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Quantum graph wave external triggering: Energy transfer and damping
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The propagation of wave trains resulting from a local external trigger inside a network described by a
metric graph is analyzed using quantum graph theory. The external trigger is a finite-time perturbation imposed
at one vertex of the graph, leading to a consecutive wave train into the network, supposedly at rest before
the applied external perturbation. A complete analytical solution for the induced wave train is found having
a specific spectrum as well as mode’s amplitudes. Furthermore the precise condition by which the external
trigger can transfer a maximal energy to any specific natural mode of the quantum graph is derived. Finally, the
wave damping associated with boundary-layer dissipation is computed within a multiple time-scale asymptotic
analysis. Exponential damping rates are explicitly found related to their corresponding mode’s eigenvalue. Each
mode energy is then obtained, as well as their exponential damping rate. The relevance of these results to the
physics of waves within networks are discussed.
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I. INTRODUCTION

First introduced for the study of chemical vibrations spec-
trum arising in molecules by Pauling [1], the concept of
quantum graphs associated with Schrödinger equation defined
along each one-dimensional coupled chemical bounds has
since then been developed in many areas and contexts [2,3].
Quantum graphs now cover operators equipping a metric
graph, i.e., a graph whose edges have a physical length. The
broadening of the quantum graph concept has thus enlarged
the physical fields and related issues associated with it. From
coupled vibrations and spectrum structure in metric graphs
[4], quantum chaos, e.g., Refs. [5,6], wave scattering [7,8],
more recent interests have been focused on wave propaga-
tion within them, e.g., Ref. [9]. Recent advances in various
physical domains such as magnons propagation in magnetoe-
lastic materials [10], cavity magnonics [11], surface polaritons
[12], microwave networks [13–17], nanophotonics [18,19]
are interested in waves in networks having wirelike connec-
tions. Furthermore in more traditional engineering areas such
as water-hammer waves in pipelines [20] or pulse pressure
waves in vascular beds [21] this issue is also important. The
wavelength of the waves are in every case much larger than
the size of the wirelike substrate so that a one-dimensional
propagation model is relevant within each individual wirelike
substrate (e.g., branch, vessel, cavity, pipe, fiber, chemical
bound, etc.) of the network, so that a one-dimensional wave
operator—a long-wavelength approximation—is relevant for
these waves propagation and interaction. In these contexts,
there are technological motivations to control, manipulate,
or refill the energy of confined sustained waves. This is, for
example, done by the use of injection seeders in nanopho-
tonics or spin current injection in spin-wave propagation
[22]. In this case one needs to open the network in order
to inject some energy into it [23]. Also, the opposite can
occur during a possibly unintentional opening of the network,

where some energy loss could occur. This is, for example,
the case for water-hammer generation within pipe’s networks
generally produced by network management events (valve’s
sudden opening or closure, pipe breakdown, pump’s shut-
down, etc.) [24]. In these contexts it is interesting to consider
how a sudden, finite-time event arising at a given location
might perturb and/or generate a wave train propagating in-
side the network. This issue has been previously addressed
many times in the engineering community with the use of
numerical simulations where the network edges have to be
finely discretized (cf. Ref. [25] and references therein). On the
contrary to these numerical discrete approaches, a quantum
graph formulation permits a spectral discretization of the wave
solution along each network’s edge saving a huge numerical
cost [26]. Furthermore, quantum graph theory permits us to
establish general results, which numerical computations can
only illustrate. In this contribution transient wave propagation
resulting from external trigger within metric graphs is theo-
retically analyzed. Both undamped and damped propagation
are considered. Damped wave propagation in metric graph
has received attention from the mathematical viewpoint, since
certain class of damping models lead to non-self-adjoint op-
erators [27]. In this contribution we analyze small damping
effect resulting from a well-established acoustic and fluid-
mechanics boundary layer damping within a perturbation
approach. This damping model does not modify the self-
adjointness of the Laplacian operator on the metric graph.

Section II introduces the wave model under consideration
as well as quantum graph theory. Section III discusses the
undamped wave propagation resulting from an external trig-
ger. Section IV describes how the external trigger can be
shaped in order to maximize the energy transfer into internal
modes. Section V discuss the wave damping resulting from
a time-delayed damping model. The physical relevance and
significance of the obtained theoretical results are discussed
in Sec. VII.
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II. THEORETICAL FRAMEWORK

A. Damped waves propagation model

We consider a wave moving at constant wave speed cp

within a complex network. Rescaling the time t� by the time
for a unit length to be covered by the wave t1 = 1/cp defines
a dimensionless time t = t�/t1 = cpt� for which inside each
wirelike connection, equipped with axial coordinate x, the
pressure p fulfills the dimensionless damped wave propaga-
tion problem [21]

(
∂2

∂t
− ∂2

∂x2

)
p = 2ε

∂τw

∂x
, (1)

where τw is the wall shear rate, and where ε is a small pa-
rameter. In the context of acoustic or fluid mechanics, this
small parameter ε is called the water-hammer dimensionless
number [20,21]. It is built upon the time-scale ratio between
the longitudinal time scale for the wave to propagate within
the network L/cp, to the radial diffusion of the wave within the
boundary layer R2/ν (where ν is the fluid kinematic viscosity,
R the pipe radius), i.e., ε = νL/R2cp. In many applications,
associated to blood hammer, or water hammer ε � 1 [20,21].
For example, for a propagating distance of L = 104 m, for
water ν = 10−6, within a pipe radius R = 10−1 m, in steel
material where cp ≈ 103 m/s, which are realistic parameters
for water distribution networks, ε ≈ 10−3. Hence, in the fol-
lowing an asymptotic solution of (1) within a metric graph is
searched for. The wall-shear rate is related to the longitudinal
velocity gradient within the boundary layer [21,28]. Solving
for the velocity field radial variation within the boundary
layer, leads to a relation with the longitudinal pressure gra-
dient [21,28]

τw = − 1√
π

∫ t

0

1√
t − t ′

∂ p(t ′)
∂x

dt ′, (2)

which is nonlocal in time (due to the time-delayed response
of the boundary layer), and involves the convolution product
of the pressure gradient with the diffusion kernel. As found
in Ref. [28], in Laplace domain using variable s conjugate
to time, the Laplace transform τ̃w of τw (2) reads (cf. Ap-
pendix A 1 for more information)

τ̃w = − 1√
s

∂ p̃(s, x)

∂x
. (3)

Hence, the damped wave propagation problem (1) is a
nonlocal problem in time, the solution of which is not
straightforward. This is why a considerable literature has been
devoted to solve it numerically, e.g., Refs. [20,29]. One in-
teresting alternative approach first introduced in Ref. [21] is
to benefit from its perturbed nature, i.e., using the fact that
the damping term is O(ε) small and search for a multi-time-
scale solution. At leading order, for fast time, the damping is
neglected as detailed in Sec. III. At first order one can compute
the long-time scale corrections resulting from the influence of
the damping term and establish the damping rates as detailed
in Sec. V.

