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Distinguishing subsampled power laws from other heavy-tailed distributions
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Distinguishing power-law distributions from other heavy-tailed distributions is challenging, and this task is
often further complicated by subsampling effects. In this work, we evaluate the performance of two commonly
used methods for detecting power-law distributions—the maximum likelihood method of Clauset et al. and the
extreme value method of Voitalov et al.—in distinguishing subsampled power laws from two other heavy-tailed
distributions, the lognormal and the stretched exponential distributions. We focus on a random subsampling
method commonly applied in network science and biological sciences. In this subsampling scheme, we are
ultimately interested in the frequency distribution of elements with a certain number of constituent parts—for
example, species with k individuals or nodes with k connections—and each part is selected to the subsample
with an equal probability. We investigate how well the results obtained from low-subsampling-depth subsamples
generalize to the original distribution. Our results show that the power-law exponent of the original distribution
can be estimated fairly accurately from subsamples, but classifying the distribution correctly is more challenging.
The maximum likelihood method falsely rejects the power-law hypothesis for a large fraction of subsamples
from power-law distributions. While the extreme value method correctly recognizes subsampled power-law
distributions with all tested subsampling depths, its capacity to distinguish power laws from the heavy-tailed
alternatives is limited. However, these false positives tend to result not from the subsampling itself but from the
estimators’ inability to classify the original sample correctly. In fact, we show that the extreme value method can
sometimes be expected to perform better on subsamples than on the original samples from the lognormal and
the stretched exponential distributions, while the contrary is true for the main tests included in the maximum
likelihood method.
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I. INTRODUCTION

Power-law distributions have frequently been observed in
both natural and artificial systems. They naturally emerge by
mechanisms such as preferential attachment [1] and restarts
in telecom and queueing networks [2,3], and they also serve
to explain other complex phenomena such as fractional Gaus-
sian noises [4] and small-world phenomena [5]. The apparent
ubiquity of power laws has been taken to indicate a uni-
versal self-organizing mechanism at play, and power laws
have acquired a reputation as a hallmark of complex systems.
However, there is no universally accepted method for iden-
tifying power laws, and their ubiquity has. been argued to
result from lacking statistical testing rather than their actual
universality [6]. The debate has been especially heated in the
field of network science, where networks with a power-law
degree distribution, the so-called scale-free networks, play
a prominent role. For these networks, the probability that a
randomly chosen node has k connections to other nodes varies
as a power of the degree k. Using the maximum likelihood
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methods presented in Ref. [7], Broido and Clauset concluded
that—contrary to the widespread belief—scale-free networks
are rare [6]. A power law was required to hold only for the
largest degrees:

P(k) = 1
ζ (α,k′

min ) k
−α, for degrees k � k′

min � 1, (1)

where α > 1 is the tail exponent, k′
min is the smallest de-

gree for which the power law holds, and ζ (α, k′
min) is the

Hurwitz zeta function which normalizes the degree distribu-
tion so that

∑∞
k=k′

min
P(k) = 1. In contrast to this, however,

Voitalov et al. [8] found more evidence of scale-free net-
works using a method based on extreme value theory. In
their work, the definition of power-law distribution was ex-
tended to include all regularly varying distributions, defined
as distributions whose complementary cumulative distribution
function approaches a power law asymptotically in the tail
while deviating arbitrarily from a pure power law for smaller
degrees. In line with this, Serafino et al. [9] found many em-
pirical degree distributions to satisfy the scale-free hypothesis
when finite-size effects were taken into account with tools
from statistical physics. Note that while these articles use the
terminology of network science, the methods can equally well
be applied to frequency distributions in any other domain of
science.

In summary, distinguishing power-law distributions from
other heavy-tailed distributions has proven to be challenging,
and this task is further complicated if the data are subsampled.
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Often only a part of the system can be observed, and depend-
ing on the subsampling strategy, the subsample represents the
original system more or less accurately. For example, if we
sample nodes of a network with equal probability and record
their degrees, the subsampling is trivial in the sense that the
degree distribution stays unchanged. However, this kind of
unbiased subsampling is often not possible; we might, for
example, sample each node with equal probability but only
be able to observe the connections between the chosen nodes,
in which case the observed degree distribution does not faith-
fully reflect that of the whole system. In such cases, making
inferences from the subsample without further consideration
might lead to erroneous conclusions.

In this work, we assess how reliably two state-of-the-
art methods for recognizing power-law distributions—that of
Clauset et al. [6,7] and Voitalov et al. [8]—determine whether
subsampled data originate from a power-law distribution. We
focus on a random subsampling method where the probability
of observing a node depends on its degree. In network sci-
ence, this method is known as the incident subgraph sampling
strategy, where each edge is included in the subsample with
probability π together with the nodes that it connects. The
degree distribution of the subsamples is given by

Ps(k) = ∑∞
i�k P(i)

( i
k

)
π k (1 − π )i−k, (2)

where P(k) denotes the degree distribution of the original
network. This subsampling strategy is equivalent to selecting
each node with a probability linear in degree. The same strat-
egy can be applied to frequency distributions arising in other
contexts. In biodiversity studies, for example, P(k) might
represent the fraction of species with k individuals, and each
individual would subsequently be picked to the subsample
with probability π . In general, this subsampling method is
common in situations where observing the whole system or
population is impossible due to the sheer size of the sys-
tem, such as when recording the size distribution of neuronal
avalanches in the brain [10], assessing relative species abun-
dance in an ecological community [11] or investigating the
diversity of cells in immunological studies [12]. In such cases,
it is crucial to know to what extent the results obtained for a
subsample can be generalized to the original distribution.

For power laws, generalizing the results to the original
distribution is not straightforward. Stumpf et al. [13] have ar-
gued that the degree distribution of a scale-free network is not
closed under the subsampling strategy described by Eq. (2),
meaning that the degree distribution of the subsampled net-
work and that of the whole network do not belong to the
same family of probability distributions. The same applies to
other heavy-tailed distributions such as the lognormal and the
stretched exponential distributions [13], which are notoriously
difficult to distinguish from power laws and have commonly
been used as alternatives to the power-law hypothesis in
the previous literature (see, for example, Refs. [14–17]). For
power-law distributions, deviation from the original power
law grows larger as the subsampling depth decreases or the
power-law exponent increases [13]. However, the form of the
distribution is mostly affected for small degrees, and the tail
of the subsampled distribution still approaches the original
power law asymptotically for k � 1 [18]. This finding is fruit-
fully exploited by Levina et al. [10], who propose a method

for differentiating between power-law and exponential dis-
tributions by further subsampling the data—a subsample
itself—and scaling the subsampled sequences in a way that
collapses the scaled tails of the subsamples to the original
power law.

In general, methods considering only the tail of a distri-
bution should, in theory, continue to work on subsampled
power-law distributions, which still belong to the larger
class of regularly varying distributions. However, we do
not currently know how incident subgraph sampling af-
fects the separability of other heavy-tailed distributions from
power-law distributions. Subsampling might distort other dis-
tributions to resemble power laws; for example, Han et al. [19]
have previously observed that when the subsampling scheme
consists of selecting a fraction p of the nodes and a fraction q
of those nodes neighbors, subsamples from networks with ex-
ponential, truncated normal and Poisson degree distributions
can mimic power-law-like behavior, when the resemblance to
power law is assessed based on the degree of linearity between
logarithms of the degree k and the number of nodes with
degree k.

