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Migration costs and rewarding schemes in spatial public goods games

Rashid Ibrahimli ,1,2 Marco Tomassini ,3 and Alberto Antonioni 1

1Grupo Interdisciplinar de Sistemas Complejos (GISC), Department of Mathematics, Carlos III University of Madrid, 28911 Leganés, Spain
2Department of Data Science, Caja Blanca Datos SL, 28013 Madrid, Spain

3Department of Information Systems, University of Lausanne, CH-1015 Lausanne, Switzerland

(Received 17 January 2024; accepted 3 April 2024; published 3 May 2024)

This study explores the influence of migration costs and rewarding schemes on cooperation through the
implementation of computational behavioral models in spatial public goods games. The former involves a cost
for agents to migrate to a neighboring group, while the latter rewards them for remaining in the same group
for multiple rounds. By analyzing these mechanisms separately and in combination, we unveil their effects on
cooperative behavior. The grid-based game dynamics begins with equal size groups, and agents can adjust their
contributions each round, with the option to migrate if unsatisfied. Our findings reveal that when considered
separately, the rewarding scheme is not as effective in achieving full cooperation as the migration cost scheme.
Combining migration costs and rewards instead yields high cooperation levels with low public goods game
enhancement factors and migration probability. Our results offer valuable insights for contexts where promoting
cooperative behavior is crucial, such as community engagement development and public policies.
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I. INTRODUCTION

Public goods games (PGGs) illustrate social situations in
which individuals are called upon to make contributions, in-
curring personal costs, ultimately benefiting the community.
The central issue in PGGs is the emergence of free-riding as a
dominant strategy, presenting a classic social dilemma [1,2].
Generally, the rational strategy for an individual in a public
goods game (PGG) would be to refrain from contributing
and instead benefit from the contributions of others. However,
when a substantial number of agents adopt this self-interested
approach, it results in the failure to generate any public good.
The game dynamic is significantly influenced by the number
of iterations or repetitions [3,4]. Additionally, group size and
information also play pivotal roles in shaping this dynamic
[5]. As the game progresses, agents tend to reduce their contri-
butions, causing the overall average contribution to converge
towards zero. This phenomenon aligns with the concept of
the last-round effect, representing the Nash equilibrium in a
one-shot PGG where contributing nothing is the optimal strat-
egy. Despite this theoretical perspective, in real-life scenarios,
we often observe a high level of cooperation within PGG
frameworks [6].

Empirical studies have consistently demonstrated that in-
dividuals learn from their mistakes as the game unfolds [7].
Over successive iterations, agents acquire the skill to max-
imize their payoffs, leading to behavioral adjustments. An
analysis of linear PGG conducted over multiple rounds re-
veals a noteworthy trend: the mean contribution in the first
round is approximately half of the endowment [8]. How-
ever, as the number of rounds increases, agents tend to adopt
more strategic, payoff-maximizing approaches with reduced
contributions. The main purpose of behavioral experiments
carried out with human subjects is to design and to test which
game setup can achieve the higher contribution level. One of

the most prevalent strategies involves the implementation of
institutional or peer-to-peer incentives, as well as sanctions
based on agent contributions [3,4,9]. Institutional mechanisms
involve the establishment of formal rules and authorities to
administer punishment and rewards. On the other hand, peer-
to-peer schemes rely on interactions and agreements among
individuals within the group to administer punishment and
rewards. These approaches effectively drive increased contri-
butions by reshaping the strategies of the participants [3,10–
12]. In some cases, both reward and punishment are imple-
mented in combination [13]. The main idea of these incentives
is to impact the self-interest of individuals, which is, in fact,
to pressure the agent to contribute [10]. In order to add a
more realistic dimension, the exploration of PGGs in different
networked frameworks has been a significant research focus,
including spatial structures [14–17]. In spatially structured
games, agents are positioned in designated nodes of lat-
tices, interacting exclusively with neighboring nodes [18,19].
Studies incorporating diverse spatial PGG topologies have
demonstrated the effectiveness of implementing reward and
punishment mechanisms in enhancing cooperation [20,21].

