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Inference of dynamic hypergraph representations in temporal interaction data
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A range of systems across the social and natural sciences generate data sets consisting of interactions between
two distinct categories of items at various instances in time. Online shopping, for example, generates purchasing
events of the form (user, product, time of purchase), and mutualistic interactions in plant-pollinator systems
generate pollination events of the form (insect, plant, time of pollination). These data sets can be meaningfully
modeled as temporal hypergraph snapshots in which multiple items within one category (i.e., online shoppers)
share a hyperedge if they interacted with a common item in the other category (i.e., purchased the same product)
within a given time window, allowing for the application of hypergraph analysis techniques. However, it is often
unclear how to choose the number and duration of these temporal snapshots, which have a strong influence on
the final hypergraph representations. Here we propose a principled nonparametric solution to this problem by
extracting temporal hypergraph snapshots that optimally capture structural regularities in temporal event data
according to the minimum description length principle. We demonstrate our methods on real and synthetic data
sets, finding that they can recover planted artificial hypergraph structure in the presence of considerable noise
and reveal meaningful activity fluctuations in human mobility data.
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I. INTRODUCTION

The recent fast-paced development of hypergraph model-
ing tools has opened up many new avenues for understanding
the higher-order structure and dynamics of complex systems
[1,2]. Data sets arising in applications as diverse as crime
prediction [3], social media analytics [4], and epidemiology
[5] consist of temporal interaction events between distinct
categories of items—for example, users and comment threads
in social media data or infected persons and locations in
epidemiological data. Such data sets can be represented as
temporal hypergraph snapshots, allowing for the applica-
tion of centrality measures, community detection methods,
link prediction algorithms, and dynamical models specifically
tailored for capturing the structure and dynamics of higher-
order interactions. These higher-order interactions produce
emergent behaviors not present in traditional network repre-
sentations [1,2]. In the hypergraph representation, items of
one category (e.g., social media users) are represented as
nodes and share a hyperedge if they were each involved in
an interaction event with the same item of the other category
(e.g., two users who commented on the same thread) within
some specified time window.

In some applications of interest, there is a physically mean-
ingful time window of interest for the temporal hypergraph
snapshots. For example, in epidemiology one may want to set
the timescale of colocation in human mobility data to be on
the order of days in order to capture possible transmission
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risk from infected individuals that visited a given location. In
this paper we are interested in situations where the timescale
of interest is not clear ahead of time, and one must infer the
characteristic time windows based on structural regularities
in the event data itself. Such a need arises, for example, when
identifying seasonality or anomalies in application areas with-
out clear physical timescales such as certain online shopping
behaviors [6] or vulnerabilities in cybersystems [7], as well
as in exploratory machine learning analyses of geolocalized
events in urban planning [8] and ecology [9].

Existing methods for constructing networks or hypergraphs
from temporal data often require each temporal event to
have some nonzero duration (such representations are also
called “interval graphs”) [10–12], but event time intervals can
be hard or impossible to infer from many data generating
sources, including social media check-ins, online purchases,
and plant-pollinator interactions. Other works choose uni-
form, predefined time windows for event aggregation [13],
but the precise window size chosen for temporal network
aggregation can have a sizable impact on a wide variety of
structural and dynamical characteristics including clustering
and other centrality measures [14,15], latent node geometries
[16], consensus dynamics [17], controllability [18], epidemic
spreading [19], and ecological processes [20]. Uniform time
windows may also fail to capture the “bursty” dynamics of
temporal network interactions, in which many events occur
within short time periods that are separated by long time
periods of inactivity [11,21,22].

A natural way to construct hypergraph snapshots from
temporal event data that overcomes these problems is to
identify time windows within which the events exhibit
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significant shared structure. Such structural regularities can be
readily identified using information theory, which allows us
to quantify the level of data compression we can achieve by
exploiting these regularities to transmit the data to a receiver.
Among all hypergraph representations of the event data, those
that better encapsulate structural regularities in the data will
result in better compression from an information theoretic
perspective, which can be operationalized using the Minimum
Description Length (MDL) principle [23]. The MDL principle
states that the best model among a set of competing models for
a given data set is the one that can describe the data using the
fewest symbols by exploiting its structural regularities [24].
The MDL principle is a powerful first-principles framework
for model selection which has been employed in a range
of graph mining and network science applications including
community detection [25–27], significant subgraph identifi-
cation [28–32], and graph summarization [33–35].

A few existing works have examined the aggregation of
temporal networks with nontrivial edge structure into rep-
resentative snapshots of varying duration. In the method of
Masuda and Holme [36], time is discretized into small time
steps and unipartite interactions that occur within each time
step are aggregated into network snapshots. Then, a distance
matrix is computed among these high-resolution network
snapshots using any user-specified network distance measure,
and the snapshots are clustered using a hierarchical cluster-
ing algorithm to give a coarse-grained representation of the
data. This method is similar in spirit to that of De Domenico
et al. [37], which aggregates multilayer networks (which may
or may not represent temporal snapshots) using a spectral
distance between network layers. Kirkley et al. [38] also ap-
proach this problem but using a nonparametric MDL approach
that is motivated by the exploitation of shared edges in these
layers. These methods all differ from the one proposed in this
paper in a few crucial ways.

First, and most importantly, the methods in Refs. [36–38]
require the fundamental measured network units (i.e., the
disaggregated network layers) to have nontrivial global
structure—in other words, more than just a single isolated
interaction event (edge) at a given instant in time—in order
to compute the network distances and clustering criteria of
interest. These methods therefore require an input data set
consisting of preaggregated individual isolated events into
coarser network snapshots to detect any signal of cohesion
among the data points, which is precisely the problem stud-
ied in this paper. Second, these methods do not specifically
exploit node-level structure (e.g., degrees of each node set
in a bipartite representation) for compression, making them
unsuitable for handling hypergraph data in which edges are
shared among multiple nodes. These distinctions are critical
in applications where distinct interaction events are rarely re-
peated. For example, in recommendation systems, a user may
rarely ever consume the same product twice, which results
in no meaningful shared structure among data points for the
methods of Refs. [36–38] to detect. In contrast, by aiming
to compress interaction event data through the exploitation
of repeated items in each category (e.g., users and products)
individually, the method of this paper can find meaningful
hypergraph structure in high-resolution temporal streams of
interaction events.

In this paper we first derive an objective function which
computes the description length of a temporal interaction
event data set under a three-part encoding that exploits
structural regularities and temporal localization in the events
while using a temporal hypergraph representation of the
data as an intermediate step. We develop an exact dynamic
programming algorithm that minimizes this description length
objective to find the MDL-optimal configuration of temporal
hypergraph snapshots associated with the event data set. To
improve scalability for larger data sets, we also develop a
fast approximate greedy algorithm to minimize our objective.
Our methods are then applied in a variety of experiments
involving real and synthetic data sets to demonstrate their
utility and performance. We first examine the ability for these
algorithms to reconstruct planted hypergraphs in synthetic
data, finding that they can recover the planted structure with
high accuracy even in the presence of considerable noise.
Then we apply our methods to a longitudinal location-based
social network (LBSN) data set of check-ins to various
locations by app users, finding that we can compress this
data to automatically extract meaningful regularities in these
human mobility patterns.

II. METHODS

A. Temporal hypergraph binning from bipartite event data

Suppose we are given a data set of N data points
(“interaction events”) X = {x1, . . . , xN }, where each data
point xi = (si, di, ti ) consists of a source item si of one
category, a destination item di of a different category, and a
time ti when the event involving the source si and destination
di occurred. For simplicity we can assume X has been ordered
in time (i.e., ti < ti+1 for i = 1, . . . , N − 1), so that the entire
time period of interest is [t1, tN ]. We can also assume that
the sources S and destinations D form disjoint sets of
sizes |S| = S and |D| = D, respectively, and that we are
interested in understanding the interactions among items in
only one set (e.g., S) as mediated by the events in X . This set
comprises the nodes of the hypergraph representation we will
construct. Figure 1(a) shows an example of an event data set
X consisting of N = 10 events with sources S = {1, 2, 3, 4},
destinations D = {A, B,C}, and T = 12 time steps of size �t
with which we discretize the event times {ti} (see Sec. II B for
further details).