B. Quantum graph theory for Laplacian eigenfunctions
and spectrum on metric graphs

We consider an undirected compact metric graph G(V, E ),
having vertex set V and edge one E the cardinal of which are,
respectively, denoted V and E . The corresponding undirected
nonmetric graph is denoted G. G (and G) are not multigraphs,
i.e., there is a single edge connecting two distinct vertices, and
contain no vertex with self-edges. The connection mapping
between the vertex set is provided by the adjacency V × V
symmetric matrix A (as G is undirected), both for G and G.
On this metric graph G continuous function � along finite
(since G is compact) metric edges ek ∈ E being intervals
[0, 	i j ≡ 	ek ] (with i, j ∈ [1,V ] the vertex indexes joined by
edge ek) are considered in the H2 Sobolev space over G
denoted HG

HG ≡ H2(G) =
⊕
ek∈E

H2(ek ). (4)

Laplacian operator over G denoted −
G and acting over
� ∈ HG is defined as the operator − d2

dx2 with x ∈ [0, 	ek ] lying
along each edge ek ∈ E equipped at each vertex with one of
the following vertex conditions:

(1) Kirchhoff condition (also called natural or current con-
servation [30]) meaning continuity of � and that the sum of
the normal derivatives of � at vertex is zero,

(2) Dirichlet condition meaning continuity of � at vertex
whereas a prescribed value � = 0 is also imposed there,

(3) Kirchhoff-Robin condition meaning continuity of �

and that the sum of the normal derivatives of � at vertex is
proportional to the value of � at vertex.

Is it possible to show that condition (iii) can be degen-
erated into (i) or (ii) [31], this is why, in the following,
(iii) is considered as a general formulation. Furthermore it is
known that −
G is a self-adjoint and semibounded operator
[32]. Its spectrum consists of a sequence of real eigenval-
ues of finite multiplicity, and it admits an orthogonal base
of eigenfunctions. Following Refs. [2,26], one considers the
eigenfunctions �λ ∈ HG of −
G whose values between ver-
tex i and j along straight metric edge ei j of length 	i j traveled
along distance x (being zero at vertex i) are denoted �i j (x). �λ

can be viewed as a E -component vector of functions �i j (x),
with, again i, j ∈ [1,V ] being the vertex indexes joined by
edge ek . The restriction of �λ over V , i.e., �λ|V defines a
V -component vector denoted φλ having φ j amplitudes with
j ∈ [1,V ]. Along each edge the component �i j (x) of the
solution �λ is a solution of

− d2

dx2
�i j (x) = λ2�i j (x). (5)

Dirichlet continuity at vertex i and j reads

�i j (0) = φi �i j (	i j ) = φ j . (6)

Denoting Ai j the components of A, the Neumann continuity
condition at each vertex i reads

−
∑
j<i

Ai j
d

dx
�i j (	i j ) +

∑
j>i

Ai j
d

dx
�i j (0) = hiφi. (7)

Condition (7) is Kirchhoff-Robin condition (iii). For hi = 0
it degenerates to Kirchhoff condition (i). On the contrary, in
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the limit hi → ∞, it gives a Dirichlet condition (ii) at vertex i
where it imposes φi = 0. Given the continuity conditions (6)
�i j (x) can be adequately chosen, without loss of generality,
as

�i j (x) = Ai, j

sin(λ	i j )
{φi sin[λ(	i j − x)] + φ j sin(λx)}. (8)

(8) is built to have by construction, a unique continuous value
across each vertices satisfying the continuity condition (6), as
well as the Laplacian equation (5). (8) is a spectral base for the
wave propagation solution, the precision of which converges
exponentially with the number of modes [26]. It is interesting
to note that if λ and φλ are known, �λ is analytically defined
on G from (8), so that numerically, φλ and λ are equivalent
to �λ.

Furthermore the Kirchhoff-Robin condition (7) used at
each vertex i leads to

hiφi = −
∑
j<i

λAi j

sin(k	i j )
[−φ j + φi cos(λ	i j )]

+
∑
j>i

λAi j

sin(k	i j )
[−φi cos(λ	i j ) + φ j]. (9)

(9) defines a set of linear homogeneous equations for the φi

amplitudes of �λ over vertices. Hence a V × V symmetric
matrix A defined as

Ai j (λ, h) = −δi j

⎛
⎝ ∑

m∈N(i)

Aimcot(λ	im ) + hi

λ

⎞
⎠

+ Ai j
1

sin(λ	i j )
, (10)

where N(i) = {m\Aim 
= 0} being the neighbor vertices of
vertex i associated with nonzero components of adjacency
matrix A. Matrix A, sometimes called the secular matrix, is
built so that (9) is equivalent to

V∑
j=1

Ai jφ j = Aφλ = 0, (11)

where, again, φλ is the V -component vector of amplitudes φ j .
(11) can have a nontrivial solution different from zero when
the so-called secular condition is met

detA(λ, h) = 0. (12)

The secular condition can be interpreted as finding the solu-
tion within the kernel of the A(λ) matrix, which encapsulates
the boundary conditions at any vertex. It generalizes to a
metric graph how the spectrum within a single pipe is found
from connecting boundary conditions with transfer matrix
[33]. Condition (12) provides the condition defining the dis-
crete eigenvalues set of the Laplacian operator subsequently
denoted λn. Several other approaches can be used to find
a similar secularity condition, e.g., scattering approach over
edges [2] or mixed vertex and edges approaches [34]. Since
each matrix entry Ai j (λ) (10) of matrix A is Lipschitz

continuous, so does detA(λ). Furthermore since λ ∈ R, i.e.,
lying in one dimension, provided that d[detA(λ)]/dλ 
= 0, the
implicit-function theorem states that λn(	ei j , hi ) is a single-
value function of parameters 	ei j with ei j ∈ E and hi (if hi is
chosen to be either zero or infinity there are only E parame-
ters 	ei j ), so that each λn has algebraic multiplicity one. This
implies that the null space of A(λn) is one-dimensional, i.e.,
∀n ∈ N, dim KerA(λn) = 1.

When hi = 0,∀ i ∈ [1,V ], i.e., h = 0, then it is known
that the minimum eigenvalue of the discrete spectrum λ1 = 0
being associated with a constant eigenfunction �λ1 . On the
contrary if ∃ i ∈ [1,V ] such that hi 
= 0, then λ1 
= 0 and �λ1

is not constant over G [34]. This paper focuses on Kirch-
hoff vertex where hi = 0 or Dirichlet ones where hi → ∞
of relation (1) where constant pressure boundary conditions
are imposed. It is nevertheless interesting to note that condi-
tion (iii) has also been considered to model leakage within
pipes [35,36] (when the transient wave pressure amplitude
is small compared to the steady static one), so that the con-
sidered framework and related approach is also relevant to
analyze leaking pipe’s networks. VK ⊂ V and its comple-
ment subset VD ⊂ V , respectively, denote the subsets of V
where Kirchhoff or Dirichlet conditions are applied such that
VK ∪ VD = V and VK ∩ VD = ∅. It is interesting to mention
that the spectral properties of 
G are unchanged when adding
a new Kirchhoff two-degree vertex within any edge of G
[2,32] (gluing a dummy Kirchhoff vertex as described in
Ref. [32]).

In the following, a supplementary nonhomogeneous con-
dition is applied at one of the Kirchhoff vertexes denoted
vO ∈ VK called the origin vertex for wave generation. Mul-
tiple origins could also be considered, receiving a similar
treatment as subsequently provided, but to avoid unnec-
essary complexity, a single origin is chosen. This origin
vertex vO is the location of the sudden change in boundary
condition. In the context of pressure waves within pipe’s
networks it is associated with the sudden opening or closure
of a valve or a pipe breakage at a given location lead-
ing to a surge, i.e., a water-hammer bouncing waves all
around into the pipe’s network modeled as a metric graph
G [24].