In this work, we evaluate how reliably the methods of
Clauset et al. [6,7] and Voitalov et al. [8] succeed in distin-
guishing subsampled power-law distributions from two other
types of heavy-tailed distributions—namely the lognormal
and the stretched exponential distributions—when the above-
described incident subgraph sampling strategy is applied to
subsamples from simulated degree distributions. We use the
term stretched exponential distribution to refer to the sub-
class of Weibull distributions with β ∈ (0, 1) to maintain
consistency with nomenclature in our core references. For
convenience, we use the name maximum likelihood (ML)
method to refer to the power-law hypothesis test by Broido
and Clauset [6] based on the methods of Clauset et al. [7] and
the name extreme value (EV) method to refer to the method of
Voitalov et al. As heavy-tailed distributions are by definition
heavier than any exponential distribution, we assess the meth-
ods’ performance on discrete exponential distributions (i.e.,
geometric distributions) as well. Our analysis is restricted to
these two methods because their implementation is readily
available, excluding, e.g., the finite-size scaling method of
Ref. [9]. It is also worth noting that this finite-size scaling
method uses the tools of the ML method to determine how
large a fraction of the distribution’s tail is to be considered in
the analysis, and therefore its performance depends partly on
how well this estimation succeeds.

Our results show that the power-law exponent can be
estimated fairly accurately from simulated subsamples of
power-law distributions, but the classification of the distribu-
tion’s type should be taken with caution. Finally, we show that
subsampling affects the performance of the two methods dif-
ferently: While the EV method can in some cases be expected
to perform better on subsampled data than on the original
distribution, the opposite applies to the main tests included
in the ML method.

II. ESTIMATORS

We start by briefly presenting the ML and the EV methods;
the reader already familiar with these can move straight to
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Sec. III. Note that we have chosen to use these names for the
sake of convenience, and they do not necessarily capture the
essence of the methods; the EV method, for example, incor-
porates estimators that are based on the maximum likelihood
approach, while the ML method contains additional tests not
based on maximum likelihood estimation.

A. Maximum likelihood method

The ML method of Refs. [6,7] for assessing whether a
sample originates from a power-law distribution starts with
estimating the optimal values of the start of the power law and
the corresponding power-law exponent. The rationale behind
not necessarily including the entire sample in the analysis is
that many empirical distributions are expected to follow a
power law only for large values of k [7]. In the following,
we denote the true start of the power law (a property of the
distribution) with k′

min. We use k̂min to refer to the best estimate
of k′

min produced by the ML method; only data points k � k̂min

are used for testing the power-law hypothesis. Furthermore,
we employ the symbol kmin to denote the smallest value of
k included in the analysis in cases where this value is not
selected by the automatic procedure of the ML method (e.g.,
where it is chosen manually or where one sweeps through a
range of values).

To find the optimal k̂min, each unique value of k present in
the data is in turn used as kmin, and a maximum likelihood
estimate for the power-law exponent α is calculated consider-
ing only data points k � kmin. Subsequently, the value of kmin

minimizing the Kolmogorov-Smirnov (KS) distance between
the cumulative distribution function (CDF) of the data points
larger than or equal to kmin and the CDF of the fitted power-
law model in the same region is selected as the optimal k̂min.

Next, the statistical plausibility of the best-fitting model
is assessed with a goodness-of-fit test. Denoting the sample
size with n and the number of data points larger than or equal
to k̂min with ntail, a number of synthetic datasets are gener-
ated with a semiparametric bootstrap approach, where each
data point is drawn from the best-fitting power-law model
with probability ntail/n and else from the empirical sample
with k < k̂min. A power-law model is then fitted to each of
these bootstrapped samples, and the KS distance between the
CDF of the original empirical distribution and its best-fitting
power-law model is compared to the distribution of KS statis-
tics between the generated synthetic datasets and their fitted
models, and the test is considered to reject the power-law
hypothesis if the fraction of KS statistics at least as extreme
as the KS distance of the empirical distribution is smaller
than a given p value. Finally, the power-law model is com-
pared to four alternative distributions (lognormal, exponential,
Weibull, and truncated power law) using a normalized log-
likelihood-ratio test originally presented by Vuong et al. [20].

In Ref. [6], the sample is subsequently classified to one of
six categories based on how strong evidence for the power-law
hypothesis it is deemed to show. Here we group these into two
categories. First, as in Ref. [6], a sample is said to show strong
evidence for the power-law hypothesis if the following four
conditions are met:

(1) The estimated exponent of the power law is between 2
and 3.

(2) The number of data points in the tail, ntail, is at least
50.

(3) The goodness-of-fit test cannot reject the power-law
hypothesis (p value � 0.1).

(4) None of the alternative distributions is favored over
power law in the log-likelihood-ratio test.

In Ref. [6], a sample falls into the category “not scale-free”
if neither of conditions 3 or 4 is met. Consequently, we say
that a sample shows some evidence for the power-law hypoth-
esis if it fulfills at least one of these two conditions.

B. Extreme value method

Voitalov et al. [8] broaden the definition of power-law dis-
tribution to encompass all regularly varying distributions. The
complementary cumulative distribution function (CCDF) of
a regularly varying function is given by F̄ (k) = l (k)k−(α−1),
where l (k) is a slowly varying function defined by the prop-
erty limk→∞ l (tk)

l (k) = 1 for any t > 0. All distributions with
a probability density function given by P(k) = l (k)k−α are
regularly varying, but the converse is not true.

The EV method of Voitalov et al. is based on extreme
value theory, which is concerned with the limit distribution
of the sample maximum. Let X1, X2, . . . , Xn form a sample
of independent and identically distributed random variables
following a cumulative distribution function F . Then F is
said to be in the maximum domain of attraction (MDA) of
an extreme value distribution with tail index ξ , denoted by
F ∈ DM (Gξ ), if there exist normalizing constants an > 0 and
bn ∈ R and a nondegenerate distribution function G such that

lim
n→∞ P

[
max(X1, X2, . . . , Xn) − bn

an
� x

]

= lim
n→∞[F (anx + bn)]n = Gξ (x) for all x. (3)

By the Fisher-Tippett-Gnedenko theorem (see, e.g.,
Ref. [21]), there exist only three families of extreme value dis-
tributions Gξ (x)—the Fréchet, Gumbel and reversed Weibull
families—each characterized by the tail index ξ determining
the shape of the distribution. Regularly varying distributions
(both continuous and their discrete counterparts) form the
MDA of the Fréchet distribution, for which ξ > 0. The power-
law exponent of any regularly varying distribution in the MDA
of the Fréchet distribution can be directly inferred from the tail
index,

α = 1

ξ
+ 1. (4)

The reversed Weibull family, in turn, is characterized by a
negative tail index, indicating that the distribution is bounded
from above. Finally, for distributions belonging to the Gumbel
MDA, the tail index equals zero. The continuous lognormal
and stretched exponential distributions belong to the MDA
of the Gumbel distribution. As both lognormal and stretched
exponential distributions belong to the class of long-tailed
distributions [22], also their discretized versions remain in the
same MDA [23]. In contrast, while the continuous exponential
distribution is in the Gumbel MDA, its discrete counterpart
does not belong to any MDA [23].
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Voitalov et al. [8] propose estimating the power-law expo-
nent α with three statistically consistent estimators of the tail
index—Hill, moments, and kernel—which can be automated
using a double bootstrap method for finding the optimal size
of the tail considered in the estimation. The authors argue
that due to the nonparametric nature of the regularly varying
distribution family, it is impossible to quantify the probability
that a given finite sample originates from a regularly varying
distribution; however, if all three estimators return a clearly
positive estimate of ξ , the observed sequence is likely to come
from a regularly varying distribution. Consequently, Voitalov
et al. classify a distribution as power law if all the considered
estimators estimate the tail index to be over 1/4. The limit is
set to 1/4 instead of zero to reduce the probability of falsely
accepting the power-law hypothesis. The distribution is clas-
sified as not power law if at least one of the estimators returns
a nonpositive estimate, else the network is classified to be
“hardly power law.” In other words, the power-law exponent
α needs to be between 1 and 5 for a sequence to be classified
as a power law.

The first considered estimator, the Hill estimator [24], is
statistically consistent for ξ > 0 and converges eventually to
zero for ξ = 0. Given an ordered sample X(1) � X(2) � · · · �
X(n), the estimator operates on the κ largest observations and
gives an empirical estimate of the expected excess of the log-
transformed distribution over threshold ln(X(κ+1)):

ξ̂Hill
κ,n = 1

κ

κ∑
i=1

ln

[
X(i)

X(κ+1)

]
. (5)

As the other two estimators, the Hill estimator converges
to the true tail index as κ, n → ∞ and κ/n → 0.

