit-1 subnetwork [3n−1 + (−1)n−1]/2
(n > 2) nodes have degree k = 1 which signalizes its dendritic
pattern. Both limiting networks are sparse in the sense that
their average degree 〈k〉(p) converges to a constant, namely
〈k〉(0) → 6 (AN) and 〈k〉(1) → 2 (1-bit AN) as Nn → ∞
[17].

The convergence of 〈k〉 can be derived from the relation-
ship 〈k〉 = (Nn − 1)ρ, where ρ = B/Bmax is the connectance,
that is the ratio between the total number of edges B =∑

i, j Ai j/2 and its maximum possible value Bmax = N (N −
1)/2 (which corresponds to a fully connected network). For
the whole range of p we obtain ρ ∝ N−1

n , as depicted in
Fig. 3(a). Hence, the diluted AN is also sparse, with 〈k〉
varying with p as seen in Fig. 3(b). Such behavior can be gen-
erated by the polynomial 〈k〉(p) = 6 − 2γ p + 2(γ − 2)p3 +
O(N−1

n ). Interestingly, so far as the structural properties dis-
cussed above are concerned, the diluted AN behaves much
like the standard AN (up to intermediate values of p) despite
having a distinct topology. For instance, when p = 0.5 we
have 〈k〉 = 4.32 and the small-world property still preserved
with C ≈ 0.7 and l ∝ (log Nn)3/4.

Let us now move on to discuss some spectral properties
of the network, starting with the energy (eigenvalue) gap
between the ground and the first excited states, �λ. This
is an important parameter that can be used to identify, e.g.,
quantum phase transitions [23]. It also plays a pivotal role
in the critical behavior of Bose-Einstein condensates [15].
The energy gap versus p is presented in Fig. 4(a). It is
found to obey the power-law scaling �λ ∝ Nθ (p)

n , with the
exponent θ (p) behaving as shown in Fig. 4(b). The limiting

FIG. 4. (a) Energy gap �λ versus p evaluated at generations n =
5 (circles), n = 6 (squares), n = 7 (diamonds), and n = 8 (triangles).
(b) Exponent of the power-law scaling �λ ∝ N θ (p)

n .

cases θ (0) = 0.34 (AN) θ (1) = 0.26 (1-bit subnetwork) can
be found elsewhere [15,17]. The scaling behavior of the gap
does not undergo relevant changes and its divergence relates
to the ever increasing degree of the nodes belonging to the
inner generations [24,25]. It also deserves notice that the 1-bit
subnetwork retains the original AN hub (see Fig. 1). In the
0-bit subnetwork, contrarily, θ = 0.06 as found in [17].

Last, we turn our attention to the ground-state eigenvector
itself |v〉 = {v1, v2, v3, . . . , vNn}, which happens to feature re-
markable localization properties. In scale-free networks with
undirected edges the extreme eigenvectors are strongly local-
ized at the hub [25].

In Fig. 5 we plot the occupation probability at the hub
versus p with respect to |v〉, that is Phub = |vhub|2. We identify
a transition between two regimes at about p = 0.4. Below this
value, Phub decreases as Nn grows. This happens because even
though |v〉 is always strongly localized at the hub, reconfig-
uration of the network upon addition of a large number of
nodes at every new generation follows a self-similar pattern
in the AN (p = 0). The unfolding 2π/3 rotation symmetry
produces a highly structured and degenerate energy spectrum
featuring a mix between extended and localized states, the

FIG. 5. Probability amplitude Phub = |vhub|2 in the ground state
versus p for various Nn, where n = 5 (circles), n = 6 (squares), n = 7
(diamonds), and n = 8 (triangles).
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FIG. 6. (a) Ground-state participation ratio ξ versus p for gener-
ations n = 5 (circles), n = 6 (squares), n = 7 (diamonds), and n = 8
(triangles). (b) Exponent η corresponding to the scaling ξ ∝ N−η

n .

degree of which typically depends on the node degree ki

[6,13]. Furthermore, for all n considered the amplitude decays
to a certain point with increasing p. This trend can be associ-
ated to the rotation symmetry break and decrease in khub.