The spectrum of discrete eigenvalue λn of the operator

G has to be complemented by their corresponding
eigenfunctions �λn . We introduce notation �n

i j (x) ≡ �n
ek

(x)
for the kth component function of �λn , being a E -component
vector of functions defined over each edge k ∈ [1, E ] joining
vertices i and j. But, as previously mentioned, �λn is
equivalent to the datum of λn and φλn

. Given λn, only φλn

has then to be computed to find �λn . Condition (11) implies
that vector φλn

⊂ KerA(λn, h). Hence, φλn
can be computed

using standard algebraic techniques to obtain the eigenvectors
spanning the null space of A(λn, h) [26]. Finally, in order
to find the base orthogonality, one has to define the scalar
product between the distinct (i.e., n 
= m) eigenfunctions �λn

and �λm

〈
�λn ,�λm

〉 = ∑
ek≡ei j∈E

∫ 	i j

0
�n

i j �
m
i j dx. (13)
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Using (8), in (13) one finds

〈
�λn ,�λm

〉 = ∑
ek≡ei j

((
φn

i φ
m
i + φn

j φ
m
j

)
[−λn cot(λn	i j ) + λm cot(λm	i j )]

− (φn
i φ

m
j + φn

j φ
m
i

)( λn

sin(λn	i j )
− λm

sin(λm	i j )

))
Ai j(

λ2
n − λ2

m

) . (14)

Realizing that the sum over the vertex set is twice the sum over edge set (since there is only one edge connecting two vertices)
since each edge is visited twice, (14) can be rewritten as half the same sum over vertices. Introducing notations An = A(λn, h)
as well as Dn and An the matrices derived from (10)

Dn
i j = −δi j

⎛
⎝ ∑

m∈V (i)

Aimcot(λn	im ) + hi

λ

⎞
⎠, (15)

An
i j = Ai j

1

sin(λn	i j )
, (16)

such that An = Dn + An one can then rewrite (14) as

〈
�λn ,�λm

〉 = 1

4

V∑
j=1

V∑
i=1

(−λnφ
n
i

(
Dn

i j + An
i j

)
φm

i + λmφn
i

(
Dm

i j + Am
i j

)
φm

i

) 1(
λ2

n − λ2
m

) , (17)

so that finally, expressing (17) as a compact matrix-vector contraction (a quadratic form) while using (11) leads to the
orthogonality for n 
= m

〈
�λn ,�λm

〉 = 1

4

(−λnφλm
Anφλn

+ λmφλm
Amφλn

)
(
λ2

n − λ2
m

) = 0, (18)

where Einstein’s convention for repeated index has been used. For n = m the scalar product (13) using (8) simplifies to

〈
�λn ,�λn

〉 = ∑
ek≡ei j

((
φn

i φ
n
i + φn

j φ
n
j

)(− cot(λn	i j ) + λn	i j

sin2(λn	i j )

)
+ 2φn

i φ
n
j

(
− 1

sin(λn	i j )
+ λn	i j

cot(λn	i j )

sin(λn	i j )

))
Ai j

2λn
. (19)

Since (19) is a scalar equality, and since each eigenvector φλn
having components φn

i i ∈ [1,V ] that are all defined [in the
one-dimensional null space of A(λn)] up to a scaling multiplying factor μn, this multiplying factor can be chosen so that (19) is
unity, i.e., given a set of admissible value for φn

i , they should be all multiplied by μn defined as

1

μ2
n

=
∑

ek≡ei j

((
φn

i φ
n
i + φn

j φ
n
j

)[− cot(λn	i j ) + λn	i j

sin2(λn	i j )

]
+ 2φn

i φ
n
j

[
1

sin(λn	i j )
− λn	i j

cot(λn	i j )

sin(λn	i j )

])
Ai j

2λn
. (20)

III. WAVE PROPAGATION ON METRIC GRAPH
TRIGGERED FROM AN ORIGIN EVENT

Let us now consider the undamped pressure solution over
G, denoted P0

G ∈ HG being decomposed into a E -component
vector of functions p0

k (x, t ) defined along each metric edge
ek ∈ E bounded by vertices i and j. The wave propagation
problem (1) without damping (i.e., when ε = 0) within each
edge reads (

∂2

∂τ 2
− ∂2

∂x2

)
p0

k (x, τ ) = 0 (21)

or more compactly, the leading-order problem for P0
G is(

∂2

∂τ 2
− 
G

)
P0
G ≡ −

G
P0
G = 0. (22)

A time-domain solution P0
G ∈ HG for the leading-order solu-

tion is obtained from separable variable decomposition over

the Laplacian 
′
Gs eigenfunctions �λn

P0
G =

∑
n∈N

(An(T )aneiλnτ + An(T )�a�
ne−iλnτ )�λn + Pp

P0
G =

∑
n∈N

(An(T )aneiλnτ + c.c.)�λn + Pp, (23)

with long-time T defined as T = ετ and its associated long-
time complex amplitude An(T ) multiplying each mode, where
� denotes complex conjugate. In (23) c.c. stands for the
complex-conjugate expression of the term within parenthesis.
In the sequel we refer to the first term of right-hand side of
(23) as the homogeneous part of P0

G whereas the second term
Pp is called its particular part. The spectrum of the homo-
geneous part is built from previously defined secular matrix
A(λ, 0) chosen such as ∀vi ∈ V, i ∈ [1,V ], hvi ≡ hi = 0 in
(10), with zero determinant condition (12). Since the eigen-
functions �λn satisfy Dirichlet boundary conditions over VD

and Kirchhoff ones over VK so does the pressure field P0
G .
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The homogeneous component of (23), by construction lies
within the null space of ′

Gs operator and fulfills (22). In the
early stage of the propagation the fast-time τ being O(1), then
T ∼ O(ε) so that

An(T ) = An(ετ ) ≈ An(0) τ � O(1/ε), T � 1. (24)

Condition (24) provides a validity condition for the leading-
order solution to hold. A normalization condition is then set on
An(T ) so that the long-time scale is an asymptotic perturbation
of the leading-order solution

An(0) = 1. (25)

In Sec. III P0
G is computed in the limit ε → 0 for early-

stage fast-time τ satisfying condition (24) so that An = 1
here. Furthermore, the pressure field fulfills an additional non-
homogeneous time-dependent imposed boundary condition at
the origin vertex vO, located at xvO , which needs to be added.
This condition is associated with an added flux within each
pipe connected to the origin vertex and depending on time
[33]. Since the flux is related to the local pressure gradient
along each pipe direction, the condition reads

∑
ek

∂P0
G

∂x

(
xvO , τ

) = PO(τ ), (26)

where PO(t ) is supposed to be a [0, Te] compact support,
square integrable L2 function over the analyzed period Te.
Defining τe < Te as the typical duration time of the triggering,
during the recording finite interval [0, Te] there is no constraint
concerning the relative value of τe compared to the typical
propagation time L/cp built over the typical length L. Nev-
ertheless, it is interesting to have in mind that τe could be
smaller than L/cp for the excitation time to be short compared
to the wave propagation inside the network. PO(t ) is some-
times called the closure law in water-hammer problems. From
linearity, standard Green’s functions techniques apply and
the impulse response associated with PO(t ) = δ(t ) provides
the general solution by convolution with it (δ denotes the
Dirac distribution). In the following we keep with a general
unspecified closure law PO(t ) and derive a general solution de-
pending on it. We suppose that the origin vertex belongs to the
Kirchhoff set, i.e., vO ∈ VK . This is mathematically consistent
since a flux condition can not be imposed at the location
where another imposed Dirichlet condition has to be met,
and physically meaning full since this is where water-hammer
events can be triggered. The leading-order solution for the
wave pressure propagation (23) within early-time condition
(24) simplifies to