The moments estimator [25] is an extension of the Hill
estimator consistent for all ξ ∈ R:

ξ̂Moments
κ,n = ξ̂Hill

κ,n + 1 − 1

2

[
1 −

(
ξ̂Hill
κ,n

)2

ξ̂Hill,2
κ,n

]−1

, (6)

where

ξ̂Hill,2
κ,n = 1

κ

κ∑
i=1

[
ln

X(i)

X(κ+1)

]2

. (7)

For ξ � 0, lim
n→∞

(ξ̂Hill
κ,n )2

ξ̂Hill,2
κ,n

= 1
2 [25], meaning that the moments

estimator should converge to the value of the Hill estimator
for distributions belonging to the MDA of either Fréchet or
Gumbel families.

The kernel estimator [26] is consistent for all ξ ∈ R as
well. The number of largest observations considered is de-
termined by the bandwidth parameter h; approximately nh
observations are considered. The kernel estimator is given by

ξ̂Kernel
h,n = ξ̂

pos
h,n − 1 + q̂(2)

h,n

q̂(1)
h,n

, where (8)

ξ̂
pos
h,n =

�nh�∑
i=1

i

n
Kh

( i

n

)
ln

[
X(i)

X(i+1)

]
(9)

= −
∫ h

0
uKh(u) d lnQn(1 − u), (10)

q̂(1)
h,n =

�nh�∑
i=1

(
i

n

)γ

Kh

(
i

n

)
ln

[
X(i)

X(i+1)

]
(11)

= −
∫ h

0
uγ Kh(u) d lnQn(1 − u), (12)

q̂(2)
h,n =

�nh�∑
i=1

∂

∂u
[uγ+1Kh(u)]u=i/nln

[
X(i)

X(i+1)

]
(13)

= −
∫ h

0

d

du
[uγ+1Kh(u)] d lnQn(1 − u), (14)

where the kernel Kh(u) is given by 15
8h [1 − ( u

h )2]2 and Qn

denotes the empirical quantile function defined as Qn(u) =
inf{x : Fn(x) � u}, where Fn is the empirical distribution func-
tion. Following Ref. [8], we set the parameter γ equal to 0.6.
Note that we use �nh� as the upper limit in the above summa-
tions while the upper limit is set to �nh� − 1 in the code of
Ref. [8]. As we illustrate in the Supplemental Material (SM)
IB [27], using either �nh� or �nh� − 1 as the upper limit yields
identical results under some conditions; however, for a general
h (excluding h = 1), the limit �nh� yields correct results. We
have modified the indexing in the code accordingly (see SM
IB [27] for details).

III. SIMULATING SUBSAMPLING

To investigate the performance of the estimators on
subsampled distributions, we generate n0 random numbers—
corresponding to the degrees of n0 nodes—from the desired
distributions, subsample these simulated degree sequences
using the previously described incident subgraph sampling
strategy, and apply the ML and the EV methods to the ob-
tained subsampled degree sequences. To avoid confusion, we
use the term subsample to refer to the samples obtained with
incident subgraph sampling, while the term sample refers
to a sample from a given distribution to which the incident
subgraph sampling has not yet been applied. Correspondingly,
we denote the number of data points in the original sample by
n0 and use n as general symbol for the sample size, whether
of a subsample or the original sample.

A. Simulation procedure

We generate the samples with the exact search algorithm
described in Ref. [7] and implemented in the Python package
powerlaw [31]. In short, the algorithm operates by generating
a random number u ∈ (0, 1] from a uniform distribution and
returning the largest integer i such that F̄ (i) � u, where F̄
denotes the CCDF of the desired distribution. The probability
density functions (PDFs) of the distributions are listed in Ta-
ble I (see Fig. 1 for visualization). After generating n0 random
degrees k j from a given distribution, we form a list where
a unique identifier j is repeated k j times for each node j,
shuffle the list, and analyze the first x identifiers of the list at a
time, where x = round(π

∑n0
j=1 k j ) and π is the subsampling

probability. With this method, the degree of each node j in
the subsample simply equals the number of identifiers j in the
selected list. We repeat the sampling procedure twenty times
for each combination of parameters. Note that if two samples
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FIG. 1. Examples of probability density functions (PDFs) of the subsampled distributions obtained by applying Eq. (2) to the PDFs listed in
Table I (procedure described in detail in Sec. IV A). The beginning of the distribution’s support before subsampling is denoted by s. Increasing
μ and σ of the lognormal distribution and decreasing λ and β of the stretched exponential distribution lead to heavier tails. Subsampling seems
to increase the apparent degree of linearity on the log-log scale especially for the lognormal distributions.

consist of the same number of data points, i.e., degrees, but
the other sample comes from a distribution with a heavier
tail, the sum of degrees is in general higher in that sample.
Consequently, also the number of data points can be expected
to be higher at any subsampling depth π < 1. Note also that
the range of values of k varies greatly for different distribu-
tions, becoming more restricted for distributions with smaller
subsampling depths and lighter tails (such as the exponential
distributions, stretched exponential distributions with β = 0.5
and lognormal distributions with μ = 1).

For the ML method, there are two available Python im-
plementations of the original code in Matlab [7]. We use the

TABLE I. Probability density functions of the distributions,
P(k) = C f (k). The distributions are normalized so that

∑∞
k=s P(k) =

1, where s denotes the start of the distribution’s support. The
parameter ranges are the following: for power law, α > 1;
for discrete exponential (i.e., geometric), λ > 0; for lognormal,
μ ∈ (−∞, ∞), σ > 0; and for Weibull, λ > 0, β > 0 (for the
heavy-tailed subclass that we refer to as stretched exp., β ∈ (0, 1)).
For the Barabási-Albert (BA) model, m is the number of nodes that
each incoming node attaches to.

Distribution C f (k)

Power law ζ (α, s)−1 k−α

Exponential (1 − e−λ)eλs e−λk

Lognormal*
√

2
πσ 2

[
erfc

(
ln s−μ√

2σ

)]−1
1
k exp

[
− (ln k−μ)2

2σ 2

]
Weibull* βλe(λs)β (λk)β−1e−(λk)β

BA model 2m(m+1)
k(k+1)(k+2) for k � m

*The discrete PDFs are approximated with the continuous PDFs
listed here, as the distributions marked with a star lack an ana-
lytically defined discrete form. When generating random samples,
the probabilities are obtained as P(k) = F (k + 0.5) − F (k − 0.5),
where F (k) is the corresponding CDF, after which the probabilities
are normalized by their sum.

powerlaw package by Alstott et al. [31] for the model fitting
as well as the log-likelihood-ratio tests. As the goodness-of-fit
test is not implemented in this package, we use a modified
version of the plpval function from the implementation by
Broido and Clauset [6], where we have altered the function
so that the model fitting is again done with the powerlaw
package (see SM IA [27] for details). We have chosen to use
a combination of these implementations due to an issue we
encountered in the Broido and Clauset implementation regard-
ing calculation of the normalization constant in cases where
not all integers between the minimum and maximum values
of the sample are present in the data (see SM I [27]). In the
Alstott et al. implementation, we have furthermore increased
the number of allowed iterations when optimizing the param-
eters of alternative distributions with the scipy.optimize.fmin
function by adding the argument maxiter = 1000. We do this
to prevent termination of optimization before the parameters
have converged (note that the variable warnflag warning about
failed convergence is not printed by default).

For the EV method, we use the code released together with
the article [8] with the modification discussed in Sec. II B.
We use the default parameters of the code, including adding
a random uniform value u ∈ [−0.5, 0.5) to each discrete data
point to enhance the performance of the estimators. A minor
exception is the parameter amseborder, which reduces the
likelihood of the double-bootstrap method choosing the order
statistics from a region where the uniform noise dominates.
We use the default value 1.0 in all (sub)samples where k = 1
is the smallest degree and set the value equal to the minimum
degree for all other (sub)samples.