Data in this form occurs in a wide variety of applications.
Take as an example human mobility data X , where an event
xi = (si, di, ti ) represents the presence of individual si at loca-
tion di at time ti—we will study this example in more detail
in Sec. III using location-based social network data. In this
case, for applications across epidemic modeling [5], sociology
[39], and urban planning [40], one may be interested in the
colocation patterns among individuals in S . Alternatively, in
recommendation systems applications, purchasing data often
consists of events in which a user si purchases a product di at
time ti, and correlations among user purchasing behavior can
be used for effective advertising of new products [41].

A natural representation of the event data X in these
and similar settings is as a set of hypergraph snap-
shots G = {G(1), . . . , G(K )} corresponding to consecutive
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FIG. 1. Diagram of hypergraph binning method. (a) Data set X , consisting of N = 10 events [xi = (si, di, ti )] involving a “source”
si ∈ S and “destination” di ∈ D interacting at time ti. X may, for example, be used to examine colocation patterns from user-location data
or copurchasing patterns among consumers in recommendation systems analysis. Time is discretized into T time steps to allow for data
compression at a desired temporal resolution �t = (tN − t1)/T . (b) Hypergraphs G = {G(1), G(2)} extracted from partitioning the events X
into K = 2 clusters C = {{x1, . . . , x6}, {x7, . . . , x10}} with localized activity patterns. The inferred weighted hypergraphs G(k) are shown in
both their incidence (bipartite) representation and their standard representation, with sources s mapped to nodes and destinations d mapped to
hyperedges. (c) Three-stage information transmission process used to design a minimum description length objective [Eq. (12)] to infer the
hypergraphs G from event data X . The data X are transmitted at increasing levels of granularity, and the optimal hypergraphs G (constructed
using clusters C of events) are selected as those that minimize the description length of the transmission process.

nonoverlapping time intervals {[t (k)
min, t (k)

max]}K
k=1 that partition

the time interval [t1, tN ], and where node s ∈ S participates in
a hyperedge labeled by d ∈ D within hypergraph G(k) if and
only if s is involved in an event with d in the time interval
[t (k)

min, t (k)
max]. Here we allow for a node s to be repeated any

number of times within a hyperedge d to signal multiple
events involving {s, d} in a given time window. For maxi-
mum generality, we also allow for G(k) to have self-loops
(hyperedges with a single node) as well as multiedges (dis-
tinct labeled hyperedges containing the same set of nodes). In
other words, G(k) is not necessarily a simple hypergraph. The
hypergraph representation G(k) captures all the (potentially
indirect) interactions among items in S that occur via their
interactions with items in D during the time period [t (k)

min, t (k)
max]

and can be analyzed using the wealth of newly available tools
for higher-order networks [1].

For simplicity of presentation, we will write the hypergraph
snapshot G(k) in its weighted bipartite (“incidence”) represen-
tation G(k) = {(s, d, G(k)

sd )}S,D
s,d=1, where

G(k)
sd =

∑
(si,di,ti )∈X

1ti∈[t (k)
min,t

(k)
max]δsi,sδdi,d (1)

is the number of events involving the node s and the hyper-
edge d within the kth time window. This representation also
naturally permits a symmetric treatment of the source set S
and destination set D, in case one is interested in the dual

hypergraph representation with node set D and hyperedge
set S—for example, to examine similarities among products
rather than users.

To construct a series of hypergraphs G = {G(k)}K
k=1 of the

form in Eq. (1) from event data X , one only needs to make
two choices:

(1) The number of temporal snapshots (“bins”) K .
(2) The consecutive nonoverlapping time intervals

{[t (k)
min, t (k)

max]}K
k=1. Equivalently, in discretized time (see

Sec. II B), one just needs to specify the integer-valued
interval widths τ = {τ1, . . . , τK}, where τk�t = t (k)

max − t (k)
min

and
∑K

k=1 τk = T is the total number of time steps in our
discretization.

The integer-valued widths τ alone fully specify the in-
tervals {[t (k)

min, t (k)
max]}K

k=1 in discretized time because of the
consecutive, nonoverlapping nature of the intervals discussed
above. For this reason, we will refer to τ as the “binning” of
the event data X .

Any binning τ—a partition of (discrete) time—induces
a partition of the events in X , which we denote with C =
{C1, . . . ,CK}. Ck , which we call the kth “event cluster,” is
the set of data points xi = (si, di, ti ) such that ti ∈ [t (k)

min, t (k)
max].

From Ck we can construct the kth hypergraph snapshot G(k)

using

G(k)
sd =

∑
(si,di,ti )∈Ck

δsi,sδdi,d . (2)
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We denote the number of events in Ck with mk , and the
vector of sizes for all clusters in C as m. In this way, the
integer vector τ = {τ1, . . . , τK} indicates the sizes of the K
snapshots in terms of time steps �t , and the integer vec-
tor m = {m1, . . . , mK} indicates the sizes of the snapshots in
terms of the number of events x ∈ X they contain. Note that
there may be multiple binnings τ that induce the same event
partition C, since any “empty” time steps �t (i.e., time steps
in which no events occur) at the boundary of a snapshot can be
moved to an adjacent snapshot without changing the number
of events occurring in each snapshot.

In Fig. 1(b) we show a binning of an event data set X
into K = 2 bins of widths τ = {τ1, τ2} = {7, 5}, which in-
duces an event partition C = {{x1, . . . , x6}, {x7, . . . , x10}} and
hypergraphs G(1) = {(3, A, 3), (3,C, 1), (4, A, 1), (4,C, 1)},
G(2) = {(1, B, 1), (2, B, 2), (4, B, 1)}. We show each hyper-
graph in both its bipartite incidence representation (along with
its incidence matrix), as well as in its representation with
nodes in S = {1, 2, 3, 4} and hyperedges in D = {A, B,C}.

B. Minimum description length binning objective

The method we present in this paper provides a princi-
pled nonparametric solution to identify hypergraph snapshots
G of any event data set X using the MDL principle from
information theory, which states that the best model among
a set of candidate models is the one that provides the best
compression (shortest description) of a data set [23,24]. We
do this by constructing a three-part encoding that allows us to
gradually transmit the data X at increasing levels of granu-
larity, with the hypergraphs G transmitted as an intermediate
step in the process. The less information this transmission
process requires, the more the hypergraph binning process has
compressed the data X by capturing its statistical regularities,
and the better the representation G. The hypergraphs G that
result in the most efficient lossless transmission of the data
set X to a receiver (i.e., the lowest description length) give an
MDL-optimal temporal hypergraph representation of X .

In order to construct a lossless MDL objective, we need to
discretize the relevant time interval [t1, tN ] into small, uniform
time steps of size �t = (tN − t1)/T , where T is the number of
time steps. The parameter T is technically a free parameter of
the method to be chosen by the user, but we show empirically
in Sec. III that it has little to no impact on inference results.
For this reason we consider the proposed method to be non-
parametric since it has no parameters that require tuning by
the user other than T , which can be set arbitrarily based on
computational limitations (we discuss the time complexity of
our methods in Sec. II C). Given the discretization of time into
intervals of width �t , we preprocess the data X by rounding
each ti to the value of the closest time step, which will incur
an error of at most �t/2 for each ti and can potentially permit
multiple events to occur simultaneously in the same time step.
By discretizing time, we can then proceed with developing
a lossless transmission scheme that results in perfect recon-
struction of the discretized data X , and whose information
content is computed using discrete combinatorial structures.
However, due to the rounding, we are in effect performing
lossy compression with maximum distortion �t/2 in the time
values reconstructed by a receiver.