P0
G =

∑
n∈N

(aneiλnτ + c.c.)�λn + Pp, (27)

where the particular solution Pp ∈ HG takes care of the non-
homogeneous condition prescribed at the origin vertex vO.
Since Pp does not share a Kirchhoff condition on vertex vO

it does not lies inside the image of the Laplace operator 
G ,
so that it can not be fully decomposed into its eigenfunction
basis �λn . Nevertheless, let us now consider the new self-
adjoint Laplacian operator associated with a Kirchhoff-Robin
condition at vertex vO with hvO 
= 0 rather than Kirchhoff one,
with all other conditions unchanged on every other vertices,

and denote this operator 

p
G . Then, from Kirchhoff-Robin

condition (9) with hvO the eigenmodes �λ
p
n

of the 

p
G thus

verify ∀n ∈ N

∑
ek

∂�
p
λ

p
n

∂x

(
xvO

) = hvO�
p
λ

p
n

(
xvO

)
. (28)



p
G has a distinct spectrum from 
G since from changing

one vertex boundary condition only we change the associated
matrix (10), such that secular condition (12) is distinct from
the 
′

Gs one. More explicitly, one can define from (10) a
distinct matrix Ap(λ, h) from previous one A(λ, 0), such that
for vO ∈ V, hvO 
= 0 (yet unspecified, but further defined pre-
cisely) and for ∀vi 
= vO ∈ V, hvi = 0, resulting in a distinct
spectrum, associated with zero determinant condition (12). By
definition, Pp is part of the operator 


p
G image. On can thus

chose Pp in the null space of ∂2

∂τ 2 − 

p
G ≡ − p

G operator, so
that, as the homogeneous part the particular solution reads

Pp =
∑
m∈N

(
Ap

map
meiλp

mτ + c.c.
)
�

p
λ

p
m
. (29)

Since the aim of the particular solution is to handle the time
variations of the triggering at location xvO , rather than choos-
ing �

p
λ

p
m

as a spatial base, it is more appropriate to chose it

as a temporal one. (35) can be set as a temporal base if λ
p
m

maps into a Fourier mode series, given the finite recording
time Te (since the triggering has compact support in [0, Te]),
λ

p
m = mπ/Te. Hence, each temporal mode λ

p
m define a single

hvO = hm such as the secularity condition is met, i.e.,

detA
(
λp

m, h ≡ hmêO
) = 0, (30)

where êO is the unit vector of V on vertex vO, whose
components are êO

i = δivO . �
p
λ

p
m

then represents a set of
nonorthogonal eigenvectors, acting as a forcing term upon the
orthogonal base solution decomposed into the base �λn . In the
sequel, modes �

p
λ

p
m

are referred to as Kirchhoff-Robin-Fourier
modes. Similarly as for the homogeneous solution, the same
short-time normalization, reads

∀m ∈ N, Ap
m(T ) ≈ Ap

m(0) τ � O(1/ε), T � 1, (31)

so that at this early-stage fast-time τ satisfying condition (24)
Ap

m = 1. Using (28) in (26) then leads to∑
m∈N

(
ap

meiλp
mτ + c.c.

)
hm�

p
λ

p
m

(
xvO

) = PO(τ ). (32)

Considering POm′ the real Fourier decomposition coefficients
of compact support function PO over [0, Te] interval, given by

POm = 2

Te

∫ Te

0
PO(τ ) sin m

πτ

Te
dτ. (33)

Since λ
p
m = mπ/Te are precisely the Fourier mode of the

particular solution, projecting (32) over each Fourier mode,
considering that (ap

meiλp
mτ + c.c.) = 2[�(ap

m) cos(λp
mt ) −

�(ap
m) sin(λp

mt )] leads to pure imaginary ap
m coefficient
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reading

ap
m = − i

2

POm

hm

1

�
p
λ

p
m

(
xvO

) , (34)

which gives the amplitude of vector ap by which the particular
solution Pp is achieved. Being purely imaginary,

Pp = −
∑
m∈N

Ap
m2�(ap

m

)
sin λp

mτ�
p
λ

p
m

=
∑
m∈N

Ap
m

POm

hm

1

�
p
λ

p
m

(
xvO

) sin λp
mτ�

p
λ

p
m
. (35)

Now considering the initial condition at rest, such that
∀x 
= xvO

P0
G |τ=0 = 0,

∂P0
G

∂t

∣∣∣∣
τ=0

= 0, (36)

then permits us to find the modes amplitude an, since from
(27), while using (35) in (36) one finds that ∀x 
= xvO∑

n∈N
(an + a�

n)�λn +
∑
m∈N

(
ap

m + ap�
m

)
�

p
λ

p
m

= 0,

∑
n∈N

λn(an − a�
n)�λn +

∑
n∈N

λp
m

(
ap

m − ap�
m

)
�

p
λ

p
m

= 0. (37)

Let us define the projections matrices between eigenfunction
base �λn and eigenfunctions �λ

p
m
, as

�nm = 〈�λn ,�
p
λ

p
m

〉
, �′

nm = λ
p
m

λn
�nm, (38)

as well as projections matrix between nonorthogonal eigen-
functions �λ

p
m

and �λ
p
m′

�
pp
nm′ = 〈�λ

p
m
,�λ

p
m′

〉
, (39)

with normalized condition of unit diagonal, i.e., �pp
mm =

1 ∀m ∈ N. Using the orthogonality of eigenfunctions �λn

such that 〈�λn ,�λn′ 〉 = δnn′ , (37) then leads to

a = − 1
2 (�′ + �)ap + 1

2 (�′ − �)ap�. (40)

Furthermore since from (34) ap is purely imaginary, so does
a, hence (40) simplifies to

a = −�′ap. (41)

(41) then provides an explicit solution for P0
G defined in (27)

using (35).

IV. SHAPING INTERNAL MODES
FROM EXTERNAL TRIGGER

We now consider the physical interpretation of the solution
obtained in the previous section and discuss how can it serves
interesting physical control of the vibrating modes. First, one
should realize that the two right-hand-side terms decomposi-
tion of (27) are distinct. The first one, called the homogeneous
solution in the previous section (from the corresponding asso-
ciated boundary condition) decompose the propagating wave
into the stationary internal standing wave of the metric graph,
which acts as a complex cavity into which only some typical
modes of excitations are permitted, which we have denoted
�λn . The second term decomposes itself into distinct modes,
depending specifically on the location of an externally im-
posed time-varying trigger. This is why the resulting wave
denoted Pp can be considered as a consecutive wave echo of
the external trigger. One important specificity about the con-
sidered metric graph is that Pp can not be chosen in the kernel
of the metric graph Laplacian since, this kernel is empty. In the
case of simple cavities, such as a one-dimensional cavity, on
the contrary, the particular solution is found inside the kernel
of the Laplacian, triggering no external wave into the cavity
[33]. This understood leads to further interesting questions.
First, how much energy is produced by the external trigger
into internal modes?