B. Estimation accuracy of the power-law exponent

As in Ref. [8], we assess the estimation accuracy of the
power-law exponent with the relative root-mean-squared error
(RRMSE). RRMSE is commonly used to measure the average
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FIG. 2. Relative root-mean-squared error (RRMSE) values for
the different estimates of the tail index ξ as a function of the true
power-law exponent α and the subsampling depth π . The darker
the color, the greater the error in the tail index estimation. The
columns correspond to the different estimators, while the subfigures
in the same row share the same number of data points n0 in the
original sample. The number of (sub)samples used for calculating
the RRMSE value in each cell is 20.

error in tail index estimation proportional to the real value of
ξ = 1

α−1 :

RRMSE =
√

1
r

∑r
j=1(ξ̂ j − ξ )2

ξ
,

where r is the number of samples. RRMSE is defined in
terms of ξ and not the power-law exponent α because α

is defined only for distributions belonging to MDA of the
Fréchet distribution, while ξ characterizes all three extreme
value distributions.

We observe that when n0, i.e., the number of simulated
data points in the original sample, equals 105, the moments
and the kernel estimates stay fairly accurate even when the
sequence is subsampled to a 10th of the original size [Fig. 2
(top row)]. In contrast, both the maximum likelihood estimate
of the ML method and the Hill estimate deviate further from
the true power-law exponent α as the subsampling probability
π decreases and α grows larger (see SM II [27] for the values
of α̂ and k̂min as well as the median sizes and maximum values
of k in the subsamples). Note that the number of data points
for a certain subsampling depth differs greatly for different
distributions, and the range of values k gets more and more
restricted for larger values of α and lower subsampling depths.
However, increasing n0 from 105 to 106 improves the accuracy
only slightly [Fig. 2 (bottom row)]. Due to the challenging
shape of the heavily subsampled power-law sequences, all
estimators tend to consider a too-large part of the tail; for α

close to 3, the ML method consistently estimates k̂min to be
1, which is clearly not an optimal choice considering the pro-
nounced downward bending shape of subsampled power-law
distributions (see the PDFs in Fig. 1). Somewhat surprisingly,
the kernel estimator becomes more unstable when n0 = 106

and classifies some of the samples as belonging to the MDA of
the Gumbel distribution. These misclassifications arise from a
less-than-optimal estimation of the number of order statistics;
almost all data points are taken into account, and, conse-

FIG. 3. Performance of the two methods with samples from
power-law distributions as well as from degree distributions of net-
works grown by preferential attachment (BA model). The darker the
color, the higher the fraction of subsamples correctly classified as
power laws. The percentages are calculated over 20 samples with the
number of data points before subsampling equal to 105.

quently, the added random noise on the small degrees has a
prominent effect on the estimate.

The accuracy of the tail index estimation for small sub-
samples improves clearly if the original distribution has
support only on higher values of k. In this case, the part of
the distribution most affected by subsampling—the smallest
degrees—has no probability mass to begin with and hence
cannot dominate the estimation of k̂min or the number of order
statistics. Consequently, the error of all estimators remains
negligible for all distributions even for π = 0.1.

C. Classifying subsamples

1. Power-law distributions

The EV method classifies all subsamples from power-law
distributions correctly for all tested subsampling depths π ∈
[0.1, 1.0]. As shown in the previous section, the moments
and the kernel estimates stay fairly accurate even for small
subsampling probabilities, and while the Hill estimator devi-
ates from the true α with decreasing π , the estimates of α do
not exceed the allowed upper limit for the tested subsampling
probabilities.

The ML method works less reliably on the subsam-
ples (Fig. 3). The fraction of subsamples exhibiting strong
evidence for the power-law hypothesis diminishes with de-
creasing π and increasing α, primarily due to the KS
minimization driving the value of k̂min to a too-low value,
which results in an inaccurate estimate of α (see SM III
[27] for performance of the individual criteria of the ML
method and their different combinations). Consequently, the
estimates of α often fall outside the allowed range [2,3],
and the goodness-of-fit test is more likely to reject the
power-law hypothesis. This tendency of the ML method to
select a too-small k̂min is already noted in Ref. [8] and
Ref. [32] with regard to some regularly varying distributions,
and the problem is further aggravated by the probability mass
concentrating more heavily on small degrees as a result of sub-
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sampling. The log-likelihood-ratio test, however, continues to
perform better than the goodness-of-fit test on the subsamples,
resulting in a higher fraction of correctly classified subsam-
ples when using the some evidence criteria.

In addition to pure power laws, we assess the behavior of
the estimators with degree distributions of networks grown
by preferential attachment. We simulate the Barabási-Albert
(BA) model, where new nodes are added to the network one by
one and each new node forms m = 2 connections to already
existing nodes with probability ki∑

j k j
, where ki denotes the

degree of node i and the index j ranges over all the already
existing nodes of the network [33]. The degree distribution
of the network asymptotically approaches a power law with
α = 3 for k � 1.

The strong evidence criteria of the ML method performs
better with the subsamples from the BA model than with
subsamples from a pure power law with α = 3. Performance
is better because the fraction of nodes with degree one is
smaller than for a pure power law, which leads to a more
accurate estimation of k̂min. However, subsamples with low
subsampling depth are again falsely deemed to not to show
strong evidence for the power-law hypothesis.

The EV method, in turn, works less reliably on the subsam-
ples from the BA model than on pure power laws (Fig. 3). This
results from a tendency of the kernel estimator to occasionally
estimate the subsample to belong to the MDA of the Gumbel
distribution as a result of considering too-large a fraction of
the distribution’s tail.

2. Exponential distributions

All subsamples are classified correctly when using the
strong evidence criteria of the ML method (Fig. 4). While
the goodness-of-fit test and the log-likelihood ratio test do not
always manage to reject the power-law hypothesis, the ML
estimates of α stay consistently above the allowed upper limit,
3, which results in the lack of strong evidence.

The EV method correctly classifies all subsamples from
exponential distribution with λ ∈ [0.1, 0.5] as non-power-law
samples for all tested subsampling depths.

3. Stretched exponential distributions

According to the ML method, none of the subsamples with
β ∈ {0.3, 0.4, 0.5, 0.7, 0.9} and λ ∈ {1, 2, 3} show strong ev-
idence for the power-law hypothesis (Fig. 4). A fraction of all
(sub)samples shows some evidence for the power-law (PL)
hypothesis, but this fraction does not seem to be notably
affected by the exact value of the subsampling probability π .

The EV method consistently classifies samples with β �
0.5 as non-power-laws, but for β = 0.4 the rate of misclassi-
fication increases, and for β = 0.3 the majority of the original
samples as well as the subsamples are classified as power
laws. These incorrect classifications result from too-slow con-
vergence to the limiting extreme value distribution for small
values of β, a problem noted with regards to β = 0.3 already
in Ref. [14].

4. Lognormal distributions

None of the lognormal sequences with σ = 1 exhibit
strong evidence for the power-law hypothesis according to the
ML criteria, again largely due to the estimates of α falling

FIG. 4. Performance of the two methods with subsamples from
exponential (EXP), lognormal (LN), and stretched exponential (SE)
distributions. The darker the color, the higher the fraction of subsam-
ples incorrectly classified as power laws. The number of data points
in the original sample before subsampling is 105 for all distributions
except for the lognormal distribution with σ = 2, for which n0 = 104

due to computational limitations. For the performance of the indi-
vidual EV estimators, see SM III [27]. In general, combining the
classifications of the three EV estimators outperforms any individual
EV estimator on its own, supporting the use of the combined results
to minimize false-positive classifications.

above the upper limit of the accepted range. These estimates
decrease as σ is increased and the tail becomes heavier, and,
consequently, some of the subsampled sequences with σ = 2
are falsely deemed to show strong evidence.

