
PHYSICAL REVIEW E 109, 054309 (2024)

From unbiased to maximal-entropy random walks on hypergraphs
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Random walks have been intensively studied on regular and complex networks, which are used to represent
pairwise interactions. Nonetheless, recent works have demonstrated that many real-world processes are better
captured by higher-order relationships, which are naturally represented by hypergraphs. Here we study random
walks on hypergraphs. Due to the higher-order nature of these mathematical objects, one can define more than
one type of walks. In particular, we study the unbiased and the maximal entropy random walk on hypergraphs
with two types of steps, emphasizing their similarities and differences. We characterize these dynamic processes
by examining their stationary distributions and associated hitting times. To illustrate our findings, we present a
toy example and conduct extensive analyses of artificial and real hypergraphs, providing insights into both their
structural and dynamical properties. We hope that our findings motivate further research extending the analysis
to different classes of random walks as well as to practical applications.
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I. INTRODUCTION

One of the main frameworks used to study and de-
scribe complex systems is network theory, which has been
greatly developed during the past two decades. Despite this
development and its success in representing and understand-
ing a plethora of real systems, most network methods are
constrained to systems with pairwise interactions. Recently,
attention was raised to higher-order interactions, arguing that
rich data are revealing more complex relationships among
nodes that may not be captured by models based on pairwise
interactions [1,2]. This claim has been supported through a
series of works. In Refs. [3,4], through linear stability analy-
sis, hypergraphs’ stability was evaluated, emphasizing some
of the key differences and similarities between graphs and
hypergraphs. From a modeling point of view, the need to
consider higher-order interactions has also been recently rein-
forced by theoretical approaches involving phenomena, such
as social contagion [5–7], evolutionary game dynamics [8],
synchronization [9–11], and random walks [12–15], the latter
being the main focus of this contribution.

The study of hypergraphs is also important in other fields
of research beyond physics or mathematics. For instance, in
the area of machine learning research, hypergraphs have been
used in classification, clustering, and embedding techniques
[12,15]. Moreover, a hypergraph convolutional neural net-
work (HGCN) has been proposed [16,17]. Of relevance for the
present work, the authors of Ref. [13] hypothesized that ma-
chine learning algorithms could benefit from further studies
of hypergraphs and, more specifically, on random walks. The
aforementioned list of works is not exhaustive but it shows the
increasing interest that data-rich and higher-order approaches
are attracting. Nonetheless, despite this interest, the study of
higher-order systems is arguably in its infancy. Thus, it is of
utmost importance to build most of the theoretical tools that

will allow us to study and develop more complex and realistic
processes in the near future. In this context, a random walk
process is simple enough to provide new insights and results
while capturing this type of system’s higher-order nature.

Random walks are paradigmatic, being interesting both
from theoretical and practical points of view. They are prob-
ably the most fundamental stochastic processs [18], serving
as a model for a variety of phenomena, including diffusion,
social interactions, and opinions [18], and providing handy
insights that can be used in many different contexts. In net-
work theory, this process and its variants are reasonably well
studied [18–23]. However, in hypergraphs, this process just
got recent attention due to its applications in machine learn-
ing and physics. As Carletti et al. mentioned in Ref. [14],
probably the first random walk defined on hypergraphs was
proposed by Zhou et al. [12]. In this paper, the authors were
concerned about using such a process in machine learning
techniques such as clustering, classification, and embedding.
In Ref. [15], also focusing on machine learning applications,
Koby Hayashi et al . proposed a clustering framework using
hypergraph-structured data-based and random walks.

Here we are interested in the physical aspects and insights
that random walks can bring to the analysis of hypergraphs’
structure and dynamics. We focus on two classes of random
walks, the unbiased random walk (URW)1 and the maximal
entropy random walk (MERW). Formally, the walker in the
URW makes a succession of uniformly random decisions
using only local information (the node degree). On the other
hand, in the MERW, the walker uniformly chooses a path that
maximizes the entropy among all the possible paths of fixed

1In the literature, this class of random walks is also called a general
random walk.

2470-0045/2024/109(5)/054309(15) 054309-1 ©2024 American Physical Society

https://orcid.org/0009-0004-9804-3769
https://orcid.org/0000-0003-1647-5126
https://orcid.org/0000-0002-0895-1893
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.109.054309&domain=pdf&date_stamp=2024-05-13
https://doi.org/10.1103/PhysRevE.109.054309


TRAVERSA, DE ARRUDA, AND MORENO PHYSICAL REVIEW E 109, 054309 (2024)

length [19,24]. The construction of such a process requires
complete knowledge about the structure, here expressed by
the leading eigenvector of the adjacency matrix. Compara-
tively, the first is a local process while the second is nonlocal.
In network analysis, MERW was applied to the analysis of
networks with limited information [25], community detection
[26], link predictions [27], and on the definition of central-
ity measures [28]. However, due to the higher-order nature
of hypergraphs, more than one type of step can be defined
for each class of random walk, depending on the adjacency
matrix definition. One can define a random walk using the
adjacency matrix defined by Banerjee [29] or by Battiston
et al. [30]. Carletti et al. [31] proposed a whole spectrum of
possible adjacency matrices, and thus random walks, using a
free parameter. The absence of a unique definition of the adja-
cency matrix is the main difference between hypergraphs and
pairwise graphs. Under such a varied possibility of choices,
in this paper, we highlight the difference between the types of
random walks.

Specifically, one of our main contributions is the gener-
alization of maximal entropy random walks to hypergraphs.
From a theoretical point of view, we define the probability
transition matrix and the hitting times for such type of ran-
dom walk defined on top of the most common hypergraph
projections present in the literature. We establish our deriva-
tions from the observation that random walks on complex
networks are equivalent to the same processes on hypergraphs,
up to some small details and constraints [13–15]. Another
major contribution of our work is the numerical experiments.
We provide a series of examples, ranging from a small toy
example emphasizing the key peculiarities of random walks
in hypergraphs, to artificial and real cases. For the artificial
experiments, we remark that we were able to evaluate het-
erogeneity in both the cardinality distribution and the degree
distribution.

Our paper is divided as follows. In the next section, we
define hypergraphs and discuss their representations. Next, in
Sec. III, we define the random walks, focusing on the unbi-
ased random walks, in Sec. III A, and the maximal entropy,
in Sec. III B. Complementary, in Sec. III C, we discuss the
particularities of uniform and regular hypergraphs, while in
Sec. IV, we numerically evaluate synthetic and real hyper-
graphs. Specifically, in Sec. IV A 1, we present a simple toy
example that allows us to discuss the main differences among
the classes of random walks studied here, and in Sec. IV A 2
we describe the model we used to generate the artificial hy-
pergraphs. In Sec. IV A 3, we numerically compare the hitting
times for the four classes of random walks on different artifi-
cial hypergraphs and, in Sec. IV B, on a real hypergraph. To
summarize, in Sec. V, we present a short discussion about our
findings and their relation with the literature, followed by the
conclusions.