A. Wave energy

The triggered wave potential energy is given by

1

2

〈
P0
G, P0

G
〉 = 1

2

∑
n,n′∈N

(
aneiλnt + ap�

n e−iλnt
)(

ap
n′eiλn′ t + ap�

n′ e−iλn′ t
)〈
�λn ,�λn′

〉

+ 1

2

∑
n,m∈N

(
aneiλnt + ap�

n e−iλnt
)(

ap
meiλp

mt + ap�
m e−iλp

mt
)〈
�λn ,�

p
λm

〉

+ 1

2

∑
m,m′∈N

(
ap

meiλp
mt + ap�

m e−iλp
mt
)(

ap
m′eiλp

m′ t + ap�
m′ e−iλp

m′ t
)〈
�

p
λm

,�
p
λm′

〉
, (42)

where notation f (t )g(t ) = limTa→∞ 1
Ta

∫ Ta

0 f (τ )g(τ )dτ has been used. From time averaging, and eigenmodes orthogonality this
potential energy simplifies to

1

2

〈
P0
G, P0

G
〉 = ∑

n∈N
ana�

n

〈
�λn ,�λn

〉+ ∑
m∈N

ap
map�

m

〈
�

p
λm

,�
p
λm

〉 = ∑
n∈N

ana�
n +

∑
m∈N

ap
map�

m . (43)
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The wave kinetic energy is given by

1

2

〈∇P0
G,∇P0

G
〉 = 1

2

∑
n,n′∈N

(aneiλnt + ap�
n e−iλnt )

(
ap

n′eiλn′ t + ap�
n′ e−iλn′ t

)〈∇�λn ,∇�λn′
〉

+ 1

2

∑
n,m∈N

(aneiλnt + ap�
n e−iλnt )

(
ap

meiλp
mt + ap�

m e−iλp
mt
)〈∇�λn ,∇�

p
λm

〉

+ 1

2

∑
m,m′∈N

(
ap

meiλp
mt + ap�

m e−iλp
mt
)(

ap
m′eiλp

m′ t + ap�
m′ e−iλp

m′ t
)〈∇�

p
λm

,∇�
p
λm′

〉
, (44)

where notation

〈∇�λ,∇�λ′ 〉 =
∑
ek∈E

∫ 	ek

0

d�λ
k

dx

d�λ′
k

dx
dx, (45)

has been introduced. It is interesting to mention that each
energy mode contribution of (45) is independent of the edge’s
orientation since it is left invariant from x → −x transforma-
tion within any edge. From a simple computation, temporal
average zeros the cross terms so that (44) reduces to self-
energy terms

1

2

〈∇P0
G,∇P0

G
〉 = ∑

n∈N
ana�

n

〈∇�λn ,∇�λn

〉

+
∑
m∈N

ap
map�

m

〈∇�
p
λm

,∇�
p
λm

〉
. (46)

From integrating by part (45) one finds

〈∇�λ,∇�λ〉 =
∑
ek∈E

([
�λ

k

d�λ
k

dx

]
−
∫ 	ek

0
�λ

k

d2�λ
k

dx2
dx

)

=
∑
ek∈E

[
�λ

k

d�λ
k

dx

]
+ λ2〈�λ,�λ〉, (47)

where notation [ ] is the usual evaluation difference at the
frontier of each segment ek , i.e., at each vertex. In the case
where �λ is an eigenfunctions of 
G , since the boundary
conditions at each vertex are either natural or Dirichlet, this
term cancels out. The same applies at almost every vertex for
eigenfunctions of 


p
G except at the origin vertex xO where the

sum of derivatives is not zero from (28) so that a contribution
arises there. Hence,〈∇�λn ,∇�λn

〉 = λ2
n

〈
�λn ,�λn

〉 = λ2
n, (48)〈∇�

p
λm

,∇�
p
λm

〉 = hm�
p
λm

(xO)2 + λp2
m , (49)

so that summing (43) and (46) using (48) and (49) leads to the
the total wave energy

1

2

〈
P0
G, P0

G
〉+ 1

2

〈∇P0
G,∇P0

G
〉

=
∑
n∈N

ana�
n

(
λ2

n + 1
)

+
∑
m∈N

ap
map�

m

(
hm�

p
λm

(xO)2 + λp2
m + 1

)
. (50)

Hence, the total energy of the wave is split into two contri-
butions. First, an imposed external term, the second term of
(50)’s right-hand side, composed of amplitude ap

n deduced
from the Fourier decomposition of the trigger, the local am-
plitude �

p
λm

(xO)2 of the mode at the trigger origin xO, the
eigenvalue λ

p
m of the corresponding excited mode, and the

hm constant for which the secularity condition is met for this
eigenvalue. Second, an internal term given by the product
between the mode amplitude an and the square of its real
eigenvalue λn. From this, one realizes that this second term
[first term of (50)’s right-hand side] is the only transferred en-
ergy from the external trigger into the internal modes, feeding
the metric-graph cavity internal vibration. This opens a second
natural question: under which condition can some extremal
amount of energy can be transferred from external to internal
waves?

B. Optimal energy transfer conditions

Denoting EI the transferred energy into internal metric
graph natural modes, i.e.,

EI =
∑
n∈N

EI
n =

∑
n∈N

ana�
n

(
λ2

n + 1
)
. (51)

Defining the vector �′n = �′T · n̂ from the product of matrix
�′T , being the transposed of �′, with unit-vector n̂ whose
components ni = δin, from (41) each component an reads
an = −�′n · ap so that, using the fact that both vector a and
ap are purely imaginary from (34) and (41) the energy reads

EI =
∑
n∈N

EI
n = −

∑
n∈N

(�′n · ap)2
(
λ2

n + 1
)
. (52)

Since the derivative of (52) with respect to any component of
vector ap is proportional to (�′n · ap), it is zero for the trivial
condition ap = 0 for which a minimum energy is achieved.
A maximal condition can nevertheless be found from con-
sidering a constraint over finite possible values of vector ap

components. This constraint comes from a prescribed finite
energy of the triggering function PO(τ ) given by its Fourier
decomposition from the Parseval-Plancherel equality∫

R
P2

O(τ )dτ = ‖PO‖2 =
∑
m∈N

P2
Om, (53)

a maximum energy transfer can be set from defining function

Jn(ap, λM ) = EI
n − λM

(‖PO‖2 − EPO

)
, (54)
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where the constraint ‖POm‖2 = EPO is set from minimizing Jn

over the Lagrangian multiplier λM . Minimizing Jn over both
ap and λM leads to

λM = −λ2
n + 1

EPO

(�′n · ap)2

(�′n · ap)ap
m = EPO

�′n
m

4h2
m�

p
λm

(xO)2
. (55)

Using the simple relation between vector ap components and
PO given in (34), and defining the unit vector direction of
the triggering Fourier components pO = PO/‖PO‖, then (55)
simplifies to

(�′n · pO)pO = �′n. (56)

The solution of (56) is then simply

pO = �′n/‖�′n‖. (57)

(57) states that the optimal energy transfer is obtained when
the triggering Fourier components vector is aligned with vec-
tor �′n whatever its amplitude.

V. DAMPED WAVES SOLUTIONS

This section now considers the wave damping with the
viscous damping model discussed in Sec. II A. Following
Refs. [21,28] the solution for the damped wave pressure
problem (1) is searched within a multi-time-scale expansion
solution. Using long-time T = ετ so that ∂t ≡ (∂τ + ε∂T ), a
regular approximate solution for the pressure solution over G
(1) is searched as

PG = P0
G + εP1

G + · · · (58)

Along with the pressure fields the long-time wave ampli-
tude are also decomposed into such multiscale asymptotic

expansion so that for for both the homogeneous and particular
part, so that for each n, m ∈ N

An(T ) = A0
n(T ) + εA1

n(T ) + · · · , (59)

Ap
m(T ) = A0p

m (T ) + εA1p
m (T ) + · · · (60)

The long-time damping amplitudes A0
n(T ) of the leading-order

solution is then found from analyzing the first-order one in
Laplace domain from what is called the secularity condition
[37]. The Laplace transform of field denoted with tildes, is
considered, so that, using (59), (60) the Laplace transform of
the leading order (23) reads

P̃0
G =

∑
n∈N

(
A0

n(T )a0
n

s − iλn
+ cc

)
�λn

+
∑
m∈N

(
A0p

m (T )a0p
m

s − iλp
m

+ cc

)
�λ

p
m
, (61)

where coefficients a0
n are identical with coefficients an com-

puted in Sec. III where the ε = 0 limit has been considered.
At first order (1) leads within each edge k to(

∂2

∂τ
− ∂2

∂x2

)
p1

k = 2

(
∂τ 0

w

∂x
− ∂

∂T

∂

∂τ
p0

k

)
, (62)

where within each edge, the pressure leading order and first
order are, respectively, denoted p0

k and p1
k for k ∈ E . Since,

the first-order problem is then decomposed into the Laplacian
eigenfunctions

P1
G =

∑
n∈N

[
a1

n(τ ) + c.c.
]
�λn +

∑
m∈N

[
a1p

m (τ ) + c.c.
]
�

p
λm

.