The EV method, in turn, erroneously classifies some
of the samples with σ = 1 as power laws, but—somewhat
surprisingly—the rate of incorrect classifications seems to
decrease with decreasing subsampling depth. This trend is
more pronounced for distributions with smaller values of μ.
When σ is increased to 1.3, the vast majority of the original
samples, as well as their subsamples, are falsely classified
as power laws. This trend continues for σ = 2; in addition,
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all three EV estimates tend to lie close to each other, which
usually indicates that the classification should be reliable.

As with the stretched exponential distribution, the unre-
liability of the EV method for lognormal distributions with
larger values of σ originates from too-slow convergence to
the asymptotic EV distribution. This dramatic slowing down
as σ increases can be seen in the convergence rate in the
von Mises condition on which the consistency analysis of the
kernel method is based on (Eq. (1.1) in Ref. [26]),

lim
kmin→∞

M(kmin)=ξ, where M(kmin)= d

dkmin

1−F (kmin)

F ′(kmin)
.

(15)

For the continuous lognormal distribution with μ = 2 and
σ = 2, we observe that the value of M(kmin) falls for the
first time under the threshold 1/4 (used by the EV method
to separate power laws from non-power-laws) when kmin >

17 000 000. In contrast, when the parameter σ is decreased
to 1, the value of M(kmin) falls under the threshold already
around kmin ≈ 73.

In conclusion, it seems that the EV method and the strong
evidence criteria of the ML method suffer from opposite
tendencies; while the strong criteria tends to produce false
negatives, the EV method is prone to falsely accepting the
power-law hypothesis for some of the tested alternative heavy-
tailed distributions. The some evidence criteria of the ML
method suffers from a substantial rate of false positives as
well. Overall, analyzing the performance of the individual
criteria of the ML method shows that the log-likelihood ratio
criteria performs better than the goodness-of-fit test both with
regard to the rate of false positives and false negatives, and
hence its overall performance is better than that of the some
evidence criteria (see SM III [27]). Whether one prefers to use
this criterion alone, the strong evidence criteria or the strong
evidence criteria without the goodness-of-fit test ultimately
depends on how much emphasis one places on avoiding false
positives at the expense of an increased false-negative rate.

Interestingly, it would seem that the methods’ ability to
reliably reject the power-law hypothesis for subsamples from
alternative distributions depends to a great extent on their
ability to classify the original sample correctly. As an excep-
tion to this trend we observed that the accuracy of the EV
method seemed to increase for some lognormal distributions
as a result of subsampling. However, as the results of the
simulations depend rather heavily on the sample size n, it is
not clear whether this exception originates from the properties
of the subsampled distributions or simply from the smaller
amount of data points in the substantially downsampled data.
In addition, trends visible with either larger or smaller sample
sizes might go unnoticed in the simulations. To resolve these
questions, we now turn to examine the behavior of the estima-
tors on the theoretical subsampled probability distributions.

IV. PERFORMANCE ON THEORETICAL
SUBSAMPLED PROBABILITY DISTRIBUTIONS

OF THE HEAVY-TAILED ALTERNATIVES

In this section, we analyze the theoretical subsampled
probability distributions of the heavy-tailed alternatives and

assess whether correctly classifying these lognormal and
stretched exponential distributions as non-power-law becomes
more challenging as the subsampling depth decreases. We put
all considerations of the sample size n aside and assess the
behavior of the estimators on the distributions in the limit of
large n (derivations in SM IV [27]), under the assumption that
the subsampling depth or the choice of the smallest considered
degree kmin does not significantly affect the rate at which an
estimator converges towards its limiting value. Note that we
do not consider here how the size of the tail to be considered
is in practice estimated for empirical or simulated data with
either the double bootstrap procedure of the EV method or
the KS minimization of the ML method, since this selection
depends on the sample size n. Instead, we manually vary
the value of kmin and assess how the analytically calculated
estimates change as a result.

A. Generating theoretical distributions

Given a discrete probability density function P(k) (listed in
Table I), the theoretical subsampled distributions are obtained
by brute force using Eq. (2) with i = 105 as the upper limit in
the summation. Some examples of the theoretical subsampled
distributions are shown in Fig. 1. As the upper limit is finite,
these numerically obtained subsampled distributions are not
exact. To exclude the possibility of numerical imprecision
confounding our results, we verify that increasing the up-
per limit to i = 106 does not visibly change the results for
the largest and the smallest subsampling depth in Figs. 7
and 8 (as well as Fig. 9 in the SM [27]) for the parameter
combinations producing the heaviest tails. We refrain from
considering parameter combinations requiring an even larger
limit, as already the limit i = 106 is computationally very
heavy.

Since lognormal and stretched exponential distributions do
not have an analytically defined discrete form, we approxi-
mate the original discrete distributions before subsampling by
calculating the pointwise probabilities P(k) = f (k) (the nota-
tion corresponds to that in Table I) from k = 1 up to k = 105

and normalizing the probabilities by their sum. To verify that
our conclusions are not affected by the chosen discretiza-
tion strategy, we repeat the analysis for one representative
distribution from both lognormal and stretched exponential
families with two other discretization methods; one where
P(k) = F (k + 1) − F (k) and another where P(k) = F (k +
0.5) − F (k − 0.5). While the exact numerical limit values of
the estimators for a given kmin depend on the discretization
strategy, the conclusions remain unaffected.

When analyzing the behavior of the EV estimators, we treat
the probability distribution functions not as discrete functions
but as step functions, where the probability remains constant
from k − 0.5 up to k + 0.5 for each k. We do this to mirror the
empirical analysis as closely as possible. This transformation
corresponds to adding random uniform noise to each data
point, as is done with the simulated data.

B. Extreme value method

As previously discussed, the successfulness of the EV
method depends to a great extent on the distribution’s rate
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FIG. 5. Examples of the behavior of the estimated tail index ξ̂ in
the limit of large n as a function of the smallest considered degree
kmin for a stretched exponential distribution (SE, top row) and a
lognormal distribution (LN, bottom row) with different subsampling
depths π . The yellow shaded area (ξ̂ > 1/4) marks the values of ξ̂

for which the distribution is incorrectly classified as a power law.

of convergence to the asymptotic extreme value distribution;
correct classification of the distribution’s type becomes more
difficult if this rate slows down considerably. In practice, this
would mean that the fraction of the distribution’s tail that
can be used to correctly identify the maximum domain of
attraction (and hence the type of the distribution) becomes
too small, meaning that the sample size n would need to
be unreasonably large to capture this part of the tail. To
assess the effect of subsampling on the estimators’ perfor-
mance, we examine how the fraction of probability mass in
the distribution’s tail that allows for correct identification of
the distribution’s type changes as the subsampling depth de-
creases. In the following, we refer to this fraction as the usable
part of the tail. In the case of lognormal and stretched expo-
nential distributions, this fraction corresponds to the value of
the subsampled distribution’s CCDF at the smallest value of
kmin (not necessarily an integer in this context) for which the
tail index falls below the limit of 1/4 allowing the distribution
to be correctly classified as non-power-law according to the
criteria of the EV method. We denote this value of kmin with
k∗ and assess it with an accuracy of 0.01.

As we are operating with step functions, the estimates do
not necessarily decrease monotonically as a function of the
smallest considered degree kmin (see Fig. 5 for examples),
and the estimate might consequently rise above the threshold
1/4 even for kmin > k∗. Consequently, it may be more infor-
mative to assess the CCDF at the point where the estimate
falls permanently under the threshold of 1/4. We denote this
point with k∗∗ and the corresponding value of the CCDF with
F̄ (k∗∗) (see Fig. 6 for illustration). In the following, we refer
to F̄ (k∗∗) as the fully usable fraction of the tail and to F̄ (k∗)
as the potentially usable fraction. For some distributions the
values k∗ and k∗∗ coincide. In general, the moments and the
kernel estimators suffer from oscillations more than the Hill
estimator, and the oscillations grow larger the more heavily
the probability mass concentrates on the smallest degrees.

