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We present a formula for determining synchronizability in large, randomized, and weighted simplicial
complexes. This formula leverages eigenratios and costs to assess complete synchronizability under diverse
network topologies and intensity distributions. We systematically vary coupling strengths (pairwise and three
body), degree, and intensity distributions to identify the synchronizability of these simplicial complexes of
the identical oscillators with natural coupling. We focus on randomized weighted connections with diffusive
couplings and check synchronizability for different cases. For all these scenarios, eigenratios and costs reliably
gauge synchronizability, eliminating the need for explicit connectivity matrices and eigenvalue calculations. This
efficient approach offers a general formula for manipulating synchronizability in diffusively coupled identical
systems with higher-order interactions simply by manipulating degrees, weights, and coupling strengths. We
validate our findings with simplicial complexes of Rössler oscillators and confirm that the results are independent
of the number of oscillators, connectivity components, and distributions of degrees and intensities. Finally, we
validate the theory by considering a real-world connection topology using chaotic Rössler oscillators.
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I. INTRODUCTION

Complex systems arise when a large number of dynamical
units interact with each other, giving rise to emergent proper-
ties distinct from those of the individual subsystems [1]. Such
systems are ubiquitous, found naturally in entities like the
brain and manmade ones like the internet or financial markets
[2]. The study and modeling of these systems have been a
longstanding focus of researchers [3–5]. Complex networks
represent the dynamical units, and their interactions as nodes
and links are a common way to model such systems. However,
these networks typically only account for pairwise interac-
tions, whereas many complex systems involve interactions
among three or more units. To gain a more comprehen-
sive understanding of these systems, one must incorporate
higher-order networks, such as hypergraphs and simplicial
complexes, to capture these higher-order interactions [6].

Simplicial complexes are used to model complex systems
with higher-order interactions [4,7–9]. A simplicial com-
plex consists of d-simplices, where d is the dimension of
the simplex. A zero-dimensional simplex is a node, a one-
dimensional simplex is a link, a two-dimensional simplex is
a triangle, and so on. A d-dimensional simplicial complex
consists of simplices up to dimension d . They provide a good
representation of complex systems with higher-order interac-
tions [7,10–12]. In most studies, these simplicial complexes
are unweighted, meaning all the links and triangles have the
same weight [13,14]. However, it has been observed that in
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most real-world systems, this is not feasible. For instance,
in collaboration networks, if there is a three-author paper,
not every pair of authors has to produce research papers by
themselves. But in unweighted simplicial complexes, if there
is a three-author paper, then there is also the presence of
all the possible two-author research papers, and this leads to
information loss, which one could avoid by introducing proper
weights for links [15]. Courtney and Bianconi [16] have de-
veloped a model to distribute weights to links in terms of bare
affinity weights and topological weights. Every simplex has
bare-affinity weights, while the topological weights represent
whether a particular link has a contribution other than being
part of a triangle. Therefore, weighted simplicial complexes
provide a more realistic representation of higher-order net-
works.

After accurately modeling complex systems, we can better
understand their emergent properties, such as synchroniza-
tion. As a result, we can control the synchronization that
occurs in natural or artificial systems. Synchronization occurs
when individual dynamical systems adjust their properties to
have common dynamics [3]. Neuronal synchronization can
cause epilepsy, while synchronization from a healthy to an
infected state can cause an epidemic outbreak, and so on.
Synchronization can be both constructive and destructive.
However, it is possible to promote synchronization in desired
systems and inhibit it where it leads to destruction. This can
be achieved by determining under what circumstances the
system goes into synchronization and desynchronization and
whether synchronization is possible. Two main parameters
are used to calculate the synchronizability of the system:
eigenratio and the cost of the connections of nodes in the sys-
tem. The lower the eigenratio and cost, the system has more
synchronizability [17].
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To calculate the eigenratio and costs, we need to con-
struct the connectivity matrices, such as adjacency matrices
and Laplacian matrices, and then find the eigenvalues of
these matrices. Writing connectivity matrices for large, com-
plex systems, such as connection networks, collaboration
networks, and neuronal networks, can be challenging, and
collecting the necessary data is not an easy task. It becomes
even more difficult when we include higher-order interactions,
as we need to construct the adjacency tensors for these inter-
actions. Even for three-body interactions, the adjacency tensor
contains N × N × N elements. In 2006, Zhou et al. [17] de-
veloped an approach to calculate eigenratios and costs based
on the heterogeneity of the system intensities. This approach
significantly reduced the computational cost of constructing
connectivity matrices and evaluating their eigenvalues. We
extend this approach to randomized weighted simplicial com-
plexes. As a result, we can determine the synchronizability
parameters solely from the heterogeneity of the intensities,
specifically the maximum and minimum intensities of a node
as part of links (d = 1), triangles (d = 2), and so on and
from their coupling strengths. In this paper, we discuss the
mathematical formulation, derive general formulas for deter-
mining the synchronization without explicitly computing the
eigenvalues of huge matrices and corroborate with numeri-
cal results. We validate the results by applying the general
formula to Rössler oscillators and real-world connection net-
works. We check the emergence of complete synchronization
in diffusively coupled identical Rössler oscillators, and we
show that the results are independent of the number of os-
cillators in the networks, the components through which they
are connected, and also the distributions of the degrees and
intensities.