(63)
From (61), one can evaluate the right-hand side of (62) in the
Laplace domain, which reads, using the Laplace transform of
the wall-shear stress (3)

2

(
∂τ̃ 0

w

∂x
− ∂

∂T
sP̃0

G

)
= 2

⎛
⎝∑

n∈N

[
a0

n

s − iλn

(
A0

n

√
s

s
λ2

n − s
∂A0

n

∂T

)
+ cc

]
�λn +

∑
m∈N

[
a0p

m

s − iλp
m

(
A0

m

√
s

s
λp2

m − s
∂A0p

m

∂T

)
+ cc

]
�λ

p
m

⎞
⎠.

(64)

Writing (62) in Laplace domain while using (64), the first-order problem written on G reads

(s2 − 
G )P1
G = 2

⎛
⎝∑

n∈N

[
a0

n

s − iλn

(
A0

n

√
s

s
λ2

n − s
∂A0

n

∂T

)
+ c.c.

]
�λn +

∑
m∈N

[
a0p

m

s − iλp
m

(
A0p

m

√
s

s
λp2

m − s
∂A0p

m

∂T

)
+ c.c.

]
�λ

p
m

⎞
⎠. (65)

Projecting (65) over �λn leads to

1

2

[
ã1

n + c.c.
]+ ∑

m∈N

[
ã1p

m (s) + c.c.
] s2 + λ

p2
m

s2 + λ2
n

�nm

=
[

an

(s − iλn)2

(
An

√
s

s λ2
n − s ∂An

∂T

(s + iλn)

)
+ c.c.

]
+
∑
m∈N

([(
ap

m

s − iλp
m

)(
Ap

m

√
s

s λ
p2
m − s ∂Ap

m
∂T

s2 + λ2
n

)
+ c.c.

])
�nm. (66)
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Furthermore, projecting (65) over �λ
p
n

leads to

∑
m′∈N

�
pp
mm′

[
ã1p

m′ + c.c.
]

2
+
∑
n∈N

[
ã1

n(s) + c.c.
]

2

s2 + λ2
n

s2 + λ
p2
m

�nm

=
[

ap
m(

s − iλp
m
)2
(

Ap
m

√
s

s λ
2p
m − s ∂Ap

m
∂T(

s + iλp
m
) )

+ c.c.

]
+
∑
m′ 
=m

⎛
⎝ ap

m′(
s2 + λ

p2
m
)(

s − iλp
m′
)(Ap

m′
√

s
s λ

p2
m′ − s

∂Ap
m′

∂T(
s + iλp

m′
) )

+ c.c.

⎞
⎠�

pp
mm′

+
∑
n∈N

([(
an

s − iλn

)(
An

√
s

s λ2
n − s ∂An

∂T

s2 + λ
p2
m

)
+ c.c.

])
�nm. (67)

It is now crucial to note that only the first line of (66) and
(67)’s right-hand side have double poles, respectively, at s =
±iλn for (66) and s = ±iλp

m for (67), whereas both second
lines of (66) and second and third lines of(67)’s right-hand
side display only simple poles. Only double poles in Laplace
domain lead to time-diverging terms: these are called reso-
nant poles [21,28]. These double poles are associated with
resonance conditions between the (65)’s right-hand side and
the natural frequencies of the (65)’s left-hand side. These
resonance conditions produce a linear divergence term upon
the fast time τ of ã1

n and ãp1
m as can be seen from the in-

verse Laplace transform of the double poles through Cauchy’s
residue theorem

L−1

(
1

(s ± iλn)2

)
(τ ) = lim

s→±iλn

(∂se
sτ ) = τe±iλnτ . (68)

It is interesting to note that the second line of (66) and the
second and third lines of (67) do not have double poles but
only simple ones because the eigenvalues of the operator 
G
can not have resonance with those of 


p
G . The secularity

condition is built to remove those divergent terms, i.e., double
poles, so that both first lines of (66) and (67) have to cancel.
Imposing this secularity condition for the first line of (66)
leads to

lim
s→iλn

(
An

√
s

s
λ2

n − s
∂An

∂T

)
= 0,

lim
s→−iλn

(
A�

n

√
s

s
λ2

n − s
∂A�

n

∂T

)
= 0, (69)

leading to the same consistent secularity solution

An(T ) = e−√−iλnT = e−( 1−i√
2

)
√

λnT
, (70)

using the normalization condition (25). A very similar result
is obtained canceling the double pole of the first line of (67)’s
right-hand side

lim
s→iλp

m

(
Ap

m

√
s

s
λp2

m − s
∂Ap

m

∂T

)
= 0,

lim
s→−iλp

m

(
Ap�

m

√
s

s
λp2

m − s
∂Ap�

m

∂T

)
= 0, (71)

leading to a parallel damping of the particular solution using
normalization (31)

Ap
m(T ) = e−

√
−iλp

mT = e−( 1−i√
2

)
√

λ
p
mT

. (72)

Now, using (70) and (72) in (23) leads to the damped leading-
order solution

P0
G =

∑
n∈N

e−
√

λn
2 T
(
a0

nei
√

λn
2 T eiλnt + c.c.

)
�λn

+
∑
m∈N

e−
√

λ
p
m
2 T
(
ap0

m ei
√

λ
p
m
2 T eiλp

mt + c.c.
)
�λ

p
m
. (73)

VI. ILLUSTRATION WITH AN EXAMPLE

In this section we illustrate the previous solution over
a very simple three-star graph illustrated in Fig. 1 having
noncommensurable length with the considered modes, i.e.,
	i jλn 
= nπ and 	i jλ

p
m = 	i jmπ/Te 
= mπ . The adjacency ma-

trix of the three-star graph of Fig. 1 reads

A =

⎡
⎢⎢⎣

0 1 0 0
1 0 1 1
0 1 0 0
0 1 0 0

⎤
⎥⎥⎦. (74)

Using definition (10) the secular matrix reads

A(λ, h) =

⎡
⎢⎢⎢⎢⎢⎣

− cot(	21λ) 1
sin (	21λ) 0 0

1
sin (	21λ) − hm

λ
− cot(	21λ) − cot(	32λ) − cot(	24λ) 1

sin (	32λ)
1

sin (	24λ)

0 1
sin (	32λ) − cot(	32λ) 0

0 1
sin (	24λ) 0 − cot(	24λ)

⎤
⎥⎥⎥⎥⎥⎦, (75)

whose determinant is

detA(λ, h) =
[{[

hm

λ
cot(	24λ) − 1

]
cot(	23λ) − cot(	24λ)

}
cot(	21λ) − cot(	23λ) cot(	24λ)

]
. (76)
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FIG. 1. Three-star metric graph having length 	21 = 2.211, 	23 =
3.111, and 	24 = 4.711 where the triggering is applied at origin point
O, i.e., at vertex #2.

Numerically solving for detA(λn, 0) = 0 gives the eigenval-
ues λn of the Kirchhoff modes. This spectrum is comple-
mented with the vertex vector φλn of quantum graph modes n
(8) obtained from computing the one-dimensional null space
of matrix A(λn, 0) (here a four-vector), which then sets �λn .
Table I provides the λn and φλn values of the first 20 Kirchhoff
modes. Figure 2 illustrates the first two Kirchhoff modes
�λ1 and �λ2 , showing as expected an increasing number of
minima and maxima as λn increases.