II. HYPERGRAPHS: DEFINITIONS
AND REPRESENTATION

A hypergraph, H = {V, E}, is a mathematical structure
that extends the concept of a graph. It is composed of a set
of nodes, V = {vi}, and a multiset of hyperedges E = {e j},
where e j is a nonempty subset of V with arbitrary cardinality

|e j |. The maximum cardinality of the hyperedges is given by
emax = max(|e j |). The number of nodes in the hypergraph is
denoted as N = |V| and the number of hyperedges as M =
|E |. We also denote Ei as the multiset of hyperedges that
contain the node i. A hypergraph is considered to be simple
if there are no repeated hyperedges, i.e., if E is a set rather
than a multiset. If emax = 2, then the hypergraph reduces to
a standard graph, whereas one recovers a simplicial complex
if, for each hyperedge with |e j | > 2, its subsets are also con-
tained in E . The degree of node i, ki, is defined as the number
of hyperedges that contain this node. Conversely, the number
of neighbors of node i, ni is defined as the number of unique
nodes that share a hyperedge with i. We remark that these two
concepts coincide in graphs, but they might be different in
hypergraphs.

A hypergraph H can be represented by the incidence ma-
trix, I ∈ RN×M , which is defined as

Ii j =
{

1 if vi ∈ e j

0 if vi /∈ e j
. (1)

From this representation, we can define the counting adja-
cency matrix [14,30], Acount ∈ RN×N , given as

Acount = IIT − D, (2)

where D = diag(ki ). Each element Acount
i j is the number of hy-

peredges shared by nodes i and j. The normalized adjacency
matrix [29], Anorm ∈ RN×N , is defined as

Anorm
ik =

∑
e j∈E

vi,vk∈e j
vi �=vk

1

|e j | − 1
. (3)

In this formulation, the degree of node i is computed as
ki = ∑N

k=1 Anorm
ik . We remark that in the original definition in

Ref. [29], this matrix was not referred to as the normalized
adjacency matrix. However, to emphasize its differences with
respect to the counting adjacency matrix, we have referred to
it as such here.

Both matrices can be considered as projections of the hy-
pergraph onto a graph, where hyperedges are represented as
cliques. The information about the hyperedges is retained in
the edge weights of the projected graph, although the counting
and normalized projections assign different meanings to these
weights.

III. RANDOM WALKS

A walk [29] vi0 − vil of length l between two vertices
vi0 , vil ∈ V in a hypergraph H is an alternating sequence
vi0 e j1vi1 e j2 . . . vil−1 e jl vil of distinct pairs of vertices and hy-
peredges, such that vik−1 , vik ∈ e jk for k = i, . . . , l . A step is
a walk of length one. A random walk (RW) is a stochastic
process, which describes a walk consisting of a succession of
random steps. Here we focus on Markovian random walks,
where the next step is dependent only on the current state
of the process. At each time step t , the random walk process
proceeds as follows:

(i) pick an edge e ∈ Eit with some probability pvit
(e),

(ii) pick a vertex v ∈ e with some probability pe(v),
(iii) move to vit+1 = v at time t + 1.
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TABLE I. Definition of the fundamental matrices used for the two types of random walks considered: The PRW and the HORW. The
probability transition matrices for the unbiased and maximal entropy cases are analyzed in detail in Secs. III A and III B, respectively.

Type PRW HORW

Adjacency A = Acount A = Anorm

Diagonal D = diag(
∑N

k=1 Acount
ik ) D = diag(

∑N
k=1 Anorm

ik )
Laplacian L = D − Acount L = D − Anorm

Probability transition (URW) PURW = D−1A

Probability transition (MERW) PMERW
i j = Ai j

λ

ψ j

ψi

The probabilities associated with choosing an edge and
a vertex may vary depending on the type of random walk
considered. For instance, the walker at node vit first chooses
uniformly a hyperedge e, then, inside this hyperedge, it
chooses uniformly a different node vit+1 ∈ e \ {vit }. This pro-
cess is related to the graph-projection given by Eq. (3). We
denote this as the higher-order step and the generated process
as a higher-order random walk (HORW). This type of process
was initially studied in Refs. [13,15,29] and also explored
as an unbiased random walk. Another possible choice is to
consider the next step probability for a walker at node vit to
be proportional to the number of hyperedges between vit and
vit+1 . We call this the projected step and the generated process
as a projected random walk (PRW). In this case, the walk
takes place in the graph-projection defined by Eq. (2). This
type of higher-order step was initially explored in Ref. [14]
in the form of unbiased random walks. We stress that this is
not a two-event process, as we have no information on which
hyperedge the walk is moving through, but only on how many
hyperedges two nodes share. As a consequence, this type of
higher-order step may not be sensitive to some higher-order
structures. Note that, in pairwise relations, both formulations
fall into the standard definitions of random walks in graphs.

As we defined a random walk where the nodes are the
states, all our quantities of interest can be derived in terms
of N × N matrices. This argument was formally provided in
Ref. [13], Theorem 16, where, by using the time reversibil-
ity property of Markov chains, the authors proved that the
nonlazy2 random walk on a hypergraph is equivalent to the
nonlazy random walk on a graph, provided that there are
trivial vertex weights. Hence, using the mapping between ran-
dom walks in hypergraphs and graphs (under the constraints
mentioned above), the theory of random walks in weighted
networks can be reinterpreted in our context.

In the following sections, we define two types of random
walks: unbiased and maximal entropy random walks. We can
also use the two types of steps previously discussed, the pro-
jected and higher-order steps for each class of random walks.
Thus, to make our notation lighter, we define the adjacency,
A, the Laplacian, L, and the probability transition matrix, P ,
accordingly. Their definitions are given in Table I. We also
use superscripts to denote the type of step and random walks
when necessary.

2The lazy random walk allows the walker to stay at the current
node, while the nonlazy random walk does not allow it. In other
words, Pii � 0 for the lazy and Pii = 0 for the nonlazy.