II. ANALYTICAL RESULTS

In order to derive the general formulas for the eigenratio
and the cost, we first write the dynamical equations for the
weighted simplicial complex. Then, we deduce the corre-
sponding variational equations and modify these equations in
terms of the effective matrix M. The eigenvalues of the effec-
tive matrix determine the stability of the synchronized state.
Since the effective matrix is a zero row sum matrix, the first
eigenvalue will be zero, corresponding to the mode along the
synchronization manifold. We can find the synchronizability
of the system from the ratio between λN and λ2. For simplicity,
we consider the simplicial complex of dimension 2, which we
can extend to any dimension.

We consider a simplicial complex of identically coupled
oscillators, described by the following equations:

ẋi = f (xi ) + σ1

N∑
j=1

a(1)
i j ω

(1)
i j g(1)(xi, x j )

+ σ2

N∑
j=1

N∑
k=1

a(2)
i jkω

(2)
i jkg(2)(xi, x j, xk ), (1)

where xi is the state vector of ith oscillator of dimension
m, and f (xi ) represents the dynamics of the uncoupled os-
cillators. ωi j

(1) and ω
(2)
i jk are the topological weights of links

and triangles, respectively. a(1)
i j and a(2)

i jk are the elements of

the adjacency matrix A(1) and adjacency tensor A(2). a(1)
i j =

1 if the nodes i and j form a link, or a(1)
i j = 0 otherwise.

Also, a(2)
i jk = 1 if the nodes i, j, and k form a triangle,

or a(2)
i jk = 0 otherwise. Here σ1 and σ2 are the coupling

strengths of the links (pairwise) and triangles (nonpairwise),
respectively. Here, g(1)(xi, x j ) and g(2)(xi, x j, xk ) are the syn-
chronization noninvasive functions [7] and are chosen in the
forms g(1)(xi, x j ) = h(1)(x j ) − h(1)(xi ) and g(2)(xi, x j, xk ) =
h(2)(x j, xk ) − h(2)(xi, xi ). At the synchronization state, they
tend to zero, making the dynamics of the system resemble that
of the uncoupled oscillators.

For the above diffusive coupling functions, we can rewrite
the above equation as

ẋi = f (xi ) + σ1

N∑
j=1

a(1)
i j ω

(1)
i j [h(1)(x j ) − h(1)(xi )]

+ σ2

N∑
j=1

N∑
k=1

a(2)
i jkω

(2)
i jk[h(2)(x j, xk ) − h(2)(xi, xi )], (2)

where h(1)(x j ) and h(2)(x j, xk ) are coupling functions that
couple nodes in links and triangles, respectively. The choice of
coupling functions affects the synchronizability of the system
[7]. So we have to choose the coupling functions in a way that
the oscillators tend to synchronize and we can write

S(1)
i =

N∑
j=1

ai j
(1)ω

(1)
i j and S(2)

i = 1

2

N∑
j=1

N∑
k=1

a(2)
i jkω

(2)
i jk .