With this discretization in place, we can construct our
MDL objective for communicating X using the hypergraphs G
as an intermediate step. The fundamental mechanism behind
our encoding is that we can obtain compression of event
data X using hypergraphs G that are localized in time as
well as with respect to sources s and destinations d . This is
made possible by our encoding exploiting the redundancies
in the events xi that take place within the event clusters C
corresponding to these hypergraphs. This localization is also
consistent with previous findings that bipartite graphs and
hypergraphs display heavy-tailed (hyper-)degrees [42–44], as
well as “burstiness” in time [11,21,22].

Suppose we want to transmit the (temporally discretized)
data set X to a receiver. We will assume that the number of
events N , the number of discrete time steps T , the number
of sources (nodes) S, and the number of destinations (hy-
peredges) D are known by the receiver. These are all integer
constants and are of comparatively negligible information cost
to transmit, so we can safely ignore them in our formula-
tion. Suppose now that we do not use any intermediate steps
in our transmission process that exploit event redundancies,
and instead choose to communicate the data X directly to
the receiver as a set of completely independent events. The
receiver knows there N events xi = (si, di, ti ), each with S
possible sources, D possible destinations, and T possible time
steps. Therefore, there are (SDT )N possible configurations of
the data X , and so to specify to the receiver in binary which
particular configuration corresponds to our data set, we need
to send a message of length up to approximately

L0 = log[(SDT )N ] = N log(SDT ) (3)

bits, where we have used the notation log ≡ log2 for brevity.
The quantity L0 is referred to as the description length of the
data set X under the naïve one-level encoding scheme we have
devised, which only uses the global information {N, T, S, D}
to constrain the space of possible data sets X .

A smarter way to transmit the data X that exploits the
redundancies we seek in our hypergraph representation G is
to transmit X to the receiver in three stages by passing binary
messages that communicate information at increasing levels
of granularity and successively constrain the space of possi-
ble data sets X until there is only one remaining possibility.
Each step in our transmission scheme requires an information
content (e.g., description length) given by the logarithm of the
number of possible message configurations, as in Eq. (3). We
will assume that the number of data bins (i.e., hypergraphs and
event clusters) K is known by the receiver and can ignore its
information along with the other constants above. Crucially,
although K is assumed known by the receiver, it remains a
free variable in our description length optimization process,
as we will see in Sec. II C. Our transmission process proceeds
as follows:

(1) Transmit aggregate cluster-level information (event
cluster sizes m and bin widths τ):

(a) To transmit τ = {τk}K
k=1, we must specify K positive

integers that sum to T in a particular order—also known
as a “K composition” of T . There are

(T −1
K−1

)
ways to do

this, which can be shown using the classic “stars and bars”
method from combinatorics [45]. Therefore, specifying the
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particular K composition corresponding to τ = {τk}K
k=1 re-

quires log
(T −1

K−1

)
bits of information.

(b) Similarly, m = {mk}K
k=1 requires log

(N−1
K−1

)
bits of

information to specify, as it consists of K positive integers
that sum to N .
The total information content of this first stage is therefore

given by the sum of these two contributions:

L1 = L(τ, m) = log

(
T − 1

K − 1

)
+ log

(
N − 1

K − 1

)
. (4)

(2) Transmit detailed cluster-level information (counts
of sources, destinations, and timestamps for each event
cluster Ck):

(a) The number of instances (bipartite degree) of each
source in event cluster Ck is stored in the vector s(k) =
{s(k)

r }S
r=1, with s(k)

r the number of occurrences of source r
in event cluster Ck . There are (( S

mk
)) possible ways to assign

each of the S sources a non-negative integer degree value
such that the sum of the degrees is mk , where (( y

x )) = (x+y−1
y−1

)
is the multiset coefficient counting the number of ways to
assign x objects to y distinct bins while allowing bins to
be empty. (This result can also be found using the stars
and bars argument.) Therefore, transmitting the particular
counts s(k) = {s(k)

r }S
r=1 requires log(( S

mk
)) bits of information.

(b) The number of instances (bipartite degree) of each
destination in event cluster Ck is stored in the vector
d (k) = {d (k)

r }D
r=1, with d (k)

r the number of occurrences of
destination r in event cluster Ck . Transmitting these counts
requires log(( D

mk
)) bits of information.

(c) The number of events xi in event cluster Ck that
occur at each discrete time step within the temporal bound-
aries of the cluster is stored in the vector n(k) = {n(k)

t }τk
t=1.

Here n(k)
t the number of events within event cluster Ck that

fall into the t th time step within the cluster’s boundary
(there are τk time steps to choose from). Transmitting these
counts requires log(( τk

mk
)) bits of information.

The total information content of this second stage is there-
fore given by the sum of these three contributions for each
cluster Ck:

L2 =
K∑

k=1

L(s(k), d (k), n(k)|τk, mk ), (5)

=
K∑

k=1

[
log

((
S

mk

))
+ log

((
D

mk

))
+ log

((
τk

mk

))]
.

(6)

(3) Transmit the events xi = (si, di, ti ) within each cluster
Ck , which fully specifies X : We have the following three
constraints based on previously transmitted information:

S∑
r=1

s(k)
r = mk, (7)

D∑
r=1

d (k)
r = mk, (8)

τk∑
t=1

n(k)
t = mk . (9)

Therefore, the number of non-negative integer-valued
three-dimensional (3D) tensors with margins defined by
s(k), d (k), n(k) is the number of possibilities for X , and the
logarithm of this quantity is the information content of this
last step. However, this quantity itself is difficult to compute,
so we can break up this last step into two stages, one of which
involves the hypergraphs we are looking for:

(a) Transmit the hypergraph G(k) given the bipartite
degree constraints s(k), d (k). This requires log �(s(k), d (k) )
bits of information, where �(s(k), d (k) ) is the number
of non-negative integer-valued matrices with margins
s(k), d (k). log �(s(k), d (k) ) is in general difficult to compute
exactly, but can be approximated in order O(S + D) time
using the effective columns approximation in Ref. [46].
Here we use O(·) to indicate “Big O” notation.

(b) Transmit the final data points xi = (si, di, ti ) in
cluster Ck given the hypergraph G(k) and the time step
counts n(k). Transmitting these requires log �(G(k), n(k) )
bits of information, where �(G(k), n(k) ) is the number
of non-negative integer-valued matrices with margins n(k)

and {G(k)
sd }S,D

s,d=1. Using the approximation in Ref. [46],
log �(G(k), n(k) ) can be estimated in order O(SD + τk )
time.
The total information content of this third stage is there-

fore given by the sum of these two contributions for each
cluster Ck:

L3 =
K∑

k=1

[L(G(k)|s(k), d (k) ) + L(Ck|G(k), n(k) )], (10)

=
K∑

k=1

[log �(s(k), d (k) ) + log �(G(k), n(k) )]. (11)

Summing the description length of each stage, we have a
total description length of

Ltotal(X , τ) = L1 + L2 + L3, (12)

where we have explicitly noted the functional dependence of
L on the binning τ, since the description length of the data
X under our transmission scheme—including the hypergraphs
G—can be computed when τ is known. Figure 1(c) shows a
schematic of the three stages described above, for the event
data set in Fig. 1(a). In the next section we describe how to
minimize the description length of Eq. (12) over all binnings
τ to find the MDL set of hypergraphs G that best summarize
the temporal event data X .