FIG. 2. First two Kirchhoff eigenmode of the three-star graph 1.

FIG. 3. First two Kirchhoff-Robin-Fourier eigenmodes of the
three-star graph 1.

Furthermore, imposing the Fourier modes λ
p
m = mπ/Te

and solving for hm such that detA(λp
m, h = hm ê0) = 0, with

vector ê0 being the unit vector on vertex vO = 2, permits to
find φλ

p
m

from the null space of A(λp
m, h = hmê0), which then

provides the Kirchhoff-Robin-Fourier modes �λ
p
m
. Table II

provides the hm values, as well as the λ
p
m and φλ

p
m

of the first
20 Kirchhoff-Robin-Fourier modes. Figure 3 also illustrates
the first two Kirchhoff-Robin-Fourier modes �λ

p
1

and �λ
p
2

(using the graphs structure of the PYTHON’s GRAFIDI library
[38] nested with NETWORKX’s one [39]). A pulsed, Gaussian
closure law

PO(t ) = e
− (t−t0 )2

2τ2
e , (77)

is chosen with t0 = 1 and τe = 0.1. This pulsed law is almost
zero at t = 0 and t = Te (chosen as Te = 4.75 in Fig. 4) so
that the condition for Fourier series decomposition over a
finite-time interval is met. One can see in Fig. 4 an example of
full solution computed without and with damping correction.
As can be seen, since the closure law is localized in time, it
excites a rather larger number of Fourier modes, resulting in a
spatially oscillating solution.
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FIG. 4. Comparison between undamped and damped solution at
t = 3 for closure law (77) taken for t0 = 1, τe = 0.1, Te = 4.75.

VII. DISCUSSION

This paper has addressed how a finite-time excitation hap-
pening within a specific location (called the origin) of the
network propagates into it as a wave train. This propagating
wave train is decomposed into the stationary waves modes
of the metric graph, as classically done in simple cavities.
However, since a graph has a complex topology (provided by
its adjacency matrix), the stationary modes of vibrations given
by the quantum-graph eigenfunction of the Laplacian operator
are also complex. However, these quantum-graph modes pro-
vide the (infinite-dimensional) discrete base for propagating
wave decomposition, as the canonical decomposition of the
harmonic oscillator in quantum mechanics. In the absence of
damping mechanism, Sec. III shows how the undamped prop-
agating wave decomposes into two distinct parts: (i) a specific
one, leading to the particular part of the stationary-wave de-
composition, having its own spectrum of vibration λ

p
m chosen

as Fourier modes and eigenfunctions depending on the excita-
tion origin xO and (ii) the natural vibration modes given by the
metric graph’s Laplacian eigenfunction, associated with their
specific homogeneous spectrum of vibration λn. Section III
found how the amplitude of the particular part can be de-
duced from the Fourier-mode decomposition of the finite-time
excitation. Furthermore, projection matrix �′ permits us to

deduce the natural homogeneous modes amplitude from the
particular ones. We present explicit quasianalytical solutions
for the wave train. These solutions have then permitted us to
address several interesting issues.

First, provided that the origin and the finite-time excitation
can be changed, it is interesting to find the optimal excitation
able to feed the natural cavity modes, i.e., to produce optimal
energy into the natural cavity modes. This question arises
since the excitation naturally decomposes into the particular
modes, which secondarily transmit their energy to natural
modes. Section IV A derives the total energy of the wave
inside a metric graph, showing that only the internal part,
denoted EI , is able to feed natural cavity vibrations modes.
Looking for optimal conditions for energy transfer between
the excitation’s Fourier-mode decomposition and the natural
cavity mode, Sec. IV B shows that an optimal energy transfer
into the nth natural mode is achieved when the Fourier mode
decomposition vector of the triggering PO is colinear with
vector �′n = �′T · n̂. This simple geometrical result permits
us to consider a mode-to-mode specific triggering, but it is
important to stress that this energy transfer can be shaped
optimally for a single natural mode only. Also, it is worth
mentioning that even if this optimal condition is general for
any origin location, it differs for each chosen origin since
matrix �′ depends on the chosen origin xO for the finite-time
excitation.

It is also interesting to note that the lowest natural energy
modes n = 1, having eigenvalue λ1 and waveform �λ1 , a sort
of ground state of natural vibrations, could be a natural choice
for such optimal harvesting of external triggers. This choice
could be justified from the fact that this mode is the less
damped one, as now discussed.

Second, analyzing the acoustic damping established in
fluid mechanics for the boundary-layer diffusion of axial mo-
mentum transfer, Sec. V derives a multi-time-scale expansion
analysis associated fast time-scale τ and long time-scale T
of the wave propagation. This asymptotic framework applied
within quantum-graph waveform decomposition, leads to an
explicit analytical result for the leading-order wave propa-
gation damping. This leading-order damping is surprisingly
simple, since each mode is exponentially damped over long
time-scale T , with a damping rate directly related to their
eigenvalue λn and λ

p
m, i.e., proportional to

√
λn/2 and

√
λ

p
m/2.

This result shows that the higher the energy mode, the higher
damping rate. This general theoretical result established
within a secularity condition of resonant modes provides a
significant long time-scale

√
2/(

√
λ2 − √

λ1) for which all
n > 1 modes are damped but for the remaining cavity natu-

ral ground-state vibration n = 1. Similarly
√

2/(
√

λ
p
2 −

√
λ

p
1 )

gives the time scale for the particular solution ground state
to survive over highest-order modes m > 1. Here again these
theoretical results have been established within a general
context and apply to any metric graph. They surprisingly
generalize the result obtained within a single pipe [21]. They
furthermore give supplementary physical insights for each
mode eigenvalue. Since the wave energy of each mode EI

n
is proportional to its amplitude, i.e., EI

n = AnA�
nana�

n(λ2
n + 1),

it is thus exponentially decaying for damped wave so that
EI

n ∼ e−√
2λnT . Hence, not only each mode eigenvalue sets
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the corresponding vibration mode energy level but also its
damping rate. This conclusion is obviously specific to the
considered hydrodynamic damping model.

Nevertheless, it is known in other area that weak non-
linearities are responsible for wave damping, whereby a
small parameter can be considered, e.g., spin-wave prop-
agation [22]. Hence, the generic perturbed multiscale ap-
proach proposed in this study might be adapted to other
contexts.

VIII. CONCLUSION

This paper considers a one-dimensional model of wave
propagation inside a metric graph, i.e., a long wavelength
approximation propagation within a network of wirelike con-
nections, triggered by an external event arising at one vertex
origin. Even though a general case of (compact and not-
multigraph) graph has been considered a number of analytical
results have been established.

It has been found that the external trigger induces two
families of secondary waves into the network: (i) an external
one specific to the origin location (ii) an internal one provided
by the natural modes of the metric graph. Canonical decom-
position of the wave modes has been set up, the amplitude of
which have been found explicitly for any finite-time triggering
shape. Furthermore, an explicit condition on the finite-time
trigger shape has been found, given its origin, in order to ob-
tain an optimal energy transfer into one single internal mode.

Finally, this paper has analyzed the influence of boundary-
layer dissipation on the wave propagation within the network.
Within an established damping model for which the wall-
shear rate is a time convolution of the pressure gradient with
a diffusion kernel, a multi-time-scale analysis of the wave
dynamics has been performed. This analysis has permitted us
to establish the damping rate of each mode from the secularity
condition of resonant modes. The obtained final result is sur-
prisingly simple and general: the damping rate of each mode is
exponential with a corresponding time decay directly related
to the mode’s eigenvalue. This results holds for any metric
graph and any triggering event origin and shape. Knowing the
decaying rates of propagating modes inside the network is a
precious information that might benefit further investigations
in various physical domains.