In this study, we explore through numerical simulations
the migration mechanism and rewarding incentives in PGGs
played on a lattice structure. Unlike previous research [18,22–
25], in our approach, the nodes of the lattice represent distinct
groups rather than individual agents. Other studies exploring
evolutionary games and mobility within a two-dimensional
space focus on pairwise interactions between agents at spe-
cific distances, rather than grouping them into nodes of a
network structure [26–29]. Migration, in our context, refers
to agents moving to neighboring groups in the case of dissat-
isfaction with their payoff. While some studies [30,31] have
explored and underscored the importance of heterogeneity in
mimicking real-life scenarios and enhancing cooperation, the
prevalence of homogeneous games persists. This preference
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is based on previous findings that indicate no significant qual-
itative difference in average contributions in repeated PGGs
[32]. Our main objective is to examine the impact of the
migration scheme within the spatial group structure, referred
to as the baseline model, and to assess how punishment and
reward schemes influence this baseline model. In this context,
punishment is defined as a migration cost, requiring agents to
incur a cost when they migrate to neighboring groups. Con-
versely, the rewarding scheme can be described as a loyalty
reward, wherein payoffs increase until reaching the maximum
amount when agents remain within their group. To align the
simulation with experimentally observed scenarios, fractional
contributions were employed, as has been utilized in another
previous study [33].

The structure of the paper continues with an explanation
of the methodology, followed by a presentation of the results,
and will conclude with a discussion of these.

II. METHODS

A. Spatial group structure and game interactions

In contrast to our previous study [33], which focused
on a group structure with no spatial constraints, the current
study introduces a bidimensional grid structure with peri-
odic boundary conditions (i.e., toruslike topology). Here, each
node of the grid represents a group of agents engaging in a
public goods game (PGG) and it is connected to its four spatial
neighbors, determined by the Manhattan distance. Connecting
edges correspond to the potential migration options available
to the agents dissatisfied with their current group. The dimen-
sions of the implemented grids are m × m, where the product
G = m2 represents the total number of groups. On the other
hand, the total number of agents, denoted as N , is chosen to
be divisible by G to ensure a uniform initial distribution of
agents among the groups. At the beginning of the simulations,
each group includes k = N

G agents.
Regarding the game interactions, the total contributions

made by the agents in each separate group are summed and
multiplied by an enhancement factor r � 1; the resulting
amount is then divided equally among all participants. The
payoff πi of agent i after each round is determined by the
following equation:

πi = (E − ci ) + r

ni

ni∑

j=1

cgi, j ,

where E represents the agent round endowment, which is set
to E = 1; ci is the contribution of agent i in each round, with
0 � ci � 1; ni is the number of agents in the group gi of agent
i; and cgi, j is the contribution of all agents in the group gi.
The first term on the right-hand side, di = E − ci, denotes
the amount remaining from the endowment E after agent i
plays its contribution. When there is only one agent in a group
(ni = 1, cgi, j = ci), no dilemma arises, with r � 1. Instead,
the dilemma intensifies as the number of agents in the group
increases.

Initially, as in [33], agent contributions are ran-
domly selected from a predefined list of values, namely,
{0, 0.25, 0.5, 0.75, 1}. The maximum allowable contribution
corresponds to the total round endowment received by the

agent. This set of contribution options mirrors, in a simpli-
fied way, standard laboratory experiments where participants,
typically endowed with around 10 tokens, can choose integer
values for their contributions.

B. Game dynamics and setups

In our settings, introduced in a previous work as the blind
model [33], agents lack any knowledge about the contribu-
tions and payoffs of their neighbors. After each round, when
agents make their own contributions and receive payoffs,
they must decide on their subsequent action based on certain
satisfaction criteria dictated by the rules of the game setup.
Previously [33], we included more information in agents’
satisfaction rules implementing the rational model heuristics,
although the current study is limited to the blind model sce-
nario. Here, if an agent’s benefit is equal to or greater than
their contribution, they are considered satisfied. In such cases,
there is a 0.5 probability that the agent will increase their
contribution by 0.25 in the next round, or, with the same prob-
ability, they may choose to keep their contribution unchanged.
The agent’s benefit, denoted as bi, is calculated as the indi-
vidual’s gain from the game without considering the initial
endowment E received by the agent at the start of each round.
It is determined by the formula bi = r

ni

∑ni
j=1 cgi, j . Conversely,

if an agent’s benefit is less than their contribution, they are
deemed unsatisfied. In this case, they opt to randomly migrate
to another group among those directly connected to the agent’s
group, with a probability of p, maintaining their contribution
amount and having the same endowment as other agents for
the following round. Instead, with a probability 1 − p, they
decrease their contribution by 0.25 for the subsequent round
without migrating.