We note that the transmission scheme described above and
its resulting description length can also be motivated from
a (microcanonical) Bayesian generative model for temporal
event data, with hierarchical uniform priors corresponding
to each transmission step and where description lengths are
negative log-probabilities. In other words, each step in the
transmission corresponds to a uniform prior over valid con-
figurations given the constraints previously transmitted. For
example, the very first transmission step corresponds to draw-
ing K bin widths {τ1, . . . , τK} uniformly at random given the
constraint that they must sum to T . And the final transmission
step corresponds to drawing the event data from a uniform dis-
tribution over all valid event configurations given the weighted
hypergraph representation and temporal clustering patterns.
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This model—possessing conceptual similarities to a config-
uration model for bipartite graph data where networks are
generated uniformly at random given degree constraints on
both node sets—is only one possible way to generate tempo-
ral hypergraphs, but it is arguably the simplest method that
can meaningfully capture statistical regularities in event data
when applied to discrete time periods that contain one or zero
events (which is the case for T → ∞). Optimization over our
objective corresponds to maximum a posteriori estimation in
the corresponding Bayesian model, and we discuss how to do
this in the next section.

C. Optimization and model selection

The description length of Eq. (12) amounts to a one-
dimensional clustering objective over binnings τ. Therefore, if
our objective consisted of independent terms for each cluster
(akin to the objective for K-means clustering), then we could
optimize it exactly using a dyamic programming approach
[38,47–49].

Only the first term in Eq. (12) couples clusters together,
but in the regime we are interested, we have K � T, N and
we can rewrite Eq. (12) as (up to irrelevant constant factors)

Ltotal(X , τ ) =
K∑

k=1

L(k)
cluster, (13)

where

L(k)
cluster = log(N − 1)(T − 1)

+ log

((
S

mk

))((
D

mk

))((
τk

mk

))

+ [log �(s(k), d (k) ) + log �(G(k), n(k) )]. (14)

We can now minimize our MDL objective in Eq. (13) using
a dynamic program. The key intuition behind this is that since
the objective in Eq. (13) is a sum of independent terms over
clusters in one dimension, its minimum over the first j time
steps—i.e., the optimal binning τ restricted to these first j
time steps—must consist of the optimal binning up to some
time step i ∈ {1, . . . , j} (excluding the ith time step) plus a
final cluster of time steps i, . . . , j. In other words, for all
j ∈ [1, T ] we have

L( j)
MDL = min

i∈[1, j]

{
L(i−1)

MDL + L([i, j])
cluster

}
, (15)

where L( j)
MDL is the minimum value of Eq. (13) when we

include only the first j timestamps �t , and L([i, j])
cluster is the

cluster-level description length of Eq. (14) evaluated at the
cluster containing consecutive time steps {i, . . . , j}. Setting
L(0)

MDL = 0 and iterating over all j ∈ [1, T ], we find the min-
imum of the description length in Eq. (13), giving us the
optimal binning τ for the data X according to the MDL
principle.

In addition to finding the exact optimum over binnings τ,
this approach has the advantage of automatically selecting
the optimal number of bins K , since the entire unconstrained
space of binnings τ is explored by the algorithm. The objec-
tive function in Eq. (13) will naturally penalize high values of
K since we will waste information to describe the clusters and
increase the total description length if K is too high. On the

other hand, Eq. (13) will also naturally penalize values of K
that are too low, since we will waste information describing
the events within each cluster if they are too heterogeneous
and/or spread over too large a time period. The MDL-optimal
binning τ therefore balances the information required to de-
scribe the clusters and the information required to describe the
data within each cluster by selecting an appropriate number of
clusters K using the data itself.

To quantify the extent to which our method has achieved
compression over a naïve one-level encoding, we could take
the ratio of the optimal description length LMDL from Eq. (13)
with the description length of Eq. (3). However, in our case it
is of more interest to determine how much of a compression
gain we achieve when we use an optimal configuration of
multiple hypergraphs to summarize the temporal event data
X , versus using only a single hypergraph that aggregates all
the events together. We therefore construct an inverse com-
pression ratio η which computes our compression gain as

η = LMDL

L(K = 1)
, (16)

where L(K = 1) is the description length of Eq. (13) when
all events are put into a single event cluster. A value η = 1
implies that the event data set X is not compressible using
multiple hypergraphs, while η � 1 implies that the event data
set X can be greatly compressed using a representation of
multiple hypergraphs.

Evaluating L([i, j])
cluster requires the evaluation of constant-

time terms and two log � terms which have nontrivial time
complexity. Computing log �(s(k), d (k) ) requires O(S + D)
operations once the margin counts s(k), d (k) are known, and
these margin counts require O(mk ) operations to compute
since we must iterate through the events in the cluster
Ck . If the events are roughly evenly spaced in time, then
we would expect that mk ≈ N ( j − i)/T events would occur
within the interval [i, j], and the total complexity of evaluating
the term log �(s(k), d (k) ) would be O(S + D + N ( j − i)/T ).
Meanwhile, evaluating the term log �(G(k), n(k) ) will have
complexity O(SD + τk ), with τk = j − i in this case. Combin-
ing these operations gives a total complexity of approximately
O(N ( j − i)/T + SD + ( j − i)) for evaluating L([i, j])

cluster. Iter-
ating over all j and i in the recursion then gives a total
complexity of roughly O[(SD + N + T )T 2] for the dynamic
programming algorithm using a naïve implementation.

However, we can speed up the method in the regime
SD, N � T by saving the L([i, j])

cluster values as they are com-
puted, requiring order O(T 2) space. L([i, j])

cluster can be computed
from L([i−1, j])

cluster in constant time if time step i has no events.
Similarly, L([i, j])

cluster can be computed from L([i, j−1])
cluster in con-

stant time if time step j has no events. Thus, when we loop
over j ∈ [1, T ] and i ∈ [1, j], we will only have to perform
an O[N ( j − i)/T + SD + ( j − i)] evaluation of L([i, j])

cluster when
both cells i and j contain an event. Otherwise, we perform a
constant-time update using L([i−1, j])

cluster or L([i, j−1])
cluster (depending

on which endpoint does not have any event).
If T � N for N constant—many temporal grid cells have

no event—then we have roughly N unique cells containing
events, resulting in

(N
2

) � (T
2

)
pairs {i, j} for which both

the interval endpoints of [i, j] contain an event, and for
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which we must perform the entire O[N ( j − i)/T + SD +
( j − i)] evaluation of L([i, j])

cluster. Thus, a vanishingly small frac-
tion of pairs {i, j} require these nontrivial evaluations, so the
O(T 2) evaluations will require roughly O(T 2) total runtime
to compute if SD, N � T with SD and N constant with
respect to T .

When the above scaling assumptions for SD and N are
not met, the O(T 2) approximate total runtime of the dynamic
programming method can break down. This is because the
O(N2) nontrivial evaluations of complexity O[N ( j − i)/T +
SD + ( j − i)] for L([i, j])

cluster become important.
Despite this speed-up, the time complexity of our exact

dynamic programming solution may be too high for practical
applications where SD or N are comparable to T , or where we
require high values of T for sufficient temporal resolution. In
such cases we can use a greedy heuristic optimization method
where we start with all time steps i = 1, . . . , T in their own
cluster and iteratively merge the pair of time steps that gives
the greatest decrease to the description length in Eq. (13). We
save the description length changes induced by all proposed
merges (including those that were suboptimal) and perform
greedy merges until all time steps are in a single cluster. We
then pick the value of K for which the total description length
was minimized over our set of merges. This greedy optimiza-
tion method is not guaranteed to find the exact optimum, but
it has a time complexity that is nearly O(T ) in practice, as
for each K = T, . . . , 1 we will only have to update the log �

terms for two merge pairs (those involving adjacent clusters
to the one most recently merged).