Here S(1)
i and S(2)

i are the intensities of node i to form links
and triangles, i.e., the number of weighted links and weighted
triangles incident on node i. For randomized simplicial com-
plexes with K (1)

min � 1, we can use mean-field approximation
and this equation can be rewritten as

ẋi = f (xi ) + σ1
S(1)

i

K (1)
i

N∑
j=1

a(1)
i j (h(1)(x j ) − h(1)(xi ))

+ σ2
S(2)

i

K (2)
i

N∑
j=1

N∑
k=1

a(2)
i jk (h(2)(x j, xk ) − h(2)(xi, xi )). (3)

Here, K (1)
i is the degree of pairwise interactions, i.e., the total

number of links that a node participates in. K (2)
i is the total

number of triangles that a node participates in, also called the
degree for three-body interactions. Now, we consider pairwise
and nonpairwise local mean fields as

H
(1)

(xi ) = 1

K (1)
i

N∑
j=1

a(1)
i j h(1)(x j )

due to the interaction between the nodes through links and

H
(2)

(xi, xi ) = 1

K (2)
i

N∑
j=1

N∑
k=1

a(2)
i jkh(2)(x j, xk )
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due to the interaction between nodes through triangles. Then,
Eq. (3) can be written in terms of mean field as

ẋi = f (xi ) + σ1S(1)
i (H

(1)
(xi) − h(1)(xi ))

+ σ2S(2)
i (H

(2)
(xi, xi ) − h(2)(xi, xi )). (4)

So, the interaction between nodes in a large randomized
weighted simplicial complex can be approximated as the inter-
action of a node with a mean field. This mean field is not only
generated by the interaction of links, as in the case of complex
networks, but also by the interaction of nodes as triangles.

According to the condition for natural coupling, close to
the synchronized state, the interaction between nodes in links
and triangles will be similar since, upon synchronization, the
two nodes that are in the same state can be considered as
a single node, and the three-body interactions reduce to the
two-body interactions [7]. The above assumptions enable us to

write h(2)(x, x) = h(1)(x) and H
(2)

(x, x) = H
(1)

(x) = H(x).
Equation (4) can be rewritten as

ẋi = f (xi ) + (
σ1S(1)

i + σ2S(2)
i

)
(H(x) − h(1)(xi )). (5)

The variational equation of the above Eq. (5) is of the form

δẋi =[
Jf (xs) − (

σ1S(1)
i + σ2S(2)

i

)
J (h(1)(xs))

]
δxi, (6)

where xs is the synchronization state. The eigenvalues are
approximately equal to σ1S(1)

i + σ2S(2)
i , i = 1, 2, . . . , N . From

the above equation, we can write the eigenratio [17] as

R ≈ σ1S(1)
max + σ2S(2)

max

σ1S(1)
min + σ2S(2)

min

, (7)

where σ1S(1)
max + σ2S(2)

max � max{σ1S(1)
1 + σ2S(2)

1 , σ1S(1)
2 +

σ2S(2)
2 , . . . , σ1S(1)

N + σ2S(2)
N } will give the maximum bound

for eigenvalues and similar for minimum σ1S(1)
min + σ2S(2)

min �
min{σ1S(1)

1 + σ2S(2)
1 , σ1S(1)

2 + σ2S(2)
2 , . . . , σ1S(1)

N + σ2S(2)
N }.

These maximum and minimum bounds may not necessarily
belong to any particular node index i. It further simplifies the
problem as it is sufficient to consider only the maximum and
minimum values of the intensities to calculate the eigenratio
and it eliminates the necessity to calculate all the eigenvalues.
It would be of great advantage when N is very large.

For the case of pairwise interaction only (σ2 = 0.0), the
eigenratio R is very similar to the previous result [17].
For nonzero pairwise coupling strength (σ1 �= 0.0,), we can
rewrite the above equation as

R ≈ S(1)
max + σ2

σ1
S(2)

max

S(1)
min + σ2

σ1
S(2)

min

. (8)

In the similar way, we can derive the eigenratio for the d-
dimensional simplical complex as

R ≈ S(1)
max + σ2

σ1
S(2)

max + · · · + σd
σ1

S(d )
max

S(1)
min + σ2

σ1
S(2)

min + · · · + σd
σ1

S(d )
min

. (9)

Thus, the eigenratio of a randomized simplicial complex de-
pends on the coupling strengths (pairwise and nonpairwise),
and maximum and minimum intensities of the nodes. If we
assume all the nonpairwise coupling strengths are identical

to the pairwise coupling strength (i.e., σ2 = σ3 = · · · = σd =
σ1), then the eigenratio R is independent on the coupling
strengths and depends on the maximum and minimum intensi-
ties as observed for pairwise weighted random networks [17].