A. Unbiased random walks

We analyze the URW on hypergraphs with the projected
and higher-order step. In this process, given a step definition,
there is no bias towards a given direction. Since random walks
on hypergraphs can be mapped onto random walks on graphs,
we can use known literature results to write analytically the
expressions for the stationary distribution and mean hitting
times. From the Markovian formulation, the stationary distri-
bution is expressed as

πT = πTPURW, (4)

where PURW = D−1A is the probability transition matrix,
D = diag(

∑N
j=1 Ai j ) is a diagonal matrix, and π is the nor-

malized eigenvector associated to the leading eigenvalue,∑
i=1 πi = 1. Explicitly, this distribution is given as

πi =
∑N

j=1 Ai j∑N
i=1
j=1

Ai j

. (5)

Aside from the stationary distribution, other quantities of
interest are the hitting times. We denote by 0 = σ1 < σ2 �
· · · � σN the N eigenvalues of the Laplacian matrix, L, and
by μ1, μ2, . . . , μN their corresponding normalized eigenvec-
tors, whose components are μi = (μi1, μi2, . . . , μiN )� for i =
1, 2, . . . , N . For a random walker starting from node vi, the
expected time to hit node v j is expressed as [20,23]

T URW
i j =

N∑
z=1

kz

N∑
k=2

1

σk

(
μkiμkz − μkiμk j − μk jμkz + μ2

k j

)
.

(6)
Complementary, assuming that the node v j is the target node,
the partial mean hitting time is given as [20,23]

T URW
j = N

N − 1

N∑
k=2

1

σk

⎛
⎝2E × μ2

k j − μk j

N∑
z=1

kzμkz

⎞
⎠, (7)

where E = ∑N
i=1
j=1

Ai j . Finally, the global mean first passage

time can be obtained as [20,23]

〈T URW〉 = 2E

N − 1

N∑
k=2

1

σk
. (8)

Interestingly, the hitting times are fully characterized using
only the spectral properties of the Laplacian matrix, while
the stationary distribution depends only on the probability
transition matrix.
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B. Maximal entropy random walk

Another interesting case is the maximal entropy random
walk, where the walker is biased towards the direction that
maximizes the entropy of possible trajectories.

This type of random walk on graph was studied in Ref. [19]
where the probability transition matrix is defined as

PMERW
i j = Ai j

λ1

ψ1 j

ψ1i
. (9)

We denote by λ1 � λ2 � · · · � λN the eigenvalues of A and
by ψ1 � ψ2 � · · · � ψN the associated eigenvectors, whose
normalized components are ψi = (ψi1, ψi2, . . . , ψiN )� for i =
1, 2, . . . , N . The stationary distribution is obtained as

φi = ψ2
1i, (10)

where the normalization
∑

i=1 ψ2
1i = 1 must hold.

Mathematically, the expected time to hit v j , starting from
vi is obtain in Ref. [21] as

T MERW
i j = 1

ψ2
1 j

N∑
k=2

λ1

λ1 − λk

(
ψ2

k j − ψkiψk j
ψ1 j

ψ1i

)
. (11)

The partial mean hitting time to reach j is

T MERW
j = 1

ψ2
1 j (N − 1)

N∑
k=2

λ1

λ1 − λk

×
(

Nψ2
k j − ψk jψ1 j

N∑
i=1

ψki

ψ1i

)
, (12)

and the global mean hitting time is

〈T MERW〉 = 1

N (N − 1)

N∑
j=1

1

ψ2
1 j

N∑
k=2

λ1

λ1 − λk

×
(

Nψ2
k j − ψk jψ1 j

N∑
i=1

ψki

ψ1i

)
. (13)

In contrast with the unbiased case, in the maximal entropy
random walk, both the hitting times and the stationary dis-
tribution depend only on the eigenvalues and eigenvectors of
adjacency matrix A [21,23].

C. Uniform and regular hypergraphs

In uniform hypergraphs, all the hyperedges have the
same cardinality, i.e., |e j | = c for all j ∈ {1, 2, · · · M}. From
the spectral viewpoint, the spectra of both the counting and the
normalized adjacency matrices are the same, with a difference
of only a scaling factor (c − 1). Similar arguments can also be
applied to the Laplacian and the probability transition matri-
ces. Consequently, for a given class of random walks, both the
projected and the higher-order steps have the same stationary
distributions and hitting times. Although uniform hypergraphs
are relatively simpler structures, it does not imply that they are
trivial. Even without heterogeneity in the distribution of car-
dinalities, the degree distribution can still be heterogeneous.
We numerically explored this case in Sec. IV A 3.

Furthermore, the MERW and the URW are equivalent in
uniform and regular hypergraphs, where all the nodes in H

FIG. 1. A toy hypergraph, H = {V, E}, with N = 13 nodes, M =
9 hyperedges, where E = {e1, e2, ..., e9} and e1 = {1, 2}, e2 = {1, 3},
e3 = {1, 4}, e4 = {2, 3}, e5 = {2, 4}, e6 = {3, 4}, e7 = {4, 5, 6, 7},
e8 = {7, 8, 9, 10}, and e9 = {10, 11, 12, 13}. The hyperedges are
color coded.

have the same degree. In this case, the spectra of the Laplacian
matrix can be described by the spectra of the adjacency matrix
up to a scale and translation, thus implying that both classes of
random walks present the same behavior. Finally, it is worth
mentioning that, in Ref. [32], the authors formally derived the
cover times for a class of regular and uniform hypergraphs,
providing exact expression as well as asymptotic results.

IV. NUMERICAL EXPERIMENTS

In this section, we complement our analysis with numer-
ical experiments. First, in Sec. IV A, we focus on artificial
hypergraphs, evaluating both the distribution of cardinalities
and the degree distribution. Next, in Sec. IV B we show an
example of a real hypergraph, extending our analysis to cases
where nontrivial correlations are present.

A. Artificial hypergraphs

First, we present a toy example that allows us to comment
on both the differences between the step definitions and the
random walks. Next, in Secs. IV A 2 and IV A 3, we describe
and evaluate a series of synthetic hypergraphs with different
levels of heterogeneity.

1. A toy example

We analyze a small toy example of a hypergraph to high-
light the differences among the random walks studied here.
We consider a hypergraph with N = 13 nodes and M = 9
hyperedges, as depicted in Fig. 1. This hypergraph is “nearly
symmetric” with respect to node 7, as the structure E� =
{e1, e2, e3, e4, e5, e6} is a projected clique of a hyperedge with
cardinality 4 and composed by nodes 1, 2, 3, and 4. The
motivation behind the toy model is to emphasize if different
types of random walks are able to distinguish a higher-order
structure (a hyperedge) from its pairwise counterpart (a clique
here denoted by E�). Notably, nodes 4, 7, and 10 act as
bridges, connecting hyperedges to each other. While both
node 7 and node 10 are connecting two hyperedges, node 4
functions as a bridge connecting a hyperedge with a projected
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(e) (f)

(c) (d)

(a) (b)

FIG. 2. Graphical representation of the adjacency and probabil-
ity transition matrices for the toy’s example. In (a), (c), and (e) we
show the matrices related to the higher-order step, while in (b), (d),
and (f) we show those related to the projected step. In (a) and (b) the
adjacency matrices, Anorm and Acount, respectively. In (c) and (d) the
unbiased random walk probability transition matrix, PURW, while
in (e) and (f) the maximum entropy random walk transition matrix,
PMERW.

clique. As a result, we expect to observe differences across the
random walks due to this asymmetry.