APPENDIX

Three movies are proposed in the Supplemental Material
(SM) [40] to illustrate the quantum-graph wave within a

three-star metric graph, with (i.e., for water-hammer small
parameter ε = 0.1, 0.01) and without damping.

1. Shear rate derivation

This Appendix considers the boundary layer structure of
an acoustic wave propagating into a straight pipe along its
main axis (which is the metric graph’s edge). Whatever the
transverse shape of the pipe, this boundary layer is a thin
layer described by a rescaled variable y (y = 0 at the pipe’s
wall whereas matching conditions have to be met has y � 1).
Within this layer, even if the fluid pressure does not depend
on y and is the same as in the core of the pipe, this is not
the case for the perturbed longitudinal velocity traveling with
the wavefront. Albeit the wavefront velocity has a plane-wave
structure not varying in the transverse direction, in the layer
the velocity varies, because it has to match a no-slip condition
at the pipe’s wall. Following Refs. [21,28] the dimensionless
boundary-layer problem associated with the longitudinal ve-
locity w(y, t ) perturbation within boundary-layer thickness is:

(
∂

∂t
− ∂2

∂y2

)
w = − ∂

∂z
p. (A1)

(A1) is a diffusion problem driven by the longitudinal pressure
gradient associated with no-slip boundary condition

w(y, t )|y=0 = 0. (A2)

The Laplace transform of (A1) reads

(
s − ∂2

∂y2

)
w̃ = − ∂

∂z
p̃. (A3)

The solution for w̃ with boundary condition (A2) is

w̃ = −1

s
(1 − e−√

sy)
∂

∂z
p̃. (A4)

From (A4), one can evaluate the shear rate

∂w̃

∂y
= −

√
s

s
e−√

sy ∂

∂z
p̃, (A5)

which, evaluated at y = 0 gives the wall-shear stress

τ̃w = ∂w̃

∂y

∣∣∣∣
y=0

= −
√

s

s

∂

∂z
p̃. (A6)
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2. Numerical evaluation of eigenmodes on the three-star example

TABLE I. First 20 Kirchhoff eigenmodes for the three-star graph illustrated in Fig. 1 having 	21 = 2.211, 	23 = 3.111, and 	24 = 4.711.

n λn μn φ1 φ2 φ3 φ4

1 0.3881987759 0.721871103 −0.2964486625 −0.1937941785 −0.5456176736 0.7595152146
2 4.7117467165 0.870663106 0.5961287943 −0.3256461334 0.6541514685 0.3326723804
3 6.3525865114 0.747238735 0.6621539408 0.0605673071 0.0991111588 0.7403112441
4 12.4788910454 0.807255566 0.3962512926 −0.3072388027 −0.7091748792 0.4956412231
5 15.6637713517 0.715622334 0.0250483717 −0.0249778073 −0.7076024501 0.7057247770
6 18.8328225632 0.828397911 −0.4571083665 0.3189075512 −0.7049346172 0.4386537365
7 21.8647164683 0.877339202 −0.7303136021 0.2516560345 0.5482473241 −0.3205248111
8 24.9689545929 0.740647579 −0.6023871790 −0.1364432674 0.2094689958 0.7580472684
9 28.1697479121 0.834695986 0.5045162370 0.4304968982 0.4548185059 0.5943701826
10 28.5032976758 0.817198780 −0.4200833880 −0.4126076818 −0.5436874373 0.5980709143
11 37.6697929771 0.713414664 0.2875184547 0.1521514201 −0.5394990582 0.7766104878
12 39.0342472648 0.767642573 −0.7240653074 0.0258486717 −0.0445497912 0.6878056360
13 40.9700198335 0.788614889 0.7589439659 −0.0675152885 0.1450308764 0.6311986909
14 46.9910214079 0.718634694 0.1655504268 −0.1435465042 0.6484171240 0.7290697433
15 47.6534209076 0.719792691 −0.0764957925 0.0745746258 −0.7114791028 0.6945390596
16 50.3790954261 0.774936991 −0.7289459417 −0.0860765421 0.1039341549 0.6711380889
17 53.5507183138 0.771439486 −0.7173461300 0.0989350844 0.1053306351 0.6815657241
18 56.6752993239 0.822768128 −0.6273590268 −0.3495142650 0.3509945675 −0.6008853831
19 59.8244568982 0.890364225 −0.5139237713 −0.4819467842 −0.5205770943 0.4822957012
20 63.0481713312 0.799147437 0.4084803861 0.3870989844 −0.5340092449 0.6309772395

TABLE II. First 20 Kirchhoff-Robin-Fourier eigenmodes for the three-star graph illustrated in Fig. 1 having 	21 = 2.211, 	23 = 3.111 and
	24 = 4.711 and Te = 3.

m hm λp
m μp

m φ
p
1 φ

p
2 φ

p
3 φ

p
4

1 0 0 0.390892211472686 −1/2 −1/2 −1/2 −1/2
2 −5.6761067886 1.0471975512 0.866025403795264 0.9892583868 −0.0807141968 −0.0829455557 0.0892922023
3 27.0707525154 2.0943951024 0.9401125299521663 0.4221005562 −0.4164806859 −0.4659447130 −0.6567118722
4 −0.4290295559 3.1415926536 0.7948670679344159 0.6805666312 0.1651049412 0.2154030627 −0.6805666312
5 6.5175845447 4.1887902048 0.768237183460571 −0.1894893283 −0.1794650216 −0.3001564240 0.9174923551
6 −7.1650559575 5.2359877560 0.6812082204984988 0.6200042387 −0.2462333756 −0.6200042387 −0.4129874246
7 55.5162277169 6.2831853072 0.8350356746495707 −0.1883438974 0.1661741682 0.9494415719 −0.1883438974
8 11.5804687872 7.3303828584 0.8084598283517545 0.1035548983 0.0560357562 −0.9914580544 0.0561008333
9 −33.6097040206 8.3775804096 0.8041075875409945 0.3141919519 0.2494653931 −0.8752580122 −0.2701367193
10 −0.7590488822 9.4247779608 0.8259789365448891 −0.4843748682 0.3248632377 −0.6520934373 0.4843748682
11 34.2980882012 10.4719755120 0.8234497892328267 0.3518424919 −0.2408527596 0.3518424919 0.8333088683
12 55.6965505609 11.5191730632 0.7130645733724921 −0.1814287152 −0.1419481596 0.1701856250 0.9581081329
13 57.2817539194 12.5663706144 0.6680245542586459 −0.6129066270 −0.3413127558 0.3635884154 −0.6129066270
14 224.8175097958 13.6135681656 0.8170393561807747 0.5292125785 −0.4621414754 0.4654542977 0.5382486415
15 −236.9056511100 14.6607657168 0.8676319218284292 −0.8113900188 0.3362202104 −0.3383820281 0.3377866347
16 −177.2636641898 15.7079632679 0.9243109267767916 0.5073295340 0.4773366021 −0.5073295340 −0.5073295340
17 −62.2157763947 16.7551608191 0.8787224758462283 −0.8764906890 −0.2286251516 0.2729761162 −0.3240040928
18 −261.5751276361 17.8023583703 0.9087615809939374 0.2813551634 −0.2766973864 0.4015263996 0.8264710393
19 8.8862900582 18.8495559215 0.7158240806023455 −0.6984669677 0.0700993426 −0.1391900580 −0.6984669677
20 −37.9008804040 19.8967534727 0.7630641138224415 −0.2386874075 −0.2386450053 0.8199840174 −0.4622803198
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