FIG. 6. Illustration of the fractions F̄ (k∗) and F̄ (k∗∗) for the
lognormal distribution with μ = 1, σ = 1 and subsampling depth
π = 0.4. The inset shows the analytical limit value of the moments
estimator as a function of the smallest considered degree kmin. At
kmin = k∗, this limit value falls for the first time (and at kmin = k∗∗,
permanently) under the threshold 1/4 allowing for correctly clas-
sifying the distribution as non-power-law. The shaded areas F̄ (k∗)
and F̄ (k∗∗) display the corresponding values of the theoretical sub-
sampled probability distribution’s CCDF, i.e., the fractions of the
distribution’s tail that can be used to correctly identify the distribu-
tion’s type according to the criteria of the EV method.

This happens when subsampling depth decreases or param-
eters of the distributions are changed to produce a lighter tail.
When comparing the usable fraction of the tail for different
subsampling depths, we are essentially asking how the ex-
pected number of nodes from the usable part would change
if we were to randomly draw samples of equal size from
distributions of different subsampling depths. To understand
how the expected number of nodes changes in cases where
the sample sizes are unequal as a result of subsampling, we
assess the fraction of the tail allowing for correct identification
relative to the original distribution (π = 1) as well. We do this
by multiplying the obtained value of F̄ (k∗) or F̄ (k∗∗) with the
fraction of the total non-normalized probability mass of the
subsampled distribution, i.e., the probability 1 − Ps(k = 0),
where Ps(k = 0) is obtained using Eq. (2).

Interestingly, the lognormal and the stretched exponential
distributions tend to become easier to separate from power
laws when subsampled. Identification becomes easier in the
sense that the fully usable fraction F̄ (k∗∗) of the tail tends to
slightly increase as the subsampling depth decreases. How-
ever, this effect is far from linear, and if the tail is not heavy
enough, F̄ (k∗∗) can drop dramatically for very small values
of π due to the violently oscillating pattern of the estimator
[Fig. 7(a)].

For the Hill estimator also the potentially usable fraction
F̄ (k∗) tends to become larger for smaller subsampling proba-
bilities, even to the extent that this fraction of probability mass
allowing for correct classification increases when expressed
relative to the original distribution before subsampling. Since
the oscillations are more pronounced for the moments and
the kernel estimators, the potentially usable fraction behaves
in a more unpredictable manner for these estimators. How-
ever, if the tail of the distribution is heavy enough, this
fraction seems to increase consistently even for these estima-
tors [Fig. 7(b)]. Overall, these results imply that the previous
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FIG. 7. Value of the CCDF at the smallest value of kmin (smallest degree considered in the analysis) at which the limit value of the
EV estimators falls for the first time (top row) and permanently (bottom row) below the threshold 1/4 resulting in the distribution being
correctly classified as non-power-law. Larger values of the CCDF indicate that a larger fraction of the distribution’s tail allows for correctly
identifying the distribution. The value of the CCDF is expressed both relative to the subsampled distribution (solid lines) and to the original
distribution (dashed lines). In the top row of panel (a), the abrupt fall of F̄ (k∗) of the moments estimator for the lognormal distribution with
μ = 2 at π = 0.8 originates from the fact that we start to assess the estimators performance at kmin = 1.0 instead of kmin = 0.5 mimicking
the default parameters of the code. For μ = 2, the estimates for all tested subsampling probabilities fall originally below 1/4 at kmin = 0.5
and subsequently rise above this threshold, but for π = 1.0 this rising happens more slowly and the moments estimate still lies below 1/4 at
kmin = 1.

finding of lognormal subsamples being more accurately clas-
sified for lower subsampling depths may result from better
discriminability of the subsampled distribution and not only
on the smaller sample size.

C. Maximum likelihood method

As in the previous section, we examine how subsampling
affects the ease of classification by varying the smallest con-
sidered degree kmin and calculating the corresponding limit
values of the estimators as n → ∞ for the theoretical sub-
sampled distributions. To allow comparison between different
subsampling depths, we display the results not as a function
of kmin but as a function of the value of the CCDF F̄ (kmin). In
contrast to the EV method, the ML method classifies empirical
data using the p values associated with the estimates, and
hence we cannot directly assess any threshold for F̄ (kmin)
above which the power-law hypothesis would be rejected.
However, we can analyze whether the criteria for the power-
law hypothesis would be more likely to be met in comparison
with a different subsampling depth for a given F̄ (kmin).

To get insight into the behavior of the goodness-of-fit test,
we calculate for each kmin the Kolmogorov-Smirnov distance
between the subsampled distribution’s CDF and the CDF of
the best-fitting power law as n → ∞. Our results show that
the KS distance between the distribution’s CDF and the CDF
of the best-fitting power law for a given F̄ (kmin) tends to
become smaller as the subsampling depth decreases; however,
this effect remains small for moderate subsampling depths
and becomes less prominent when moving towards the tail
of the distribution (Fig. 8, see also Fig. 9 in SM V [27] for
results for distributions with other parameter combinations).

In general, a smaller KS distance indicates that the goodness-
of-fit test is more likely to accept the power-law hypothesis.
This is because the goodness-of-fit test proceeds by generating
a number of bootstrapped samples from the fitted power-law
model, after which a power-law model is fitted to each sam-
ple and the KS distance is calculated for each sample with
respect to its own fitted model. The larger the fraction of
the bootstrapped samples with KS distance exceeding that of
the original sample, the more likely the power-law model is
deemed to be. Consequently, assuming that the variances of
the distributions of the KS statistics are approximately equal
for different subsampling depths, our results indicate that if
the values of the smallest considered degree kmin for two sub-
sampling depths are chosen so that F̄ (kmin) is approximately
the same for both, the goodness-of-fit test is less likely to
correctly reject the PL hypothesis for the lower subsampling
depth. While a similar KS distance can often be obtained for
the smaller subsampling depth by considering a larger part of
the tail, this kind of compensation is not expected to happen in
practice since the optimal k̂min for empirical or simulated data
is chosen by minimizing the KS distance, which for all tested
subsampling depths except for π = 0.01 tends to decrease
towards the tail of the distribution.

The log-likelihood ratios comparing the likelihood of the
power-law hypothesis to that of alternative distributions be-
have in a similar manner. With empirical data, the power-law
hypothesis is considered to get support if none of the four
alternative distributions is favored over the power-law model
(i.e., the log-likelihood ratios are all positive or the cor-
responding p values are nonsignificant). Hence, the more
negative the theoretical log-likelihood ratios are, the more
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FIG. 8. Applying the estimators of the ML method to theoretical subsampled stretched exponential (upper row) and lognormal distribution
(lower row) to assess how likely the power-law hypothesis can be expected to be rejected for different subsampling depths π in the limit
n → ∞. The analytical limit values of the estimators are calculated by varying kmin but we present them as a function of the value of the
CCDF at kmin, F̄ (kmin ), to allow better comparison between distributions. Here we define F̄ (kmin ) = ∑

k=kmin
P(k). Note that the x axis has been

inverted to enhance readability; when moving to the right, we are considering larger and larger values of kmin, which correspond to smaller
values of F̄ (kmin ). The first column shows that the KS distance between the values of the distribution’s CDF and the CDF of the best-fitting
power-law distribution for a given F̄ (kmin ) tends to become smaller as the subsampling depth π decreases, indicating that the goodness-of-fit
test of the ML method can be expected to perform worse for smaller π . The next four columns show the results of the log-likelihood ratio tests
where the PL hypothesis is tested against an alternative hypothesis. The best-fitting parameters of the alternative distribution are obtained with
the same optimization methods as in the implementation of Alstott et al. [31] using as initial parameter guesses the values of the Alstott et al.
implementation as n → ∞. Depending on the alternative hypothesis, the results are expressed in terms of either the log-likelihood ratio R or
its normalized version normR (details in SM IVA.3 [27]). If the ratio is positive (shaded yellow area), the incorrect PL model is favored over
the alternative hypothesis, whereas a negative ratio indicates that the alternative hypothesis is favored over the PL model. The log-likelihood
ratio tests should be understood as a series; if all four tests favor the power-law hypothesis over the alternative distribution or give inconclusive
results (ratio close to zero, not meaningful in the limit of large n), the power-law hypothesis is considered to get support. Consequently, for
the considered subsampled lognormal and stretched exponential distributions, the power-law hypothesis is more likely to be correctly rejected
the more negative the likelihood ratios are. The abrupt spikes in the fifth column result from suboptimal estimation of parameters of the
truncated power-law distribution. The last column shows that for a given F̄ (kmin ), the estimated value of the power-law exponent α is expected
to converge to a larger value for smaller subsampling depths. The shaded area marks the range to which the estimated α must fall for the
criteria of strong evidence for the PL hypothesis to be met.