Figure 2 shows the adjacency and probability transition
matrices. We observe that the counting adjacency matrix in
Fig. 2(b) does not distinguish between the hyperedge e9 =
{10, 11, 12, 13} and the projected clique E�. On the other
hand, the representation given by Eq. (3), in Fig. 2(a), weights
these two types of structures differently. Regarding the tran-
sition matrices PURW in Figs. 2(c) and 2(d), the differences
are relatively small, with the bridge node 4 playing a slightly
different role. In the URW with the projected step, node 4 is
equivalent to other bridge nodes. On the contrary, the URW
with the higher-order step has a higher transition probability
to move from node 4 towards the clique than moving towards
the hyperedge. However, for the PMERW in Figs. 2(e) and
2(f), the differences are more pronounced. Specifically, in the
higher-order case, the walker is more likely to remain within
the set of hyperedges E�, in contrast to the projected step.
This example also highlights the nonlocality of the MERW:
The walker is biased to move towards the clique even if it is
far away. This effect was not present in the URW, where the
effect of the clique was perceived only locally at node 4.

(c) (d)

(a) (b)

FIG. 3. Toy’s example stationary distribution for the unbiased
random walk with the higher-order step in (a), the maximal entropy
with the same step in (b), the unbiased random walk with projected
step in (c), and the maximal entropy random walk with the same step
in (d).

In Fig. 3, we examine the stationary distributions of the
four types of random walks considered. Figures 3(a) and 3(b)
clearly show the effects of asymmetry in the higher-order step
cases. In contrast, the projected step creates a symmetry that is
reflected in the stationary distributions, which can be seen in
Figs. 3(c) and 3(d). This effect is evident in the probabilities of
nodes 4, 7, and 10 in both the unbiased and maximum entropy
random walks.

Complementary, the expected time to hit v j , starting from
vi is represented in Fig. 4. In the projected case, Fig. 4(c) and
4(d), both the URW and MERW exhibit a similiar behavior.
Additionally, it is evident that the higher-order step creates a

(c) (d)

(a) (b)

FIG. 4. Toy’s example hitting times, Ti j , for the different types
of random walk studied. In (a) and (c) for the unbiased random
walk and in (b) and (d) for the maximum entropy random walk.
Complementary, in (a) and (b) the higher-order step, while in (c) and
(d) the projected step.
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bias towards the clique E�. This effect is even more apparent
in the maximum entropy case, where the time to reach the
nodes 1, 2, 3, and 4 in the clique is orders of magnitude shorter
than that for nodes 10, 11, 12, and 13. Moreover, we remark
on the particular role of nodes 4, 7, and 10, which serve
as bridges. Thus, the probabilities of getting to these nodes
typically present a strong dependency on the origin node.

2. Hypergraph models

Here we describe how to generate a random hypergraph
with a fixed number of nodes N and a single connected com-
ponent.

We begin by considering the random uncorrelated model,
where we generate hypergraphs with an arbitrary distribution
of cardinalities without controlling the degree distribution. We
fix the number of nodes, N , and hyperedges, M. The cardinal-
ities are then sampled from a given distribution, P(|e j |). To
generate a hyperedge e j , we uniformly sample |e j | nodes from
the vertex set V .

This procedure, which we refer to as a single trial, results
in a random hypergraph that may have multiple connected
components. To ensure a single connected component, we
use a trial-and-error algorithm that performs K = 200 trials
to find a connected component3 with N nodes. If all K trials
are unsuccessful, then the algorithm increases or decreases
the number of nodes by �N = 10 and repeats the procedure
another K times.

The algorithm terminates once the largest connected com-
ponent forms a hypergraph with N nodes. Even if hypergraphs
are generated with a different number of nodes than N , we
select the subhypergraph corresponding to a giant connected
component with N nodes. In this way, the algorithm effec-
tively maintains the number of nodes, while the number of
hyperedges may slightly fluctuate.

Using the above-described model, we constructed both
Poisson, P(|e j |) ∼ Poisson(β ), and power-law (PL) distribu-
tions, P(|e j |) ∼ |e j |−γ . In terms of cardinalities, the Poisson
distribution generates more homogeneous hypergraphs, where
we can control the average cardinality. On the other hand,
the PL distribution represents a class of heterogeneous hy-
pergraphs, whose heterogeneity can be controlled by the
parameter γ . With this method, we can also set the mini-
mum and maximum cardinality respectively to emin = 2 and
emax = √

N . While more sophisticated methods, as proposed
in Ref. [33], may be available, they can incur higher computa-
tional costs, making them impractical for large sample sizes.
Here, for each experiment, we considered nruns = 103 inde-
pendently generated hypergraphs. We remark that we decided
to keep the number of nodes N and hyperedges M as fixed
parameters. In this way, we are sure to avoid that the size of the
hypergraph has an effect on the measures. As a continuation
of this work, other valid alternatives could be explored, such
as keeping the average cardinality or the average degree fixed
and letting the number of hyperedges vary.

3A connected component in a hypergraph can be obtained by using
the standard graph algorithms in the count or normalized adjacency
matrices.

In addition to the heterogeneity of cardinalities, we also
consider uniform hypergraphs with controlled degree distri-
bution. To produce a homogeneous degree distribution, we
use the previous algorithm with the distribution P(|e j |) ∼
1{|e j |=c}, where 1{|e j |=c} is the indicator function which equals
one if |e j | = c and zero otherwise. To produce a heteroge-
neous degree distribution, we use the algorithm proposed
in Ref. [34], which generates uniform hypergraphs with PL
distributions with P(k) ∼ k−γ and γ = 1 + 1

ν
. The algorithm

associates each node i with the probability pi = i−ν

ζN (ν) , where

ζN (ν) = ∑N
j=1 j−ν and 0 < ν < 1. Next, for each hyperedge,

we select c nodes following the probabilities pi. This al-
gorithm is a generalization of the static model defined in
Refs. [35,36] for graphs and fixes the average degree to be
c M

N . We again use the same brute force algorithm to ensure a
single connected component, which may result in fluctuations
similar to those observed in the random uncorrelated model.