The 1-bit subnetwork, on the other hand, is bipartite [17].
Nodes can be grouped into two subsets, S1 and S2, with
no edges connecting nodes within the same subset. This ar-
rangement satisfies

∑
i∈S1

|vi|2 = ∑
i∈S2

|vi|2 = 1/2 [26]. As
Nn increases, this constraint and the scale-free property of the
network render extreme eigenstates carrying approximately
50% of their amplitude at the hub as seen in Fig. 5 (see also
Ref. [17]). The remaining is mostly distributed among its first
low-degree neighbors. This tendency is further explored in
Appendix. A similar argument can be used to explain the ap-
parent convergence Phub → 1/2 in the AN case (p = 0) as Nn

increases. It can be verified numerically that the components
|vi| approach zero given Ahub,i = 0 in the adjacency matrix.
Despite the lack of bipartite symmetry in the AN, its 2π/3
rotation symmetry and community structure ruled by sets of
local hubs [6,13] contribute to the onset of a gapped ground
state (cf. Fig. 4) resembling that of a very dense star graph (see
Fig. 7 and discussion in Appendix) for higher generations n.

Next, we want to analyze the localization degree of |v〉,
which can be done through the inverse participation ratio

FIG. 7. Two star graphs coupled via their central nodes |c1〉 and
|c2〉. Here, k1 = 12 and k2 = 6. Bright and dark nodes indicate the
disjoint subsets that are formed due to the bipartite symmetry of the
network.

defined as ξ = 1
Nn

∑
i |vi|4 . It yields ξ = N−1

n for fully localized

states and ξ = 1 for extended states. Assuming ξ ∝ (Nn)−η(p),
the decay coefficient η(p) quantifies the localization degree.
In Figs. 6(a) and 6(b) we show both ξ and η against p,
respectively, the latter being η ≈ 1 throughout.

We confirm that in the midst of the departure from the AN
rotation symmetry toward the treelike form as the clustering
coefficient fades, the ground state remains strongly localized,
and the state has its highest amplitude at the node featuring
the highest degree, as expected.

IV. CONCLUSIONS

We have seen that the AN is quite robust against the
random removal of nodes of the binary partition. Network
properties such as the shortest path length l ∝ (log Nn)β and
the degree distribution P(k) ∝ k−γ maintained their expo-
nents β = 3/4 and γ = ln 3/ ln 2 for all p despite C → 0. We
also observed no significant changes to the exponent θ (p) as-
sociated to the gap between the ground and first excited states
�λ ∝ Nθ (p)

n . One contributing factor to this is that the 1-bit
subnetwork includes the hub (central node) of the original AN
(see Fig. 1). The scaling of the gap influences, for instance,
the critical temperature of a Bose-Einstein condensation in the
AN [15].

In terms of the small-world property that presuppose a
short l and high C, we remark that C remains close to the level
corresponding to the AN, C = 0.828, for p values as high as
p = 0.5. This is interesting if we contemplate how the AN
topology is modified under the random attacks to the 0-bit
partition. The diluted AN is always sparse with the average
degree obeying 〈k〉(p) = 6 − 2γ p + 2(γ − 2)p3 + O(N−1

n ),
where γ = ln 3/ ln 2. At p = 0.5, 〈k〉 = 4.32, indicating a
dramatic change in the network topology.

We highlight that the symmetry underlying the diluted
AN stands halfway between the 2π/3 rotation symmetry
portrayed by the AN and the dendritic profile of the 1-bit
partition. This pattern has been shown to be crucial in deter-
mining the hub amplitude in the ground state. Yet, its overall
localization degree as computed via the inverse participation
ratio yields ξ ∝ (Nn)−η(p), with η(p) ≈ 1 for all p. This, once
again, confers robustness to the AN.