In Sec. III A and the Appendix we run numerical experi-
ments computing the runtimes and inverse compression ratios
achieved by the two algorithms on synthetic and real data
sets, respectively, finding that—in the set of examples we have
examined—this greedy method achieves MDL values that are
nearly optimal but with much faster runtimes than the dy-
namic programming approach. However, one can never con-
clusively state that a greedy approximate method such as the
one described above will be nearly optimal in a broader range
of real applications without formal mathematical proof—
indeed, approximate methods may perform quite poorly in
practice for high-dimensional clustering problems [50].

III. RESULTS

A. Reconstruction of synthetic data

To examine the performance of the algorithms presented
in Sec. II C, we can generate synthetic data consisting of
planted event clusters C with binnings τ and test the ability
for these algorithms to recover the planted clusters at vari-
ous levels of injected noise. We generated synthetic data sets
with N ∈ [200, 500, 1000], T ∈ [50, 500], K ∈ [2, 5, 10], and
S = D = 5 (the results did not depend on S and D) in order
to examine a range of model settings for the reconstruction
tests.

The synthetic event clusters C are generated by first draw-
ing a partition of the N events and T time steps into K sets
uniformly at random, then drawing the time step counts n(k)

uniformly at random within each cluster. To control the level
of heterogeneity across the K synthetic event clusters—which

in turn controls the level of noise in the partition of the
events, and consequently the reconstruction difficulty—our
synthetic model includes a parameter γ � 0 which determines
the localization of the edges (s, d ) within hypergraph G(k) on
sources s ∈ S and d ∈ D. More specifically, for each cluster
Ck we independently generate the bipartite degrees s(k) and
d (k) from a Dirichlet-multinomial distribution with mk trials
and concentration parameter γ 1, then draw the bipartite graph
G(k) at random from the set of non-negative integer matrices
with row and column sums s(k) and d (k) using the algorithm in
Ref. [51]. This will create more localized bipartite degree dis-
tributions within hypergraph G(k) [thus, more localized edge
weights G(k)

sd ] and a higher variance across clusters as γ → 0.
The concentration parameter γ thus serves as a tunable pa-
rameter that determines the distinguishability of the generated
synthetic clusters, with γ → 0 increasing the distinguisha-
bility of the clusters (e.g., increasing the signal-to-noise
ratio).

In Fig. 2 we plot the results of our synthetic reconstruction
experiments. In Fig. 2(a) we show the inverse compression
ratio η [Eq. (16)] vs the logarithm of the planted heterogeneity
γ for N ∈ [200, 500, 1000], averaged over 30 simulations at
each combination of K and T . Error bars represent three stan-
dard errors in the mean values estimated from the simulations,
and the solid and dotted curves correspond to the dynamic
programming and greedy algorithms described in Sec. II C,
respectively. We set �t = 1 for the reconstruction simula-
tions. We can see that as the noise level γ increases from
γ = 10−3 to γ = 1, the synthetic event clusters X become
less and less compressible, and that more events N results
in better compression at all noise levels due to additional
statistical evidence for the structure of each cluster. These
results indicate that substantial data compression is possible
using our algorithm, even at relatively high noise levels. We
can also see very similar compression performance between
the exact and greedy algorithms, indicating that, for these
examples, the greedy method is achieving near-optimal com-
pression at much lower computational cost than the dynamic
programming method.

As there are multiple binnings τ that could correspond
to any given set of event clusters C—any binning that pre-
serves the event partition while shifting the cluster boundaries
in time—there is always a high level of uncertainty in re-
construction of τ, even with perfectly distinguishable event
clusters C. We therefore quantify the reconstruction accu-
racy in our simulations by representing an event partition
C as a 1D partition of the temporally ordered event indices
{1, . . . , N}, then compute a mutual information measure be-
tween the 1D partitions corresponding to the planted clusters
Cpl and the clusters Cin inferred by our algorithm. However,
standard mutual information-based measures [52] are poorly
suited for contiguous, low-dimensional partitions such as the
ones we compare here, because they compute the partition
similarity relative to an unconstrained (e.g., not necessarily
contiguous) space of partitions that is much larger in size
and much less structured than the space of contiguous par-
titions [38,53]. This results in artificially inflated values of
the mutual information between contiguous partitions that
may have little correlation other than that induced by their
contiguity.
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FIG. 2. Synthetic reconstruction performance. (a) Average in-
verse compression ratio [Eq. (16)] versus the logarithm of the planted
level of cluster heterogeneity γ , for N ∈ {200, 500, 1000}. The ex-
act dynamic programming algorithm results are shown with solid
lines and circular markers, while the greedy algorithm results are
shown with dotted lines and triangular markers. (b) Reconstruction
accuracy, as quantified by the contiguity-corrected AMI [CCAMI,
Eq. (17)], over the same set of experiments. Averages for each panel
are taken over 30 simulations with the parameters {S, D, K, T } de-
scribed in Sec. III A, and error bars represent 3 standard errors in the
mean.

With this in mind, here we construct a contiguity-corrected
adjusted mutual information (CCAMI) to compute the simi-
larity between the event clusters Cpl and Cin, which is given
by

CCAMI(Cpl, Cin ) = MI(Cpl, Cin ) − 〈MI(Cpl, Cin )〉c

max{H (Cpl), H (Cin )} − 〈MI(Cpl, Cin )〉c
,

(17)

where

MI(Cpl, Cin ) = H (Cpl ) + H (Cin ) − H (Cpl, Cin ) (18)

is the standard Shannon mutual information between parti-
tions Cpl and Cin, H (C) is the Shannon entropy of the cluster
sizes in partition C, and H (Cpl, Cin ) is the Shannon entropy of

the joint partition defined by the overlap of the clusters in Cpl

and Cin. 〈MI(Cpl, Cin )〉c is the expected value of this mutual
information over all possible contiguous partitions with the
same numbers of groups as Cin and Cpl. Equation (17) quan-
tifies how much information is shared between the planted
event partition Cpl and our inferred event partition Cin, relative
to all pairs of contiguous partitions with the same numbers
of clusters. In practice, 〈MI(Cpl, Cin )〉c is difficult to compute
analytically, so we estimate it using an average over 100
random draws of partitioning the N events into |Cin| and |Cpl|
contiguous clusters.

In Fig. 2(b) we show the reconstruction accuracy of our
experiments as a function of the noise level γ , with the
same parameter settings as in Fig. 2(a). Consistent with the
improved compression at lower γ seen in Fig. 2(a), we can
see better reconstruction accuracy as γ decreases and for syn-
thetic data sets with a greater number of events N when γ �
10−1. When the noise level increases to γ > 10−1, we observe
a sharper drop in reconstruction accuracy for greater N , likely
as a result of finite-size smoothing in phase transition-like
behavior for the model detectability [54]. We can also see that
the exact and greedy algorithms have a non-negligible perfor-
mance distinction with respect to reconstruction accuracy—as
opposed to compression, as shown in Fig. 2(a)—since in the
low-noise regime the CCAMI values are noticeably lower for
the greedy method than the exact method. This relative perfor-
mance discrepancy for the greedy algorithm in Fig. 2(a) and
Fig. 2(b) indicates that in some cases good data compression
can be achieved for a variety of different partitions of the
events in X .

To verify the time complexities estimated in Sec. II C,
in Fig. 3(a) we plot the average run time for the dynamic
programming algorithm (left axis) and greedy algorithm (right
axis) as a function of the number of time steps T , for the
reconstruction simulations in Fig. 2. Along with these points
we plot the regression lines obtained from fits of the form
log(Runtime) = β1 log(T ) + β2, which are labeled with their
least-squares estimates for the exponent β̂1. We can see that
the dynamic program has a run time that scales approximately
like O(T 2), and that the greedy algorithm has a run time that
is slightly worse than linear in the number of time steps T ,
while the absolute run times for the greedy algorithm are
much faster than those for the dynamic program.