To find the tight bounds of the above mean-field approxi-
mation, we can write Eq. (5) as

ẋi = F(xi ) − σ1

N∑
j=1

G(1)
i j H(1)(x j ) − σ2

N∑
j=1

G(2)
i j H(2)(x j ),

(10)

where G(1)
i j and G(2)

i j are the elements of matrices G(1) =
S(1)D(1)−1L(1) and G(2) = S(2)D(2)−1L(2), respectively. Here
L(1) and L(2) are generalized Laplacian matrices, while S and
D are diagonal matrices of strengths and generalized degrees,
respectively. It is a good point that we have separated weights
from topology. We can write normalized Laplacian matrices
as L

(1) = D−1L(1) and L
(2) = D−1L(2), then G(1) = S(1)L

(1)

and G(2) = S(2)L
(2)

. Thus, the largest and smallest eigenvalues
of the matrices G(1) and G(2) are bounded by the eigenvalues
of L

(1)
and L

(2)
. We can write the linearized variational equa-

tion (10) by following the procedure outlined in [18] and is
given by

δẋi =
⎛
⎝Jf (xs) −

N∑
j=1

[
σ1G(1)

i j + σ2G(2)
i j

]
J
(
h(1)(xs)

)⎞⎠δxi.

(11)

We can define an effective matrix M as

Mi j = G(1)
i j + σ2

σ1
G(2)

i j . (12)

Equation (11) can be rewritten, in terms of effective matrix
M, as

δẋi =
⎡
⎣Jf (xs) − σ1

N∑
j=1

Mi jJ
(
h(1)xs

)⎤⎦δxi. (13)

The eigenvalues of the matrix M depend on the ratio of cou-
pling strengths, degrees, and intensities, and the eigenratio
of this matrix can be expressed as R = λN/λ2, where λ2

and λN are the second and N th eigenvalues of M such that
0 = λ1 � λ2 � λ3 � · · · � λN .

Another measure of synchronizability is the cost C in-
volved in the coupling of nodes in a simplicial complex, and
it is the total strength of connections of all nodes. It can be
written as

C = σ1

N∑
i=1

Si
(1) + σ2

N∑
i=1

S(2)
i . (14)

By using the eigenvalues of M in Eq. (13), the normalized cost
can be written as

C0 = C

Nα1
= �

λ2
, (15)

where α1 = σ1λ2(M ) and mean intensity

� = 1

N

(
N∑

i=1

S(1)
i + σ2

σ1

N∑
i=1

S(2)
i

)
. (16)
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From Eq. (6), the normalized cost will be

C0 ≈ �

S(1)
min + rS(2)

min

, (17)

where r = σ2/σ1. We can verify Eqs. (8) and (17) numerically
by computing the eigenvalues of the effective matrix M, and
we can obtain an explicit bound from the eigenvalues of L

(1)

and L
(2)

. Using this bound, we can derive formulas for R and
C0 as a function of S(1)

max, S(1)
min and the generalized degrees.

We can demonstrate that the upper and lower bounds of
the nonzero eigenvalues of the effective matrix M are given
by the eigenvalues μ

(1)
l and μ

(2)
l of the matrices G(1) and G(2),

respectively, as follows:

S(1)
minμ

(1)
2 + rS(2)

minμ
(2)
2 � λ2 � S(1)

min + rS(2)
min, (18)

S(1)
max + rS(2)

max � λN � S(1)
maxμ

(1)
N + rS(2)

maxμ
(2)
N . (19)

For sufficiently random simplicial complexes, the spectra
of the matrices G(1) and G(2) tend to follow the semicir-
cle law [17] and we can write μ

(1)
2 ≈ 1 − 2/

√
K (1), μ

(1)
N ≈

1 + 2/
√

K (1), μ
(2)
2 ≈ 1 − 2/

√
K (2), and μ

(2)
N ≈ 1 + 2/

√
K (2),

provided that K (d )
min �

√
K (d ). Here K (d ) is the mean degree of

the d-simplex. By introducing these in Eqs. (18) and (19), we
get the following approximations for the bounds of R and C0

as

S(1)
max + rS(2)

max

S(1)
min + rS(2)

min

� R

�
1 + 2√

K (1)