The binary AN subnetworks [17] are indeed key partitions
that carry the essence of the standard AN [11]. Interpolating
between them broadens the range of applicability, especially
if a tunable clustering coefficient C is desired. Further stud-
ies directed toward the modeling of real-world networks and
other complex systems using the diluted AN class are timely.
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APPENDIX: COMPETING HUBS IN DENDRITIC
NETWORKS

In this section we devise a toy model to explain why the
probability amplitude of the 1-bit subnetwork hub Phub =
|vhub|2 in the ground state tends to 1/2 as Nn increases.
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Let us consider two star networks coupled via their re-
spective central nodes (local hubs) |c1〉 and |c2〉, with degrees
k1 and k2, as depicted in Fig. 7. The nodes are marked with
different colors to highlight the disjoint sets S1 and S2 due
to the bipartite property of the network. The total number of
nodes is thus k1 + k2 + 2. Once again, we assume a symmetric
adjacency matrix A with nonzero elements Ai j = 1 only if an
edge connects nodes i and j.

Each star network is itself bipartite as well. By carrying out
a partial diagonalization, each one delivers km − 1 (m = 1, 2)
zero-energy eigenstates |φm,i〉 having null amplitude at the star
center |cm〉 and two others with energies E = ±√

km:

|ψ±
m 〉 = 1√

2
(|cm〉 ± |αm〉), (A1)

where |αm〉 = ∑km
i=1 k−1/2

m |im〉 is an even linear combination of
the km nodes {|im〉} attached to the corresponding star center.

The components of the nonzero eigenstates are divided
such that there is a 50% chance to find a particle at the center
or distributed over the other disjoint set, in accordance to [26].
Another theorem [27] has it that in every bipartite network
there should be at least a number of zero-energy eigenstates
that equals the difference between the number of nodes be-
longing to each disjoint set. And these states will have no
amplitude in the minority set.

Returning to the coupled scenario (as in Fig. 7), we realize
that the zero and nonzero eigenstates as obtained above do not
mix because both parts are connected via their local hubs. That
is, 〈φm,i|A|ψ±

m′ 〉 = 0. As such, the four states |ψ±
m 〉 span their

own eigenspace. We now proceed with a change of basis to
the set {|α1〉, |c1〉, |c2〉, |α2〉} to express the effective adjacency
matrix (written in that order) as

Aeff =

⎛
⎜⎜⎝

0
√

k1 0 0√
k1 0 1 0

0 1 0
√

k2

0 0
√

k2 0

⎞
⎟⎟⎠. (A2)

Surprisingly, we are able to express the coupled star net-
work system of Fig. 7 as a linear chain in the state sector
that contains each star center. Similar structures can be found
within networks that exhibit dendritic (treelike) patterns such
as the binary ANs [17]. Solving the eigenvalue equation for
Aeff , we obtain

Eμ,ν = μ√
2

√
1 + k1 + k2 + ν�, (A3)

where μ, ν = ±1 and � = [(k1 − k2 + 1)2 + 4k2]1/2. The
corresponding eigenvectors have the form

|Eμ,ν〉 = N

⎛
⎜⎜⎜⎜⎜⎜⎝

1
Eμ,ν√

k1

(E2
μ,ν−k1 )√

k1√
k2(E2

μ,ν−k1 )

Eμ,ν

√
k1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (A4)

where N is a normalization factor.
In the effective four-node network, |c1〉 (|c2〉) pair up with

|α2〉 (|α1〉) with respect to disjoint bipartite subsets. Accord-
ingly, we must have |〈cm|Eμ,ν〉|2 + |〈αm′ |Eμ,ν〉|2 = 1/2, with
m �= m′ [26]. This can be regarded as a competition between
one star center and the nodes adjacent to the other in order to
fulfill the 50% occupation probability allocated for them.

In a situation in which, say k1 � k2, the eigenvalues
[Eq. (A3)] approach Eμ,+ ≈ μ

√
k1 and Eμ,− ≈ μ

√
k2. After

some algebraic manipulation on Eq. (A4) we find that the
extreme eigenstates |Eμ,+〉 ≈ |ψμ

1 〉 (they are indeed associ-
ated to the node with the highest degree). Therefore, Phub ≡
|〈c1|Eμ,+〉|2 → 1/2− as k1 → ∞.

To summarize, whenever one of the star networks becomes
very dense, it effectively splits apart from the other. Notwith-
standing that the 1-bit AN subnetwork has a much more
complex topology, the above picture captures the essence of
the behavior seen in Fig. 5 in the unclustered limit (p = 1) as
Nn grows.
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