In Fig. 3(b), we plot the average inverse compression ra-
tio η of the reconstruction experiments as a function of the
number of time steps T . We can see that the compression is
essentially identical for all values of T , up to fluctuations. This
indicates that the results of our algorithm are independent of
the specific choice of temporal resolution T as long as it is in a
reasonable range (roughly at least on the order of the number
of events N) that does not merge large time periods into single
time steps.

B. Foursquare check-ins in NYC neighborhoods

To examine the performance of our method on real event
data X , we apply the algorithms of Sec. II C to a data set of
FourSquare check-ins in New York City collected from April
2012 to February 2013 [55,56]. In this data set, each check-in
event xi = (si, di, ti ) ∈ X denotes a FourSquare check-in by
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FIG. 3. Reconstruction parameter sensitivities. (a) Average run
time (in seconds) of reconstruction experiments (Fig. 2) versus num-
ber of time steps T , for both algorithms described in Sec. II C. The
performance of the exact dynamic programming algorithm is shown
on the left axis, while that of the greedy algorithm is shown on the
right axis. Regression lines of the form log(Runtime) = β1 log(T ) +
β2, labeled with their least-squares estimates for the exponent β̂1,
are shown as dotted lines. (b) Inverse compression ratio η [Eq. (16)]
versus T for the experiments conducted at different values of N .
Averages for each panel are taken over 30 simulations with each
combination of the parameters {S, D, K, γ } described in Sec. III A
[the averages in panel (a) also allow N to vary], and error bars
represent 3 standard errors in the mean.

a user si at venue di at time ti. LBSN data of this form are
often used in urban planning, epidemiology, and sociology
to understand human mobility colocation patterns [5,57,58],
where users s, s′, s′′, . . . ∈ S are colocated if they check in at
the same venue d ∈ D within some predefined time window.
We can use the MDL method described in Sec. II to auto-
matically extract a set of representative hypergraphs G from
the LBSN check-in data X that capture homogeneous user
activity patterns at different points in time. This allows us to,
for instance, perform market segmentation to identify users
s ∈ S with similar consumption patterns at different points in
the year, or to identify seasonality in the congestion patterns
at different venues.

To preprocess the FourSquare check-in data for analysis,
we used neighborhood boundary shapefiles [59] to map the
(latitude, longitude) pairs of the check-ins to neighborhoods
in NYC. We kept only the 1000 users and venues in the data
set with the most check-ins and neighborhoods with at least

100 check-ins over the 10 month period, with the aim of
reducing biases and noise from users and venues with very
infrequent app usage. The final data set used in the analysis
had N = 64 366 events and S = D = 1000 users and venues
spread across 91 neighborhoods.

In Fig. 4 we show the results of applying our exact dynamic
programming method for hypergraph binning to the check-ins
for each neighborhood separately. This neighborhood-level
analysis allows us to more easily visualize the inferred hyper-
graphs as well as perform cross-sectional comparisons across
the neighborhoods regarding their event homogeneity, tempo-
ral burstiness, and compressibility. In our inference we set
�t = 1 day. In Fig. 4(a) we show the inferred hypergraphs
G = {G(1), G(2), G(3), G(4)} for the neighborhood (Bay Ter-
race, Queens) for which our method resulted in the highest
level of data compression (η = 0.68). The hypergraphs G(k),
which are ordered chronologically left to right, are shown in
their incidence representation, with the width of edge (s, d )
proportional to the edge weight G(k)

sd which counts the number
of events that contain user s and venue d in the time pe-
riod corresponding to hypergraph G(k). Source and destination
nodes in this representation are scaled in size proportionally to
their weighted bipartite degrees (e.g., frequency of occurrence
in events within the time period) and labeled by unique user
and venue ids, respectively, for each neighborhood.

We can see that the four inferred hypergraphs in Fig. 4(a)
are very structurally distinct from one another. In the first time
period inferred by our method (from the start of the study
until July 9), corresponding to hypergraph G(1), we observe
that a large portion of the activity was dominated by user
“u89,” who visited venues “v2” through “v7” as well as “v9,”
the last of which was also visited by the rest of the users
except “u31.” User “u31” also made a substantial number
of check-ins during this period but only to venue “v8.” The
inclusion of these two distinct activity patterns (check-ins by
“u89” and “u31”) in the hypergraph G(1) is a result of both
users performing their check-ins consistently over the time
period corresponding to the first hypergraph. In the second hy-
pergraph (corresponding to the time period July 10–October
26), we can see that user “u31” is still making consistent
check-ins at venue “v8,” but that user “u89” is no longer
making check-ins. There is also turnover in the other users
and venues. In the third hypergraph (corresponding to October
27–November 1) we see a very different check-in activity
pattern, which corresponds to the tropical storm Hurricane
Sandy hitting New York City. Here we see many users (too
many to be labeled in the figure) check-ing in at location
“v1,” Throgs Neck Bridge between Queens and the Bronx,
likely signaling evacuation and return to the city. In the fourth
hypergraph (corresponding to November 2 through the end of
the study period), we see a return to normal with a somewhat
similar activity structure as in the second hypergraph, where
most check-ins are performed by users “u31” and “u136” at
venues ‘v8’ and “v9,” respectively. The check-in data for this
neighborhood is easily compressed using our method due to
these four very distinct periods of high localization of the
events onto a few users and venues.

In contrast, in Fig. 4(b), we see a very different story
for Melrose in the Bronx. Here we see that the event
data was optimally compressed into a single hypergraph
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FIG. 4. FourSquare check-ins in NYC neighborhoods. The data set, which aggregated check-ins from April 2012 to February 2013 in New
York City [55,56], consists of events xi = (si, di, ti ) ∈ X that denote a FourSquare check-in by a user si at venue di at time ti. (a) Inferred
hypergraphs for the Bay Terrace neighborhood, for which our method resulted in the highest level of data compression (η = 0.68). The
hypergraphs are ordered chronologically left to right and shown in their incidence representation, with the width of edge (s, d ) proportional
to the edge weight G(k)

sd which counts the number of events that contain user s and venue d in the time window. Source and destination nodes
are scaled proportionally to their frequency of occurrence and labeled by unique user and venue ids, respectively, for each neighborhood.
(b) Inferred hypergraph for Melrose, for which our method resulted in the lowest level of data compression (η = 1). (c) Histogram of the
temporal event gap ratio α [Eq. (19)] for all neighborhoods with K > 1. (d) Histogram of the edge Jensen-Shannon divergence JSDEdges

[Eq. (23)] for all neighborhoods with K > 1, with mean indicated using the dotted black line. (e) Fraction of all events and inferred temporal
bin boundaries that took place within each month, across all neighborhoods.

(i.e., K = η = 1), for which check-in activity is dominated
by user “u1” and venue “v2.” (Note that these are not the
same as user “u1” and venue “v2” in Bay Terrace, since these
abbreviated user and venue IDs were generated separately for
the two neighborhoods in the figure.) The neighborhood-level
set of events for Melrose is incompressible using multiple
hypergraphs, since it does not have multiple distinct periods
of activity, instead exhibiting consistent check-ins by one user
at one venue.

To quantify the extent of temporal localization in the hyper-
graphs inferred with our method, we define a temporal event
gap ratio α as the ratio of the median interevent time within
clusters to the median interevent time between clusters, or

α = median
({ti+1 − ti|ci = ci+1}N−1

i=1

)
median

({ti+1 − ti|ci �= ci+1}N−1
i=1

) , (19)

where ci ∈ {1, . . . , K} is the event cluster index of the ith
event xi. α < 1 when the events within the event clusters tend
to be more localized in time than the events on the borders of
the clusters, and α > 1 when the opposite is true. In Fig. 4(c),
we plot a histogram of the ratio α for all neighborhoods ana-
lyzed that had an inferred K > 1. We can see that the inferred
hypergraphs in all but four neighborhoods had events that
were more temporally localized than the pairs of events that
transitioned between hypergraphs (α < 1), indicating that our

method is identifying periods of temporally localized activity
in the LBSN data.