Theoretical and experimental research on PGG suggests
that the introduction of punishment and rewarding rules in
the game has a positive effect on curbing free-riding [34–36].
Some researchers have gone as far as proposing that pun-
ishment and rewards are crucial mechanisms for achieving
sustainable cooperation [10]. In the literature, two types of
incentive structures have been explored: peer and institutional.
In the peer incentive structure, agents may enforce rewards
or punishments on other agents within the group. The sec-
ond structured mechanism involves institutions, where game
rules impose incentives based on predefined conditions. In
this work, we focus on simulating the latter incentive system
through a rewarding scheme, which incorporates both pun-
ishment and reward components. Here, each incoming agent
receives an individual discount rate for their total earnings,
starting at δi = 0.6. This rate increases by 0.1 per round until
δi = 1. If an agent migrates to a new group, their discount rate
resets to the initial value of 0.6. Unlike the baseline model,
the introduction of a discount factor introduces a dilemma
even with a single player in a group, particularly for low
values of r. The payoff equation in this scenario becomes
πi = (E − ci ) + rδici.

Previous studies have indicated that institutional punish-
ment has a more significant impact on achieving higher
contribution levels compared to rewarding strategies [16].
In contrast to the typical method of implementing punish-
ment, we introduce a different approach where punishment
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FIG. 1. Treelike representation of simulated PGG models, incorporating migration cost and a rewarding scheme. In this illustration, bi

represents the benefit of agent i, ci is the contribution of agent i, r denotes a random number generated between 0 and 1, and p signifies the
migration probability of agents.

is applied through migration. Some studies allowed agents
to freely switch groups without consequences if they were
dissatisfied with their payoff at the end of each round [32].
Although integrating migration within groups can facilitate
increased levels of cooperation, incorporating migration costs
into the equation has the potential to further enhance this
cooperation and is more realistic. As previously mentioned,
an agent is considered satisfied if its benefit from the round is
equal to or exceeds its contribution. However, when an agent
is unsatisfied and willing to migrate to a neighboring group,
the condition can be adjusted to ci − cm � bi, where cm is the
migration cost. In this context, the migration cost is chosen to
be cm = 0.2, which is a reasonable value.

To summarize, we investigate four game setups:
(1) Baseline: Agents play the PGG with the option to mi-

grate to a randomly chosen adjacent group when unsatisfied.
(2) Rewarding scheme: In addition to the baseline setup,

agents are rewarded for staying in the same group for multiple
rounds.

(3) Migration cost: In addition to the baseline setup, mi-
grating to a neighboring group incurs a cost of cm = 0.2.

(4) Combined: Both the rewarding scheme and migration
cost are present in this setup. Figure 1 shows a complete
overview of different model setups, presented in a structured
tree format.

III. RESULTS

In this section, we present the results obtained from the
numerical simulations. Beginning with the baseline model, as
illustrated in Fig. 2, the graph depicts the temporal progression
of the agents’ mean contribution over 800 consecutive rounds.
This setup consists of 144 groups, each comprising 10 agents
at the beginning of the simulation and a migration probability
set at p = 0.5. Notably, when the condition r > 2 is satisfied,
full contribution is achieved in very few rounds. Similarly,
for the specific case of r = 2, a high level of cooperation is
attained after 100 rounds. However, it is crucial to note that
values below this threshold result in inevitable free-riding,
as all agents become unsatisfied. The threshold value r = 2,
together with migration probability p = 0.5, tested for the
baseline model, can be used as a reference point for deter-
mining when a setup can be considered more cooperative for

lower enhancement factors or other values of the migration
probability.

Figure 3 illustrates the average contribution of the agent
population after 800 rounds, considering a migration probabil-
ity ranging from 0 to 1 and an enhancement factor spanning
from 1 to 3. The grid size was 12 × 12, having 144 groups
with 10 agents in each one at the beginning. The reported
values were obtained after 800 rounds and averaged over 10
Monte Carlo simulations. Furthermore, we report in Fig. 4
the normalized average number of migrations for the same
game setups. For a proper comparison, the normalization is
calculated taking the number of migrations performed during
the entire simulation and divided by the maximum number
of migrations achieved in the four setups. We also tested

FIG. 2. Average contribution as a function of the round number
in the baseline model for the enhancement factors provided in the
inset. The simulation includes 144 groups (12 × 12 grid), with each
group initially comprising 10 agents and a migration probability of
p = 0.5. The model is simulated over 800 rounds and averaged over
10 simulations.
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FIG. 3. Final average contribution for the four game setups, PGG
enhancement factors, and migration probabilities. The simulations
were generated with 144 groups (12 × 12 grid), each with 10 agents
initially and 800 rounds. The results were averaged over 10 Monte
Carlo simulations.

the four scenarios with the initial group sizes reduced to
5. These results are not included as the only significant
difference occurred in the migration cost scenario, where, due
to the diminished strength of the dilemma with respect to the
migration cost, full cooperation was achieved for any nonzero
value of the migration probability.