likely the power-law hypothesis will be correctly rejected.
Our results on the theoretical distributions show that when the
alternative hypothesis against the power-law model is ei-
ther the lognormal, the Weibull, or the truncated power-law
distribution, the limit value of the likelihood ratio tends to
become less negative for smaller subsampling depths for a
given F̄ (kmin), meaning that the alternative hypothesis is less
strongly favored over the power-law model. However, the
effect for moderate subsampling depths is again small and
the difference between the subsampling depths decreases as
the considered fraction of the tail becomes smaller. The ex-
ponential distribution is the only alternative distribution with
the opposite tendency: For the tested subsampled probability
distributions, the power-law hypothesis tends to be favored
over the exponential model for all subsampling depths, but the
ratio tends closer to zero as the subsampling depth decreases.

Finally, we observe that for a given F̄ (kmin), the limit value
of the estimated power-law exponent α is in general larger
for smaller subsampling depths. For some tested subsampled
distributions with π = 0.01, the distribution is not likely to
fill the strong evidence criteria for the power-law hypothesis

because the values of α lie above the allowed range for almost
all values of kmin.

Overall, our results show that the goodness-of-fit test and
the log-likelihood ratio tests lose some of their power in
classifying the distribution’s type correctly as the subsampling
depth decreases.

V. DISCUSSION

In this work, we have investigated how well the maxi-
mum likelihood method of Ref. [6,7] and the extreme value
method of Ref. [8] succeed in recognizing power-law distribu-
tions when the data are heavily subsampled with the incident
subsampling strategy. As subsampled power-law distributions
have been shown to approach the original power law asymp-
totically, we hypothesized that the methods would continue
to work on subsampled data as long as the sample sizes
remained reasonable. With the strong evidence criteria of the
ML method, however, suboptimal estimation of the beginning
of the power-law tail led to a substantial false rejection rate
of the power-law hypothesis for the subsamples. While the
EV method correctly recognized subsampled power-law dis-
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tributions, it sometimes misclassified subsamples from both
lognormal and stretched exponential distributions as power
laws. However, these false positives tended to result not from
the subsampling itself, but from the estimators’ inability to
classify the original sample correctly due to the underlying
distribution converging too slowly to its asymptotic extreme
value distribution.

Interestingly, we observed that while especially the log-
normal distribution started to visually resemble a power law
as the subsampling depth decreased, subsampling seemed to
enhance the performance of the EV method in correctly classi-
fying lognormal and stretched exponential distributions. This
effect was visible especially for the Hill estimator; the fraction
of probability mass in the distribution’s tail allowing for cor-
rectly classifying the distribution’s type was in general larger
for lower subsampling depths, in some cases to the extent that
the expected absolute number of nodes in this part of the tail
increased. The moments and the kernel estimators followed
the same trend, but for many of the tested distributions, the
estimators started to oscillate at very low subsampling depths
(π = 0.01), which resulted in the fraction getting seemingly
smaller.

Overall, our results imply that the classifications obtained
with the EV method should be accepted with some caution
if very heavy-tailed distributions (such as the lognormal with
σ = 1.3 or the stretched exponential distribution with β =
0.3) are valid alternatives for the power-law hypothesis. As
noted already in Ref. [14], a result that the data belong to
the MDA of the Gumbel distribution seems to be relatively
reliable, while a classification to the MDA of the Fréchet
distribution (thus supporting the power-law hypothesis) is not
equally informative. It has been argued, however, that while
it is often important to know whether a distribution is heavy-
tailed, further identifying it as a power-law distribution may
not bring any considerable additional value [34]. In some
cases distinguishing between a power-law and a lognormal
distribution might simply not be important or, alternatively,
the lognormal and the stretched exponential distributions
might not be relevant candidates for the question at hand. Con-
sequently, if the main interest lies instead in, e.g., determining
whether a sample originates from an exponential distribution
or from a power-law distribution, the EV method may be a
suitable alternative even if the data are heavily subsampled.

While the EV method is at times too permissible, the strong
evidence criteria of the ML method avoid this drawback with
the cost of an increased false rejection rate. Especially the
requirement of the exponent α staying in the range [2,3]
results in many false rejections for power laws with α close

to the limits of this range. The simulations showed that most
subsamples from a pure power law did not exhibit strong
evidence for the power-law hypothesis due to suboptimal
estimation of the start of the power-law tail. In addition, we
showed that distinguishing the alternative distributions from
power laws using the goodness-of-fit and the log-likelihood
ratio tests of the ML method becomes increasingly difficult
for lower subsampling depths. It is important to remember,
however, that these results apply directly only to incident
subgraph sampling, and other subsampling methods might
produce substantially different results.

In general, while the automatic determination of the
fraction of the tail considered in the analysis has it benefits—
including the fact that no subjective determination of the
threshold is needed—one should not trust this estimate blindly
(a point raised with regard to the ML method already by, e.g.,
Refs. [8] and [35]). At the very least, it might be useful to
examine more closely the range of values of kmin for which
certain conclusions are valid; examining how the estimates
change as a function of kmin might in some cases even of-
fer further insight into the distribution’s type as shown in
Ref. [36]. The automatic estimation is especially likely to
fail if the probability mass of the distribution is heavily con-
centrated on the small degrees, from which the PDF decays
in a seemingly convex manner on a log-log-plot. However,
as noted by Stumpf et al. [18], this kind of convex decay
on a log-log plot is not commonly observed in real-world
networks, and the problem might thus be overly pronounced
in the simulated subsamples.

Overall, while our results highlight the importance of an-
alyzing the same issue with different approaches, even using
the two methods in combination does not always allow one to
deduce with reasonable confidence whether a subsample orig-
inates from a power-law distribution. Naturally, the situation
is likely to be even more complicated when analyzing real-
world networks with more noise and variation. Consequently,
assessing whether other methods—such as the maximum en-
tropy test of Bee et al. [37], the Wilk’s test used in Ref. [14],
the finite-size scaling method of Ref. [9] or the approaches
presented in Refs. [38], [39], and [40]—could fruitfully com-
plement the methods addressed in this work remains a task for
future research.
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[2] P. Jelenković and J. Tan, Can retransmissions of superex-
ponential documents cause subexponential delays? in IEEE
INFOCOM 2007 - 26th IEEE International Conference on
Computer Communications, Anchorage (IEEE, Los Alamitos,
CA, 2007), pp. 892–900.

[3] S. Asmussen, P. Fiorini, L. Lipsky, T. Rolski, and R.
Sheahan, Asymptotic behavior of total times for jobs that

must start over if a failure occurs, Math. Operat. Res. 33, 932
(2008).

[4] I. Kaj, L. Leskelä, I. Norros, and V. Schmidt, Scaling limits for
random fields with long-range dependence, Ann. Probab. 35,
528 (2007).

[5] R. van der Hofstad, G. Hooghiemstra, and D. Znamenski,
Distances in random graphs with finite mean and
infinite variance degrees, Elect. J. Probab. 12, 703
(2007).

054308-12

https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1287/moor.1080.0329
https://doi.org/10.1214/009117906000000700
https://doi.org/10.1214/EJP.v12-420


DISTINGUISHING SUBSAMPLED POWER LAWS FROM … PHYSICAL REVIEW E 109, 054308 (2024)

[6] A. Broido and A. Clauset, Scale-free networks are rare, Nat.
Commun. 10, 1017 (2019).