To examine the localization of inferred hypergraphs on
sources and destinations relative to the overall localization
in the data set X , we compute the expected reduction in
uncertainty for predicting the source and destination (s, d ) of a
randomly chosen edge in G versus the fully aggregated hyper-
graph G0 = ⋃K

k=1 G(k). If the edges (s, d ) in each hypergraph
G(k) are much more highly localized on source-destination
pairs than in the overall data X , then it is substantially easier to
predict the label (s, d ) of a randomly chosen edge in G than in
G0. The reduction in our predictive uncertainty in going from
G0 to G can be quantified by the generalized Jensen-Shannon
divergence [60,61], given by

JSDEdges, unnormalized = H (G0) −
K∑

k=1

mk

N
H (G(k) ), (20)

where

H (G0) = −
S,D∑

s,d=1

[∑K
k=1 G(k)

sd

N

]
log

[∑K
k=1 G(k)

sd

N

]
, (21)

H[G(k)] = −
S,D∑

s,d=1

[
G(k)

sd

mk

]
log

[
G(k)

sd

mk

]
, (22)
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FIG. 5. FourSquare check-ins across all of NYC. (a) Binnings obtained when applying the exact dynamic programming method (top plot)
and greedy agglomerative method (second plot) of Sec. II C to the set of check-ins aggregated across all neighborhoods in NYC, with the
number of check-ins for each day of the study plotted as a solid black line underneath. The K = 4 temporal bins inferred by each of these
algorithms are highlighted. The bottom two plots show the partitions obtained by naïvely partitioning the events into K = 4 time windows of
equal duration and into time windows with an equal number of events (third and fourth plots, respectively). (b) CCAMI matrix among all pairs
of the four partitions shown in panel (a). (c) Table of summary statistics for the partitions in panel (a).

are the Shannon entropies of the edges in the aggregated
graph and inferred hypergraphs, respectively. One can show
that Eq. (20) is bounded below by 0 (due to the concavity of
entropy) and above by H (G0), so we can rescale the JSD to
[0,1] by dividing by this upper bound, thus

JSDEdges = 1 − 1

H (G0)

K∑
k=1

mk

N
H (G(k) ). (23)

Equation (23) tells us the fraction of information (in terms
of predictive power for the edge labels) we lose by using
the aggregated hypergraph G0 instead of the cluster-level
hypergraphs G = {G(k)}K

k=1. A value of JSDEdges ≈ 0 indi-
cates little edge localization within the clusters relative to the
overall data set, and a value of JSDEdges ≈ 1 indicates high
edge localization within the clusters relative to the overall
data set.

In Fig. 4(d), we plot a histogram of JSDEdges for all
neighborhoods analyzed that had an inferred K > 1, with
the distribution mean of JSDEdges ≈ 0.15 indicated with the
vertical black line. The mean JSD value of 0.15 indicates a
relatively high average level of localization among the edges
(s, d ) within each hypergraph. We can also observe that all
but 5 neighborhoods had an information gain of at least 5%
relative to the overall data X , indicating non-negligible lo-
calization of the sources or destinations in the hypergraphs
inferred with our method.

Finally, in Fig. 4(e) we plot a histogram showing the frac-
tion of all events that took place within each month (blue)
and the fraction of inferred temporal snapshot boundaries that
took place within each month (red). Here we can observe

substantial differences in these distributions, indicating that
the inferred boundaries are to some extent negatively corre-
lated with the temporal density of events. For example, there
is a sizable drop in event frequency from May to June, and
we see a spike in the number of inferred temporal boundaries
in June, suggesting that the drop in events provided sufficient
statistical evidence for the formation of a new cluster bound-
ary in the information theoretically optimal binnings. We also
see large discrepancies for September and October, where
there are comparatively many boundaries but few events. This
may be correlated with the uptick in the overall density of
events, seasonal fluctuations in consumer behavior, and Hur-
ricane Sandy (for October).

In the Appendix, we run additional tests using the
neighborhood-level event data, in order to understand the
discrepancies between the exact dynamic programming algo-
rithm and the fast greedy agglomerative algorithm of Sec. II C
when applied to this data set.

One can also examine the fluctuations in large-scale check-
in patterns at the level of the entire city by aggregating
the events over all neighborhoods. In the top two panels of
Fig. 5(a), we show the binnings obtained when applying our
exact dynamic programming method and greedy agglomera-
tive method to the aggregated data set representing the top
1000 users and venues in the FourSquare data set across
all neighborhoods. Different colors distinguish the K = 4
different temporal bins obtained by each of these algorithms,
and the number of check-ins for each day of the study is
plotted as a solid black line.

In the bottom two plots of Fig. 5(a), we show the parti-
tions obtained using naïve binning heuristics with the same
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number of clusters (K = 4)—a partition of the events into
time windows of equal duration (third plot), and a parti-
tion of the events into time windows with an equal number
of events (fourth plot). We can see substantial shifts in the
cluster boundaries for these methods relative to the MDL-
based methods, despite the (relatively strong) constraint of
fixing the value of K . The MDL-based methods have in-
ferred boundaries in the gaps with sparse event data around
days 145 (exact method) and 162 (greedy method), due to
their focus on temporally localized clusters of events, while
the other methods have boundaries that are uncorrelated
with temporal event density. However, a binning heuristic
that only looks for temporal gaps in events will also fail
to reproduce the partitions obtained by the MDL methods,
since we see some sizable gaps included within the in-
ferred clusterings of both methods, where there is enough
statistical evidence for the algorithm to create a contigu-
ous cluster due to localization of the events on sources and
destinations.

In Fig. 5(b), we plot a matrix of the CCAMI values between
each pair of partitions among the four shown in Fig. 5(a). We
observe that, despite the apparent visual similarity of some
pairs of partitions, the information shared between many pairs
is only modestly more than what one would expect in random
partitions of the time interval into K = 4 clusters. We also
can see that—despite having a description length (ηgreedy =
0.758) which is comparable to the description length of
the optimal partition obtained by the exact dynamic pro-
gramming algorithm (ηexact = 0.750)—the greedy partition is
actually quite different than the true MDL-optimal partition
when considering the strong constraints imposed by conti-
guity (CCAMI = 0.42). In fact, the greedy MDL partition
is less similar to the true MDL-optimal partition than the
partition obtained by simply splitting the interval into K = 4
windows of equal duration. This highlights the importance of
our exact dynamic programming solution, and is consistent
with findings in network community detection that identify
high levels of degeneracy in the near-optimal partitions of
networks [27,50,62,63].

We can also compute the inverse compression ratio of
Eq. (16) for the baseline partitions by plugging these parti-
tions directly into the objective in Eq. (12). We find inverse
compression ratios of 0.764 and 0.778, respectively, for the
partitions whose clusters are uniform in time and the number
of events, respectively, which correspond to states that are
roughly 2600 and 21800 times worse than the greedy solution
(which is 2700 times worse than the exact optimum) in terms
of relative posterior probability.

In Fig. 5(c), we plot summary statistics of the inferred
hypergraphs using each binning method. Mirroring Fig. 5(a)
we can see high variability in the number of events within the
clusters across the four partitions. We can also see that the
exact MDL approach has the best balance of edge localization
(JSDEdges = 0.0648) and temporal localization (α = 0.0012)
among its inferred event clusters. While it is only the second
best method regarding each metric individually—e.g., it has
the second-highest JSDEdges value and the second lowest α

value—the top performers in JSDEdges (Uniform Sizes) and
α (Greedy MDL) are the worst performers regarding α and
JSDEdges, respectively.