Last, we generate hypergraphs with both degree and car-
dinality distribution following a power law. This model is
inherently more complex than the previous ones due to the
challenging task of matching the two distributions. We used
an algorithm based on three simple steps: (i) an unrestricted
matching, (ii) a brute-force fixing algorithm that swaps re-
peated nodes on the hyperedges, and (iii) a random swap
step (using the swap proposed in Ref. [33]) that ensures that
the final hypergraph is uniformly sampled from the space
of possible hypergraphs. We note that we cannot formally
guarantee that our hypergraph is uniformly sampled because,
to the best of our knowledge, there is no lower bound on the
number of necessary swaps in the general case. However, we
perform 104 swaps in hypergraphs with N = 103, which we
hope will be sufficient. This algorithm has been proposed and
systematically tested in Ref. [37].

3. Numerical results

Figure 5 illustrates the mean hitting time, 〈T 〉, for the four
classes of random walks on different Poisson distributions of
cardinality distributions and various values of β. Regardless
of the type of random walk, 〈T 〉 decreases as we increase β.
We remark that 〈T 〉 is lower bounded by (N − 1) as we need at
least (N − 1) steps to visit all the nodes. Comparing Figs. 5(a)
and 5(c) with Figs. 5(b) and 5(d), we observe that the URW
has a smaller 〈T 〉 than the MERW for both steps. Moreover,
in general, 〈T 〉 in the projected step is larger than the higher-
order one. As the structure is reasonably homogeneous, the
URW is very similar for both steps. Although all curves show
a similar trend, the MERW has a larger variance, particularly
for small values of β. The extreme case is the P-MERW,
where some hypergraphs have an average hitting time with
a different order of magnitude, as shown in Fig. 5(d).

Complementary, in Fig. 6, we evaluate the impact of het-
erogeneity using a PL distribution of cardinalities. Except for
the P-URW in Fig. 6(c), all the other cases present a mean
hitting time that increases with γ . We also observe that the
variance is relatively higher if compared to the Poisson case
in Fig. 5. Similar comments as before also apply here, such
as the projected step imposing a higher mean hitting time.
Furthermore, we remark that the variance is more consider-
able for higher values of γ , which is particularly evident in
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(c) (d)

(a) (b)

FIG. 5. Mean hitting time on random hypergraphs following a
Poisson distribution of cardinalities, P(|e j |) ∼ Poisson(β ), N = 103,
and M = 103. For each parameter, we have 103 independently gener-
ated hypergraphs, each one being a point in each panel. The median is
represented by a black continuous line and the first and third quartiles
are the dashed lines.

the MERW cases. This phenomenon arises because increasing
γ with a fixed number of hyperedges M results in a sparser
projected hypergraph. Similar effects can be observed by re-
ducing the parameter β in Fig. 5, where the average size of
each hyperedge decreases while the number of hyperedges is
fixed, leading to a sparser projected hypergraph.

Next, we investigate the impact of degree distribution het-
erogeneity on uniform hypergraphs with fixed cardinalities.
Figures 7 and 8 show results for homogeneous and power-law
degree distributions, respectively. We note that both types
of steps in the URW produce the same output, due to the

(c) (d)

(a) (b)

FIG. 6. Mean hitting time on random hypergraphs following a
power-law distribution of cardinalities, P(|e j |) ∼ |e j |−γ , N = 103,
and M = 103. For each parameter, we have 103 independently gener-
ated hypergraphs, each one being a point in each panel. The median is
represented by a black continuous line and the first and third quartiles
are the dashed lines.

(c) (d)

(a) (b)

FIG. 7. Mean hitting time on uniform homogeneous random hy-
pergraphs, N = 103 and M = 103. For each parameter, we have 103

independently generated hypergraphs, each one being a point in each
panel. The median is represented by a black continuous line and the
first and third quartiles are the dashed lines.

uniformity of the cardinalities. In this case, the counting and
normalized adjacency matrices have the same spectral dis-
tributions, up to a scale. For the uniform homogeneous case
in Fig. 7, we observe that increasing the magnitude of the
edges |e j | leads to a decrease in the mean hitting time, as
also observed in the Poisson case, Fig. 5. In the PL case with
|e j | = 20 in Fig. 8, we find that, as we increase γ , the mean
hitting time, 〈T 〉, decreases. However, it is worth noting that
the mean hitting times in the uniform homogeneous cases are
considerably smaller, suggesting that degree distribution het-
erogeneity may also contribute to longer mean hitting times.

(c) (d)

(a) (b)

FIG. 8. Mean hitting time on uniform random hypergraphs
following a power-law degree distribution, P(k) ∼ k−γ , N = 103,
|e j | = 20, and M = 103. The average degree is 20. For each param-
eter, we have 103 independently generated hypergraphs, each one
being a point in each panel. The median is represented by a black
continuous line and the first and third quartiles are the dashed lines.
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(c) (d)

(a) (b)

FIG. 9. Heatmaps showing the average mean hitting time for the
four types of random walks. Each value of the heatmap is the median
of the average mean hitting time of 100 independently generated
hypergraphs.

To conclude our analysis of the impact of heterogeneity we
investigate synthetic hypergraphs generated with a power-law
degree distribution and a power-law cardinality distribution.
We refer to the power-law exponent of the degree distribution
as γd and to the one of the cardinality distribution as γc.
Figure 9 shows the mean hitting times of the four types of
random walks as the power-law distribution exponent is varied
from 2.1 to 3.5 for both cardinality and degree distribution.
All types of random walks present a particular behavior as the
power-law exponent varies.

The unbiased random walk with the higher-order step has
a mean hitting time that increases as the degree exponent
increases. In particular, for a degree exponent larger than 3,
the hitting times become longer, signaling the absence of big
hubs. Regarding the cardinality exponent, it seems to play a
bigger role when associated with a small degree exponent,
reducing consistently the hitting times. Indeed, the minimal
mean hitting time is obtained for γc = 3.5 and γd = 2.1.

The unbiased random walk with the projected step displays
a completely different scaling. The average mean hitting time
behaves as a saddle with a maximum for values of γd ∈
(2.5, 3). Also, we observe a sharp change in the average mean
hitting time as soon as the degree exponent reaches the value
of 3.0.

Concerning the maximal entropy random walk, the mean
hitting times scale considerably with the exponents [Figs. 9(b)
and 9(d) are in log scale]. We can notice that the region with
γc > 3.0 and γd > 3.0 is where the mean hitting time is larger.
This behavior is probably due to the absence of hubs, which
usually make the system easier to navigate. Finally, there is a
similar sharp change when the γc = 3.0 for the HO-MERW
and one when γd = 3.0 for the P-MERW.