1 − 2√
K (1)

⎛
⎜⎜⎜⎝

S(1)
max + r

1+ 2√
K (2)

1+ 2√
K (1)

S(2)
max

S(1)
min + r

1− 2√
K (2)

1− 2√
K (1)

S(2)
min

⎞
⎟⎟⎟⎠, (20)

�

S(1)
min + rS(2)

min

� C0

� 1

1 − 2√
K (1)

⎛
⎜⎜⎜⎝ �

S(1)
min + r

1− 2√
K (2)

1− 2√
K (1)

S(2)
min

⎞
⎟⎟⎟⎠. (21)

For a given value of K , the synchronizability of randomly
weighted simplicial complexes with a large value of K (1)

min is
expected to follow a general formula as follows:

R = AR

(
S(1)

max + BR1 S(2)
max

S(1)
min + BR2 S(2)

min

)
(22)

and

C0 = AC

(
�

S(1)
min + BR2 S(2)

min

)
, (23)

where AR = 1+2/
√

K (1)

1−2/
√

K (1)
and AC = 1

1−2/
√

K (1)
. Here, AR → 1 and

AC → 1 in the limit K (1) → ∞. Also, BR1 = r 1+2/
√

K (2)

1+2/
√

K (1)
and

BR2 = r 1−2/
√

K (2)

1−2/
√

K (1)
. BR1 → r and BR2 → r in the limit K (d ) →

∞ (d = 1, 2). They are well agreed with Eqs. (8) and (17).

For N-dimensional simplicial complex,

R = AR

(
S(1)

max + ∑N
d=2 B(d )

R1
S(N )

max

S(1)
min + ∑N

d=2 B(d )
R2

S(N )
min

)
(24)

and

C0 = AC

(
�

S(1)
min + ∑N

d=2 B(d )
C S(N )

min

)
, (25)

where

B(d )
R1

= r
1 + 2/

√
K (d )

1 + 2/
√

K (1)
, B(d )

R2
= r

1 − 2/
√

K (d )

1 − 2/
√

K (1)
. (26)

III. NUMERICAL RESULTS

A. Verification of the general formula

We compare the expression of R as a function of eigenvalue
ratio λN/λ2 and C0 as a function of the ratio �/λ2 and found
that they are almost identical when K (1)

max � 1.
To conduct our analysis, the parameter values are set as

follows: N = 103, σ1 = 0.001, σ2 = 0.01. We arbitrarily fix
the values of the minimum and maximum intensities of the
node for pairwise (S(1)

min, S(1)
max) and nonpairwise (S(2)

min, S(2)
max)

interactions. In each iteration of the simulation, we add 100 to
S(1)

max and keep all other values constant. The simulation is run
103 times. We first consider a simplicial complex with a node
i connected to all other nodes, resulting in K (1)

max = N − 1.
The maximum number of triangles incident on a node is
(N − 1) × (N − 2), and the maximum number of triangles
incident on a link is (N − 2). Using this structure, we generate
the Laplacian matrices L(1) and L(2). Finally, we uniformly
distribute S among the nodes. All the triangles are considered
as nodes having three-body interactions.

We calculate the eigenratio R from the effective matrix M
using Eq. (12) and compare it with Eq. (22). We then plot the
values of R against the corresponding values of the eigenratio
in terms of S calculated from the general formula, which
reveals a linear relationship between R and the eigenratio as a
function of S. Similarly, we calculate the normalized cost C0

using Eq. (12) and compare it with Eq. (23). We then plot the
values of �/λ2 against the corresponding values of C0, which
reveals a linear relationship between them, which is shown
dashed-purple line with diamond symbol (AA) in Fig. 1.

One may note that the most realistic networks are scale-
free networks, where the degrees are distributed according to
a power law [19,20]. This power-law distribution means that
only a small portion of nodes has very high degrees, while
a majority of nodes have relatively small degrees. Therefore,
we construct a simplicial complex with power-law distributed
degrees and intensities; however, they are not related. We
achieve this by distributing degrees and intensities to nodes
using a power-law distribution. In Fig. 1, we also show these
results by the dotted-red line with stars (PL) and the green-
dashed line with empty circles (PLICD).