IV. CONCLUSION

In this paper we develop a nonparametric approach for
inferring representative hypergraph snapshots from tempo-
ral event data based on the MDL principle. Our approach
considers the problem of transmitting the data to a receiver
in multiple stages of increasing granularity, with the hyper-
graph snapshots as an intermediate step. The configuration
of hypergraphs that minimizes the description length of this
transmission process is then selected as the MDL-optimal
hypergraph representation of the data. Our method auto-
matically performs model selection for the number and
composition of the hypergraphs with no parameter tuning. We
employ an exact dynamic programming algorithm to identify
the hypergraphs that minimize our description length objec-
tive in a runtime that scales quadratically with the number
of discrete time steps in the limit of high temporal resolution
when the number of nodes and events is comparatively small.
However, the exact approach may fail to scale to larger data
sets where this condition is not met, so we also develop a fast
greedy agglomerative algorithm that achieves near-optimal
configurations with substantially reduced run times in the
examples studied. We demonstrate that our methods are able
to consistently reconstruct synthetic data with planted hyper-
graph structure even with appreciable noise, and can reveal
meaningful representative structures in real location-based
social network data to understand human mobility patterns.

There are a number of ways our methods can be extended
in future work. In this paper we explore a data encoding that
exploits redundancy provided by degree heterogeneity in the
incidence representations of the representative hypergraphs
within the data, but one can in principle exploit other structure
as well to develop efficient encodings. In a Bayesian fram-
ing of the hypergraph inference problem, these alternative
encodings would correspond to generative models other than
the configuration-style model corresponding to the encoding
of this paper. Alternative structure that could be potentially
exploited for improved compression may include community
structure, transitivity, or overlaps among hyperedges. One can
also impose asymmetry in the encoding between the source
and destination nodes to more clearly highlight the desired
hypergraph structure, or incorporate other relevant metadata
on the edges such as weights or temporal duration of events.
Finally, there is no guarantee that the greedy method for
minimizing the description length will be near-optimal in all
problem settings, so a more comprehensive evaluation of this
method in other applications or a mathematical proof of its
approximation capabilities is important for future work.

Code for the algorithms presented in this paper is
available [64].
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APPENDIX : ADDITIONAL TESTS WITH NYC
CHECK-INS DATASET

In this Appendix we plot the results of a variety of tests to
compare the performance of the exact dynamic programming
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FIG. 6. Number of clusters inferred by the exact dynamic pro-
gramming algorithm (y axis) and the greedy algorithm (x axis). Data
point labels indicate the number of neighborhoods with the given
combination (Kgreedy, Kexact ).

FIG. 7. Run time of the exact dynamic programming algorithm
(y axis) and the greedy algorithm (x axis) for each neighborhood in
the study.

FIG. 8. Histograms of the compression ratio η [Eq. (16)] for the
event data in each neighborhood in the study, after compression with
the exact method and greedy method.

FIG. 9. Histograms of the differences in the compression ratio η

[Eq. (16)] between the exact method and greedy method, for each
neighborhood in the study.

FIG. 10. Inverse compression ratio η versus number of time steps
T for each neighborhood in the study.

FIG. 11. Inverse compression ratio η versus the logarithm of the
number of check-ins N for each neighborhood in the study.
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TABLE I. Neighborhood-level check-in data-set size details
(0–45).

No. Neighborhood N S D

0 Arverne 103 1 2
1 Astoria 852 65 16
2 Battery Park City 184 38 2
3 Bay Terrace 590 145 9
4 Bedford-Stuyvesant 1553 31 21
5 Bensonhurst 186 11 3
6 Boerum Hill 159 7 3
7 Borough Park 213 14 4
8 Brighton Beach 429 63 4
9 Bronxdale 100 9 2
10 Brooklyn Heights 206 9 3
11 Brownsville 434 14 7
12 Bull’s Head 229 6 6
13 Canarsie 491 13 9
14 Central Park 531 189 8
15 Chelsea 4678 654 60
16 Civic Center 219 26 3
17 Co-op City 124 12 2
18 College Point 459 28 9
19 Concourse 341 169 2
20 Concourse Village 194 24 4
21 Coney Island 114 5 2
22 Country Club 140 2 2
23 Crown Heights 101 8 3
24 Cypress Hills 282 25 3
25 DUMBO 119 21 3
26 Ditmars Steinway 296 7 4
27 Douglaston 193 5 3
28 Downtown Brooklyn 387 47 8
29 East Elmhurst 198 6 5
30 East Flatbush 224 40 1
31 East Harlem 843 62 14
32 East New York 1389 6 19
33 East Village 1691 398 30
34 Elmhurst 218 48 4
35 Financial District 1447 218 23
36 Flatbush 349 21 7
37 Flatiron District 2310 298 27
38 Flushing 721 40 14
39 Flushing Meadows Corona Park 221 90 3
40 Fordham 139 15 3
41 Forest Hills 213 22 4
42 Fort Greene 227 83 4
43 Gowanus 194 28 3
44 Gramercy 1094 266 12
45 Gravesend 285 12 5

algorithm and greedy algorithm of Sec. II C when applied to
the FourSquare check-ins data set of Sec. III B.

(1) Fig. 6 plots the number of clusters inferred by the ex-
act dynamic programming algorithm (y-axis) and the greedy
algorithm (x-axis). Data point labels indicate the number of
neighborhoods with the given combination (Kgreedy, Kexact ).

(2) Fig. 7 plots the run time of the exact dynamic program-
ming algorithm (y-axis) and the greedy algorithm (x-axis) for
each neighborhood in the study.

TABLE II. Neighborhood-level check-in data-set size details
(46–90).

No. Neighborhood N S D

46 Greenpoint 111 29 2
47 Greenwich Village 842 252 16
48 Harlem 1544 76 27
49 Hell’s Kitchen 2490 411 37
50 Inwood 262 13 5
51 Jamaica 657 84 7
52 Jamaica Estates 105 9 2
53 John F. Kennedy International Airport 919 315 4
54 Kips Bay 503 163 9
55 LaGuardia Airport 646 259 3
56 Long Island City 943 68 16
57 Longwood 284 9 8
58 Lower East Side 554 107 11
59 Melrose 168 6 2
60 Middle Village 104 1 1
61 Midtown 8338 687 126
62 Midwood 107 5 2
63 Mill Basin 107 21 3
64 Morningside Heights 116 12 2
65 Murray Hill 476 18 11
66 NoHo 244 39 5
67 Norwood 200 13 3
68 Pelham Bay 100 9 2
69 Prospect Heights 129 73 2
70 Prospect Park 272 71 3
71 Queens Village 111 2 2
72 Richmond Hill 121 8 2
73 Roosevelt Island 160 39 2
74 Sheepshead Bay 531 57 10
75 SoHo 1654 181 29
76 South Ozone Park 387 3 6
77 South Slope 143 8 3
78 St. George 199 37 2
79 Stapleton 144 3 2
80 Sunset Park 326 16 8
81 Theater District 2104 415 33
82 Tribeca 302 27 7
83 Unionport 250 12 4
84 Upper East Side 2010 264 37
85 Upper West Side 2018 283 35
86 Washington Heights 1004 28 16
87 West Village 1020 199 22
88 Whitestone 259 5 6
89 Williamsburg 1917 139 31
90 Woodside 262 49 5

(3) Fig 8 plots histograms of the compression ratio η

[Eq. (16)] for the event data in each neighborhood in the
study, after compression with the exact method and greedy
method.

(4) Fig. 9 plots histograms of the differences in the com-
pression ratio η [Eq. (16)] between the exact method and
greedy method, for each neighborhood in the study.

(5) Fig. 10 plots the inverse compression ratio η versus
the number of time steps T for each neighborhood in the
study.
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(6) Fig. 11 plots the inverse compression ratio η versus the
logarithm of the number of checkins $N$ for each neighbor-
hood in the study.

We also report summary statistics of the 91 neighborhoods
studied in Tables I and II.
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