B. Real hypergraphs

In this section, we present the analysis of the real
hypergraph cat-edge-vegas-bars-reviews [38]. Nodes are
Yelp users, and hyperedges are users who reviewed an

(b)

(a)

FIG. 10. Analysis of the cat-edge-vegas-bars-reviews real hyper-
graph. In (a) the stationary distribution for the four types of random
walks, while in (b) partial mean hitting time, Tj , for the same four
types of random walks.

establishment of a particular category, which are different
types of restaurants in Las Vegas, NV, United States. This
data were collected for a month. We focus our analysis on
this hypergraph, as it presented a very rich behavior, serving
as an example of the different types of behavior introduced
by correlations. Additional real hypergraphs are analyzed in
Appendix.

Figure 10 shows the stationary distribution and the partial
mean hitting times in Figs. 10(a) and 10(b), respectively. In
this figure, the x axis is sorted independently for each type of
random walks studied, for visualization purposes. We observe
that the four types of random walks have very different be-
haviors. This outcome is especially evident for the P-MERW,
in which some nodes are much harder to reach and the sta-
tionary distribution is more localized in fewer nodes, not just
in the hubs, but from node 700 onwards. We found a similar
trend exploring the stationary distribution of artificial hyper-
graphs with a power-law cardinality distribution. However, the
real hypergraph cat-edge-vegas-bars-reviews exhibits a pecu-
liar fluctuation in the stationary distribution of the P-MERW
around sorted id 700 [Fig. 10(a)] that we could not find in
any other synthetic hypergraphs. Additionally, in Fig. 11, we
can verify that the stationary distributions and their respective
partial mean hitting times are strongly correlated. However,
this correlation is not linear as the Pearson correlation, ρP,
is very small. However, the Spearman correlation is high,
thus suggesting that there is a monotonous relationship. From
the analytical viewpoint, this is particularly evident for the
MERW case, as in Eq. (12), Tj is inversely proportional to
the stationary distribution φ j = ψ2

j . For the URW case, this
argument is slightly more complex since it is not obvious
that Eq. (7) depends on any individual structural feature. It is
known that the recurrence time (Tii) of the URW is inversely
proportional to its stationary probability [18],

Tii = 1

πi
, (14)
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(c) (d)

(a) (b)

FIG. 11. Comparative analysis of the different stationary dis-
tributions with their respective partial mean hitting time for the
cat-edge-vegas-bars-reviews real hypergraph. We report the Pearson,
ρP, and Spearman, ρS , correlations in the upper right corner of each
panel.

and similar behavior can be found for the hitting times Ti j

with i �= j (see Sec. 3.2.5 in Ref. [18] for the details of the
calculation). Another explanation is given in Ref. [20], where
the authors elegantly derived a lower bound for the partial
mean hitting time Tj using the Cauchy inequality and the
property that the Laplacian components Li j can be rewritten
as

Li j =
∑

k

σkμkiμk j, (15)

and Lii = ki, the node degree. Finally, the authors arrived at
the bound

Tj �
N

N − 1

(2E − k j )2

2E × k j − ∑
z kzL jz

. (16)

From this bound and remembering that for a URW the sta-
tionary distribution π j ∝ k j , we can get the intuition behind
the nonlinear correlation found in Fig. 11. This is a heuristic
argument since the equality holds only for special graphs, like
the complete graph or the star graph.

Finally, in Fig. 12, we compare the different classes of
random walk in terms of their stationary distributions. In all
the evaluated cases, the correlations are positive. Interest-
ingly, comparing the two different steps with the same type
of random walk, Figs. 12(a) and 12(b), we observe that the
Spearman correlation is considerably lower than the Pearson
correlation. This result suggests that the relationship between
different steps is nontrivial and that their rankings are not
the same. Next, comparing the unbiased with the maximal
entropy for each step, Figs. 12(c) and 12(d), we observe a
strong correlation. However, their relationship is not trivial.

We also compared Fig. 12 and Fig. 11 with artificial hy-
pergraphs, finding again many similarities with the power-law
cardinality distribution case. The most notable difference is
in Fig. 12(b), where we found a much weaker correlation
(around 0.5) between the projected (φP

i ) and higher-order

(c) (d)

(a) (b)

FIG. 12. Comparative analysis of the different stationary dis-
tributions for the cat-edge-vegas-bars-reviews real hypergraph. We
report the Pearson, ρP, and Spearman, ρS , correlations in the upper
left corner of each panel.

(φHO
i ) stationary distributions for artificial hypergraphs with

power-law cardinality distributions. The comparison between
random walks on real and artificial hypergraphs is outside the
scope of this article and is left as a future work.

V. ANALYSIS AND DISCUSSION

At first glance, random walks on hypergraphs might seem
like an abstract problem. However, similar to random walks in
other contexts, this abstraction might provide insights into hy-
pergraphs’ structural organization. For instance, in Ref. [31],
random walks were used to detect community structures. As
an application, the authors considered a hypergraph where
nodes represent animals and hyperedges represent features,
and they used random walks to group “similar animals” into
communities [31]. Another possible abstraction is the calcu-
lation of the probability and time necessary for a message
to travel from node i to node j. These examples support
our argument that random walks are more general than their
simplistic interpretation of a walker following a physical path
in the hypergraph.

Here we have shown that random walks can have differ-
ent interpretations depending on the type of step adopted.
We have considered what we call the projected and the
higher-order steps. In the projected step, the hypergraph is
effectively projected on a graph, where the walk takes place.
This is exemplified by the toy hypergraph in Fig. 1, where
we note that projected steps do not distinguish between a
hyperedge with |e j | > 2 and a clique with the |e j | nodes. In
the higher-order step, the random walk can be interpreted as
a sequence of two dependent processes, first a uniform choice
of the next hyperedge, then a uniform choice of the next
node. This construction allows for a distinction between the
structures mentioned above. We remark that the projected and
the higher-order steps are two possibilities, and many other
processes can be defined following similar arguments. Indeed,
although not explored here, in Ref. [31] the authors have
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formulated the random walk following the adjacency matrix

Kτ
i j =

{∑
α:eα∈E (Bαα − 1)τIiαI jα if i �= j

0 if i = j
, (17)

where B = ITI and τ is a real parameter. Note that the
element Bi j is the number of nodes in the intersection between
ei and e j , i.e., |ei ∩ e j |. If τ = 0, then we recover the counting
adjacency matrix and the projected step. On the other hand,
if τ = −1, then we recover our normalized adjacency matrix
and thus the higher-order step. We can apply the same ex-
pressions introduced in Sec. III for the times and stationary
distributions.

All these projections have in common that hyper-
edges of size |e| are projected onto |e| cliques. Another
widely used and flexible alternative is to represent a hy-
pergraph of N vertices and M hyperedges as a bipartite
graph of N + M nodes. The two classes of nodes in the
bipartite graph are the vertices of the hypergraph and
the hyperedges.