[7] A. Clauset, C. Shalizi, and M. Newman, Power-law distribu-
tions in empirical data, SIAM Rev. 51, 661 (2009).

[8] I. Voitalov, P. van der Hoorn, R. van der Hofstad, and D.
Krioukov, Scale-free networks well done, Phys. Rev. Res. 1,
033034 (2019).

[9] M. Serafino, G. Cimini, A. Maritan, A. Rinaldo, S. Suweis,
J. Banavar, and G. Caldarelli, True scale-free networks
hidden by finite size effects, Proc. Natl. Acad. Sci. USA 118,
e2013825118 (2021).

[10] A. Levina and V. Priesemann, Subsampling scaling, Nat.
Commun. 8, 15140 (2017).

[11] H. Shimadzu and R. Darnell, Attenuation of species abundance
distributions by sampling, R. Soc. Open Sci. 2, 140219 (2015).

[12] N. Heikkilä, S. Sormunen, J. Mattila, T. Härkönen, M. Knip, E.-
L. Ihantola, T. Kinnunen, I. Mattila, J. Saramäki, and T. Arstila,
Generation of self-reactive, shared T-cell receptor α chains in
the human thymus, J. Autoimmunity 119, 102616 (2021).

[13] M. Stumpf and C. Wiuf, Sampling properties of random graphs:
The degree distribution, Phys. Rev. E 72, 036118 (2005).

[14] Y. Malevergne, V. Pisarenko, and D. Sornette, Empirical distri-
butions of stock returns: Between the stretched exponential and
the power law? Quant. Financ. 5, 379 (2005).

[15] Y. Malevergne, V. Pisarenko, and D. Sornette, Testing the Pareto
against the lognormal distributions with the uniformly most
powerful unbiased test applied to the distribution of cities, Phys.
Rev. E 83, 036111 (2011).

[16] P. Montebruno, R. Bennett, C. Lieshout, and H. Smith, A tale of
two tails: Do power law and lognormal models fit firm-size dis-
tributions in the mid-Victorian era? Physica A 523, 858 (2019).

[17] S. Foss, D. Korshunov, and S. Zachary, An Introduction to
Heavy-Tailed and Subexponential Distributions (Springer, New
York, 2013).

[18] M. Stumpf, C. Wiuf, and R. May, Subnets of scale-free net-
works are not scale-free: Sampling properties of networks, Proc.
Natl. Acad. Sci. USA 102, 4221 (2005).

[19] J.-D. Han, D. Dupuy, N. Bertin, M. Cusick, and M. Vidal,
Effect of sampling on topology predictions of protein-protein
interaction networks, Nat. Biotechnol. 23, 839 (2005).

[20] Q. Vuong, Likelihood ratio tests for model selection and non-
nested hypotheses, Econometrica 57, 307 (1989).

[21] M. Charras-Garrido and P. Lezaud, Extreme value analysis: An
introduction, J. Soc. France Stat. 154, 66 (2013).

[22] J. Nair, A. Wierman, and B. Zwart, The Fundamentals of Heavy-
tails: Properties, Emergence, and Identification (Cambridge
University Press, Cambridge, UK, 2022).

[23] T. Shimura, Discretization of distributions in the maximum
domain of attraction, Extremes 15, 299 (2012).

[24] B. M. Hill, A simple general approach to inference about the
tail of a distribution, Ann. Statist. 3, 1163 (1975).

[25] A. L. M. Dekkers, J. H. J. Einmahl, and L. de Haan, A moment
estimator for the index of an extreme-value distribution, Ann.
Statist. 17, 1833 (1989).

[26] P. Groeneboom, H. P. Lopuhaä, and P. P. de Wolf, Kernel-type
estimators for the extreme value index, Ann. Statist. 31, 1956
(2003).

[27] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.109.054308 for derivation of the analytical
results as well as for further analysis on the estimators’ perfor-
mance. The Supplemental Material includes Refs. [28–30].

[28] E. Parzen, Quantile functions, convergence in quantile, and
extreme value distribution theory, Technical Report B-3, Texas
A&M University (1980) , Accession No. ADA093000.

[29] R. Bartle and J. Joichi, The preservation ofconvergence of mea-
surable functions under composition, Proc. Am. Math. Soc. 12,
122 (1961).

[30] S. Bobkov and M. Ledoux, One-dimensional empirical mea-
sures, order statistics, and Kantorovich transport distances,
Memoirs Am. Math. Soc. 261, 1 (2019).

[31] J. Alstott, E. Bullmore, and D. Plenz, Powerlaw: A Python
package for analysis of heavy-tailed distributions, PLoS ONE
9, e95816 (2014).

[32] H. Drees, A. Janßen, S. Resnick, and T. Wang, On a minimum
distance procedure for threshold selection in tail analysis, SIAM
J. Math. Data Sci. 2, 75 (2020).

[33] A.-L. Barabási and M. Pósfai, Network Science (Cambridge
University Press, Cambridge, UK, 2016).

[34] M. Stumpf and M. Porter, Critical truths about power laws,
Science 335, 665 (2012).

[35] Á. Corral, F. Font, and J. Camacho, Noncharacteristic half-lives
in radioactive decay, Phys. Rev. E 83, 066103 (2011).

[36] E. K. H. Salje, A. Planes, and E. Vives, Analysis of crack-
ling noise using the maximum-likelihood method: Power-law
mixing and exponential damping, Phys. Rev. E 96, 042122
(2017).

[37] M. Bee, M. Riccaboni, and S. Schiavo, Pareto versus log-
normal: A maximum entropy test, Phys. Rev. E 84, 026104
(2011).

[38] Y. Zhang, E. D. Kolaczyk, and B. D. Spencer, Estimating net-
work degree distributions under sampling: An inverse problem,
with applications to monitoring social media networks, Ann.
Appl. Statist. 9, 166 (2015).

[39] Á. Corral and Á. González, Power law size distributions in
geoscience revisited, Earth Space Sci. 6, 673 (2019).

[40] I. Artico, I. Smolyarenko, V. Vinciotti, and E. Wit, How rare are
power-law networks really? Proc. R. Soci. A: Math. Phys. Eng.
Sci. 476, 20190742 (2020).

054308-13

https://doi.org/10.1038/s41467-019-08746-5
https://doi.org/10.1137/070710111
https://doi.org/10.1103/PhysRevResearch.1.033034
https://doi.org/10.1073/pnas.2013825118
https://doi.org/10.1038/ncomms15140
https://doi.org/10.1098/rsos.140219
https://doi.org/10.1016/j.jaut.2021.102616
https://doi.org/10.1103/PhysRevE.72.036118
https://doi.org/10.1080/14697680500151343
https://doi.org/10.1103/PhysRevE.83.036111
https://doi.org/10.1016/j.physa.2019.02.054
https://doi.org/10.1073/pnas.0501179102
https://doi.org/10.1038/nbt1116
https://doi.org/10.2307/1912557
http://www.numdam.org/item/JSFS_2013__154_2_66_0/
https://doi.org/10.1007/s10687-011-0137-7
https://doi.org/10.1214/aos/1176343247
https://doi.org/10.1214/aos/1176347397
https://doi.org/10.1214/aos/1074290333
http://link.aps.org/supplemental/10.1103/PhysRevE.109.054308
https://doi.org/10.2307/2034137
https://doi.org/10.1090/memo/1259
https://doi.org/10.1371/journal.pone.0085777
https://doi.org/10.1137/19M1260463
https://doi.org/10.1126/science.1216142
https://doi.org/10.1103/PhysRevE.83.066103
https://doi.org/10.1103/PhysRevE.96.042122
https://doi.org/10.1103/PhysRevE.84.026104
https://doi.org/10.1214/14-aoas800
https://doi.org/10.1029/2018EA000479
https://doi.org/10.1098/rspa.2019.0742