The results of the baseline model in Fig. 3(a) reveal that
the migration rule positively influences achieving full contri-
butions for any given enhancement factor. In scenarios where
there is no migration, indicated by a migration probability
p = 0, the average contribution tends to remain at or below
0.2 until the enhancement factor r reaches approximately 2.

FIG. 4. Normalized average migrations for the four game setups,
PGG enhancement factors, and migration probabilities. Results were
obtained using the same setups of Fig. 3.

Full contribution becomes possible only after the enhance-
ment factor surpasses approximately 2.4. As the migration
probability increases, the required enhancement factor thresh-
old for achieving full contribution decreases. For example,
when the entire population has a migration probability of
0.5, full contribution becomes attainable with an enhance-
ment factor of around 2.1 (see, also, Fig. 2). The underlying
concept is that higher migration probabilities among unsatis-
fied agents lead to increased overall contributions. Even for
low enhancement factor values (r < 2), where all unsatisfied
agents migrate, the game dynamics shows higher average
contributions. As the enhancement factor rises, full contri-
bution levels are quickly achieved. Unsatisfied agents, when
migrating to new groups, consistently make higher contri-
butions, leading to increased average contributions in these
groups. Conversely, satisfied agents with low contributions,
i.e., defectors, stay in their original groups. However, fol-
lowing the agent updating rules, satisfied agents maintain or
increase their contributions in subsequent rounds, resulting in
the convergence towards higher contributions.

In the rewarding scheme setup [see Fig. 3(b)], an en-
hancement factor of 2.3 or lower leads to decreasing average
contributions below 0.8 migration probabilities. Surpris-
ingly, higher (above 0.6) and lower (below 0.2) migration
probabilities correlate with increased average contributions,
showcasing the migration’s role in fostering cooperation. In
particular, in the simulations depicted in Fig. 5, where games
are simulated with an enhancement factor of 2.5 and vary-
ing migration probabilities over 2000 rounds, contributions
gradually converge to the full amount for low migration
probabilities. On the other hand, higher migration stabilizes
average contributions around the full amount. In summary,
while the rewarding system boosts contributions in specific
scenarios, especially at low and high migration probabilities,
it is less effective than the baseline setup.

In the migration cost setup shown in Fig. 3(c), it is
noteworthy that even with a minimal enhancement factor,
introducing migration costs can significantly boost coopera-
tion. For low enhancement factors (1.5 � r < 2) and higher
migration probabilities, almost full cooperation is achieved.
This phenomenon can be explained by the agents’ tendency
to migrate to neighboring groups until they reach satisfaction,
as the migration cost gradually becomes tolerable enough for
them to stay satisfied within the group. Above r = 2, full
cooperation is consistently attained, with the exception being
cases of zero migration probability.

In the combined setup depicted in Fig. 3(d), the resulting
contribution level appears to be a combination of the results
from the previous two setups. Consequently, there is an im-
provement in the average contribution within the enhancement
factor interval where cooperation was initially low due to the
rewarding scheme. This improvement can be attributed to the
influence of migration cost on the rewarding scheme. How-
ever, it is important to note that overall, achieving a high level
of cooperation may still be challenging due to the negative
impact of the rewarding scheme. Noting the increased number
of migrations in this final setup [see Fig. 4(d)], it is evident
that migration proves beneficial once again in attaining higher
levels of cooperation in regions where the rewarding scheme
alone fails to yield any contributions.
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FIG. 5. Evolution of the average contribution for the rewarding scheme setup. Results were obtained using the same setups of Fig. 3, except
for the number of runs which is 2000, with curves corresponding to different migration probabilities and enhancement factor of r = 2.5.