The corresponding adjacency matrix is

Abipartite =
(

0 I
IT 0

)
, (18)

where I is the hypergraph incidence matrix. It is worth noting
that for this representation, a walker to go from a vertex vi to
a vertex v j necessarily has to move through a hyperedge that
both vertices have in common, meaning that it will require two
steps. The resulting walk is an alternating sequence of distinct
pairs of vertices and hyperedges. Therefore, a step with the
projected or higher-order step should be compared to two
steps on the bipartite representation, as they both represent
a movement from one vertex to another in the hypergraph.

It is important to comment on the unbiased and maximal
entropy random walk defined on this representation. We show
that a nontrivial mapping exists between random walks de-
fined on the bipartite representation of the hypergraph and
random walks defined on top of the projections considered
in Sec. II. Specifically, the URW on the bipartite is equivalent
to the URW on the normalized adjacency projection, while
the MERW on the bipartite is equivalent to the MERW on
the counting adjacency projection. The former equivalence
was also pointed out in Ref. [39]. One can indeed notice that
the weights appearing in Eq. (3) represent a uniform choice
between |e| − 1 possible arrival nodes. Here we show the
equivalence between the MERW on the bipartite representa-
tion and the MERW with the projected step. We first follow
the reasoning in Ref. [19] to derive the transition probabilities
for a nonlazy MERW on the bipartite representation. Finally,
we demonstrate that they are equivalent to the MERW with
the projected step. We denote as γ 2t

vi0 ,vit
the trajectory of length

2t corresponding to the sequence vi0 e j1 , vi1 . . . , e jt vit . The
MERW is the random walk that maximizes the entropy of the
set of sequences of length 2t ,

St = −
∑

vi0 ,e j1 ,...,vit

P
(
vi0 , e j1 , . . . , vit

)
lnP

(
vi0 , e j1 , . . . , vit

)
.

(19)
The probability of the sequence is P (vi0 , e j1 , . . . , vit ) =

π0P (γ 2t
vi0 ,vit

) and π0 is the probability of being in node v0.

This quantity is maximized when the sequence is chosen with
uniform probability. We denote by N2t the number of all the
possible sequences of length 2t , then the entropy simplifies to

St = ln N2t . (20)

The number of paths of length 2t between a pair of
nodes vi0 , vit in the bipartite graph is simply given by
[(Abipartite )2t ]i0it . Since we are working with nonlazy random
walks, the above expression can be shown to be modified
to [(Acount )t ]i0it . As a consequence, the Shannon entropy in
Eq. (19) is maximized for

St = ln
∑
vi0 ,vit

[(Acount )t ]i0it ∼
t→∞ t ln λ, (21)

where λ is the leading eigenvalue of Acount. It can be shown
that the correct choices for the transition probabilities of a
nonlazy maximal entropy random walk on the bipartite pro-
jections are

P(vi → e) = Iie

λ

Zi(e)

ψi
, (22)

P(e → vk|vi ) = ψkIT
ek (1 − δik )

Zi(e)
, (23)

Zi(e) =
∑
k �=i

IT
ekψk . (24)

P(e → vk|vi ) is the probability to transition from hyperedge e
to node vk given that at the previous step the walker was in vi

and ψi is the i component of the eigenvector corresponding to
the leading eigenvalue λ. This type of random walk maximizes
the Shannon entropy in Eq. (19) in the limit t → ∞ and is
equivalent to the maximal entropy random walk defined on
top of the counting projection. Indeed, by considering the two-
step probability

P(vi → v j ) =
∑

e

P(vi → e)P(e → vk|vi )

=
∑

e

Iie

λ

IT
e j (1 − δi j )ψ j

ψi
= Acount

i j

λ

ψ j

ψi
, (25)

which is precisely the expression in Eq. (9) with the projected
step.

VI. CONCLUSIONS

In this paper, we introduced maximal entropy random
walks in hypergraphs, which to the best of our knowledge,
has not been previously explored. Besides, we complement
the results in Refs. [13–15,19] by allowing for different
types of random walk steps. We explore the projected
and higher-order steps to construct the unbiased and the
maximal entropy random walks and characterize their sta-
tionary distribution, hitting times, partial, and mean hitting
times.

Our numerical experiments consider homogeneous and
heterogeneous hypergraphs in terms of cardinality and degree
distributions. We observe that, regardless of the type of ran-
dom walk, increasing the average cardinality tends to decrease
the average hitting time as seen in the numerical experiments
reported in Figs. 5 and 7 for homogeneous cases. Furthermore,
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TABLE II. Structural characterization of the real hypergraphs. The hypergraphs are characterized by the number of nodes, N , number of
hyperedges, M, average cardinality, 〈|e j |〉, standard deviation of the cardinalities std(|e j |), and maximal cardinality, max(e j ). The normalized
adjacency matrix metrics are the average, standard deviation minimum and maximum degree, 〈kHO〉, std(kHO), kHO

min, and kHO
max, while the

respective metrics from the counting adjacency matrix are 〈kP〉, std(kP ), kP
min, and kP

max. In the hypergraphs marked with a “∗” we have repeated
hyperedges. For more, see Appendix A 1.

Name N M 〈|e j |〉 std(|e j |) max(e j ) 〈kHO〉 std(kHO) kHO
min kHO

max 〈kP〉 std(kP ) kP
min kP

max

cat-edge-algebra-
questions

420 1267 6.519 6.579 107 19.664 34.091 1 375 239.076 352.769 1 3362

cat-edge-geometry-
questions

580 1193 10.465 15.647 230 21.526 36.264 1 260 707.334 1066.547 1 6711

cat-edge-vegas-bars-
reviews

1234 1194 9.937 13.817 73 9.615 7.371 1 147 270.665 295.724 1 4388

cat-edge-madison-
restaurant-rev.

565 601 7.656 7.281 43 8.143 7.217 1 59 110.588 104.189 2 716

cat-edge-music-blues-
reviews

1104 693 15.147 14.716 83 9.508 10.723 1 127 270.447 279.523 2 3393

phs-email-Enron 4423 15 653 4.119 4.458 25 14.576 101.395 1 4869 115.795 494.400 1 15471
phs-email-W3C 13 351 19 351 2.219 0.953 25 3.217 24.751 1 958 5.237 31.534 1 1293
contact-high-school∗ 327 172 035 2.050 0.234 5 1078.648 816.639 7 4495 1161.639 883.960 7 4655
contact-primary-
school∗

242 106 879 2.096 0.310 5 925.612 446.772 125 2234 1056.744 530.606 131 2640

our experiments suggest that heterogeneity increases the mean
hitting time for uniform hypergraphs with power-law-degree
distribution. Notably, when both the degree and cardinality
distribution are power law, the four classes of random walks
exhibit distinct behaviors as the heterogeneity changes. The
average hitting time for the MERW increases as the distribu-
tion exponent rises, while the URW with the projected step
behaves differently, presenting a sort of saddle.