Finally, Fig. 6 visually illustrates agent mobility and final
configurations for the four setups. Significant agent dynamics
in neighboring group movement were notable, particularly
in the initial 100 rounds. Subsequently, the migration rate
considerably slowed. Additionally, distinct population imbal-
ances within adjacent groups emerged, with one group having
more fully contributing (and satisfied) agents than its neigh-
boring groups. Comparing the effects of a rewarding scheme
to a migration cost scheme, it becomes clear that migration
costs can promote higher cooperation levels, even in scenarios
with low enhancement factors and migration probabilities.
This observation supports the notion that punishment mech-
anisms may be more effective than reward mechanisms in
fostering higher contribution levels.

The initial conditions determining the stability of a group
(i.e., being fully composed of satisfied agents) can be defined
by examining the initial state. A group is initially formed
by N agents, each contributing, on average, 0.5, following a
uniform distribution of initial contributions. Consequently, the
benefit equals δr/2. If this benefit exceeds the agent’s contri-
bution ci, the agent is satisfied and is more likely to increase
their contribution, increasing group stability and contribution
level. This condition is easily met when r > 2 and δ = 1.

To characterize the observed absorbing states, we analyze
the different final configurations obtained in Fig. 6. The first
scenario occurs when the enhancement factor r is too low rel-
ative to the game setup, particularly evident in the rewarding
scenario (third row panels). Here, agents moving to a new
group receive a payoff discounted by δ � 1, leading to dis-
satisfaction (i.e., contributing less or moving again to another

group). This heuristic further decreases the average contribu-
tion level of the group, rendering most agents unsatisfied and
uncooperative. Another absorbing state arises when migration
costs are incorporated into the previous scenario, resulting in
a reduced migration rate (fourth row panels). Migration costs
make a few groups composed of satisfied agents, enhanc-
ing their cooperation rate for a medium-high enhancement
factor. Once these groups stabilize, new incoming unsatis-
fied agents from other groups can join and become satisfied,
further reinforcing the group’s cooperation level. The same
absorbing state is observed in the scenario with migration
costs only (second row panels), where forming cooperative
groups becomes easier due to the higher satisfaction threshold
in the absence of the rewarding scheme. Finally, the baseline
scenario presents an intermediate state between the migration
cost and combined scenarios, characterized by greater agent
mobility (first row panels). To summarize, the observed ab-
sorbing states can be divided into two main outcomes: mostly
unsatisfied and not fully cooperative agents, or fully satisfied
and cooperative agents forming static groups. In the second
outcome, the size of the static groups that are formed can vary.
This variation is influenced by the specific setup of the game
and the initial conditions of group formation, as described
above.

IV. CONCLUSIONS

In our study, we incorporated migration features into spa-
tially structured dynamic public goods games, along with
punishment and rewarding mechanisms to explore their
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FIG. 6. The spatial evolution for the four game setups showing the number of fully contributed agents in each group, i.e., a cell of the grid,
with snapshots at rounds 0, 50, 100, and 500. Results were obtained using the same setups of Fig. 3. Simulation parameters were set to r = 2.2,
p = 0.5, and cm = 0.2.

impact on cooperation. These mechanisms were institu-
tional procedures, simulating that an overseeing authority
administered all rewards and penalties. Punishment occurred
when an agent moved to a neighboring group, while in the re-
warding scheme, each agent’s contribution was incrementally
boosted each round if they stayed within their group.

We investigated four game setups: the baseline without
additional mechanisms, the inclusion of migration costs, the
implementation of a rewarding scheme, and a combined
mechanism. Interestingly, even without any mechanisms, the
migration feature alone led to a high level of cooperation
and effectively curbed free-riding, even at lower enhancement
factors. The introduction of migration costs further ampli-
fied cooperation, especially at lower enhancement factors. In
this scenario, while migration costs may lower the frequency

of migration, it simultaneously enabled agents to lower
their satisfaction threshold, thereby enhancing their willing-
ness to contribute. Conversely, the rewarding scheme had a
contrasting effect in this spatially structured public goods
game, resulting in an increased number of free-riders and a
decrease in cooperation. In summary, we introduced migration
costs and a rewarding scheme to incentivize agents to remain
with their groups and enhance cooperation. Our simulations
indicate that with migration costs, agents tend to move to other
groups and eventually become satisfied with their contribu-
tions, even when enhancement factors are low.

As a next step in our research, we plan to conduct ex-
periments in a laboratory and online setting with human
participants simulating a framework that is similar to our
simulations. This will further validate and expand upon our
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findings, bridging the gap between theoretical simulations and
real-world applications. It will also provide valuable insights
into how these mechanisms interact with human decision-
making.
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