In general, we observe that hitting times for the projected
step are typically larger than those for the higher-order step,
and hitting times for the URW are smaller than those for the
MERW.

We also evaluate a real hypergraph with different types of
correlations, emphasizing the complementary nature of the
four classes of processes studied here, (P/HO)-(U/ME)RW,
and providing different insights about the underlying struc-
ture. We discuss other possible types of steps found in the
literature, particularly the walk on the bipartite representation
of the hypergraph. We comment that a nontrivial mapping
exists between random walks defined on the bipartite repre-
sentation of the hypergraph and random walks defined on top
of the projections considered in this paper. Specifically, the
URW on the bipartite is equivalent to the URW on the normal-
ized adjacency projection, while the MERW on the bipartite
is equivalent to the MERW on the counting adjacency projec-
tion. Overall, our work contributes to a better understanding
of random walks on hypergraphs and provides a versatile tool
for analyzing complex systems in various domains.

Our results highlight the importance of the localization
properties of the adjacency matrix and suggest that this feature
might play a crucial role in other processes such as social
contagion and information diffusion on hypergraphs. We hope
that our findings will motivate further research with the po-
tential to provide valuable insights for various applications,
including the analysis of real higher-order systems and the de-
velopment of novel methods in related fields such as artificial
intelligence and behavioral sciences.

Custom code that supports the findings of this study is
available [40].
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APPENDIX: ADDITIONAL EXPERIMENTS:
REAL HYPERGRAPHS

In this section, we present additional experiments on real
hypergraphs to complement the results of the main text. Here
we focus on the stationary distributions and the partial mean
hitting times. First, in the next section, we briefly describe the
databases, while in Sec. A 2, we briefly compare their results.

1. Databases

The database used here is available [41]. Additionally, in
Table II, we provide a brief structural characterization of these
hypergraphs. We kept the dataset names on the repository to
facilitate its identification, reproduction, and further studies.
For more information about a specific hypergraph, please see
the provided references. We also provide a short description
of each hypergraph as follows:

(i) cat-edge-algebra-questions [38]: A hypergraph where
nodes are users on MathOverflow and hyperedges are sets of
users who answered a certain question category. This dataset
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FIG. 13. Stationary distribution for the four types of random walks studied for the database described in Section A 1.

was collected from different tags involving algebra, and it was
derived from the Stack Exchange data dump;

(ii) cat-edge-geometry-questions [38]: A hypergraph
where nodes are users on MathOverflow and hyperedges are
sets of users who answered a particular question category.
This dataset was collected from different tags involving
geometry, and it was derived from the Stack Exchange data
dump;

(iii) cat-edge-vegas-bars-reviews [38]: A hypergraph
where the nodes are Yelp users and hyperedges are users
who reviewed a bar of a particular category. This dataset is
restricted to bars in Las Vegas, NV, and within a month’s
timeframe. The data were obtained from the Yelp Kaggle
competition data;

(iv) cat-edge-madison-restaurant-reviews [38]: A hyper-
graph where the nodes are Yelp users and hyperedges
are users who reviewed a restaurant of a particular category.
This dataset is restricted to restaurants in Madison, WI, and
within a month’s timeframe. The data were obtained from the
Yelp Kaggle competition data;

(v) cat-edge-music-blues-reviews [42]: A hypergraph
where nodes are Amazon reviewers and hyperedges are re-
viewers who reviewed a specific type of blues music within
a month timeframe. The dataset was compiled from the prod-
uct reviews collected by Jianmo Ni, Jiacheng Li, and Julian
McAuley;

(vi) phs-email-W3C [43,44]: A hypergraph where nodes
correspond to email addresses with a w3c.org domain and
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FIG. 14. Partial mean hitting time, Tj , for the four types of random walks studied for the database described in Section A 1.

hyperedge consists of a set of email addresses, which
have all appeared on the same email. This dataset was
originally used on the analysis of core-fringe structures
in Ref. [44];

(vii) phs-email-Enron [44]: A hypergraph where nodes
correspond to email addresses and hyperedges consist of sets
of email addresses, which have all appeared on the same
email. This dataset was originally used on the analysis of core-
fringe structures in Ref. [44], where core nodes correspond to
email addresses of the individuals whose email inboxes were
released as part of the investigation by the Federal Energy
Regulatory Commission;

(viii) contact-high-school [45,46]: This dataset is a tempo-
ral sequence of timestamped hyperedges, which are composed
of people. It is constructed from interactions recorded by
sensors worn by people at a high school. The resolution of
these sensors is 20 s;

(ix) contact-primary-school [46,47]: This dataset is a
temporal sequence of timestamped hyperedges, which are
composed of people. It is constructed from interactions
recorded by sensors worn by people at a primary school. The
resolution of these sensors is 20 s;

We remark that contact-high-school and contact-primary-
school have repeated hyperedges, thus the generated hyper-
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graph is not simple. In the following section, we will use
this version with repeated hyperedges to emphasize that our
results also apply to this type of hypergraph. Thus, the in-
terpretation of the random walk in these cases also slightly
changes.

2. Additional experiments

Figure 13 shows the stationary distribution for the database
discussed in Appendix A 1 and the four types of random walks
studied. Note that, for visualization purposes, the x axis is the
sorted id, which is done independently for each curve, im-
plying that the rankings might be different. Perhaps the most
evident difference among the distributions is observed in the
class of the process, URW or MERW, and later on the step’s
definition. Moreover, the MERW presents a higher variance

of states, spanning orders of magnitude. Finally, this random
walk, only in some cases, also presented “lumps,” which
are most visible for cat-edge-madison-restaurant-reviews and
cat-edge-vegas-bars-reviews hypergraphs. These observations
might suggest that these structures present some form of local-
ization, imprisoning the walkers into “entropic wells.”

Figure 14 shows the partial mean hitting time for the
database discussed in Appendix A 1 and the four types of
random walks studied. Again, we highlight that the x axis
is independently sorted for each curve. For the partial mean
hitting times, similar comments, as for Fig. 13, also apply.
As a particular observation for this measurement, we observe
that Tj is typically higher for the MERW. However, some
nodes present a lower partial mean hitting time if compared
to the URW. This result might suggest that these nodes play a
notably different role, maybe serving as bridges.
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