Next, we consider the scale-free distribution with intensi-
ties correlated to degrees. We construct this by distributing the
intensities, which are proportional to degrees. Hence, the node
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FIG. 1. (a) R (calculated using the eigenvalues of matrix M) vs S
(eigenratio calculated using the general formula), and (b) �/λ2 vs C0,
expressed in terms of intensities, as computed using the general for-
mula for different coupling schemes and distributions: (AA) all-to-all
coupling, (PL) power-law distribution, (PLICD) power-law distribu-
tion with intensities correlated to degrees, (Uni) uniform distribution,
and (R) R computed using the eigenvalues of M.

with the maximum degree will receive the maximum intensity,
and the node with the minimum degree will receive the min-
imum intensity. We apply this procedure to both three-body
interactions and two-body interactions. Subsequently, we plot
the graphs for R and C0 corresponding to this distribution. The
results demonstrate a linear relationship between the values of
the eigenratio and cost calculated from the general formula.
This linear relationship also holds for the uniform distribu-
tion, as depicted by the dashed-dotted pink line with square
symbols (Uni) in Fig. 1. From Fig. 1, we can conclude that
the general formula holds true regardless of the distribution
of degrees and intensities. Further, we observe that the values
obtained from the general formula are nearly identical to those
obtained by finding the eigenvalues of the effective matrix M
(blue dashed line in Fig. 1).

As we can see from Fig. 1(b), the cost of connection is
dependent on the distribution. The cost is very low for the
power-law distribution of degrees and power-law distribution
of intensities correlated to degrees. It is the network topology
of scale-free networks that arise spontaneously in natural and
manmade systems [19]. So, the cost of connection is low for
the more realistic networks. The cost of connection varies as
the topology changes.

B. Effects of coupling strengths

Next, we study the effect of the coupling strengths of
pairwise and three-body interactions. We fix the values of
the intensities as S(1)

min = 10, S(1)
max = 1000, S(2)

min = 10, and
S(2)

max = 20, and and change the values of r = σ2/σ1. Here,
to change the value of r, we fix the pairwise interaction
coupling strength σ1 = 0.001 and vary the nonpairwise cou-
pling strength σ2. It is evident from Fig. 2(a) that as the
coupling strength for three-body interactions increases, the
eigenratio decreases and approaches smaller values and in-
creases the synchronizability of the system. When r ≈ 10,
the general formula gives the exact values for the eigenratio.
Then, for larger values of r, R from both the approximated

FIG. 2. Variation of R as a function of coupling strength ratio r
calculated from the general formula, the approximated formula, and
the eigenvalues of M (R), for the simplicial complex when degrees
and intensities are uniformly distributed: (a), (c) S(1)

max > S(2)
max, and (b),

(d) S(2)
max > S(1)

max.

and general formulas converge. One can easily study the
effect of other higher-order interactions using Eq. (9). From
Fig. 2(a), at the small values of r (i.e., σ2), the value of the
eigenratio approaches to S(1)

max/S(1)
min. As we increase the r,

by increasing σ2, we can drastically reduce the values of R.
In Fig. 2(a), S(1)

max/S(1)
min = 100 and it falls down to 3 as we

increase the three-body interactions. Therefore, higher-order
interactions promote synchronization when the first-order in-
tensities (degrees in the case of unweighted networks) are
very heterogeneous. The same effect is shown in the values
of cost as we can see from Fig. 2(c). Then we analyze the
synchronizability when the intensity of three-body interaction
becomes more heterogeneous than the pairwise interaction,
i.e., when S(2)

max > S(1)
max. The values are chosen as follows

as S(2)
max = 1000 and S(1)

max = 20. In this case, the three-body
interaction coupling strength has opposite effect. For a given
value of S(2)

max, the eigenratio increases as we increase the
three-body interaction coupling strength σ2, hence decreasing
the synchronizability. The values of eigenratio from the ap-
proximated formula and the general formula converge when
the eigenratio is minimum.

The effect of coupling strength is the same for both cost
and the eigenratio [cf. Figs. 2(b) and 2(d)]. The more het-
erogeneity there is in the second-order intensities, the faster
the cost increases. Hence, the synchronizability decreases if
we increase the value of σ2. The effect of coupling strengths
on synchronization depends on the intensity of the network
topology. Based on the above results, if S(1)

max > S(2)
max, an

increase in σ2 enhances synchronizability. However, the oppo-
site scenario occurs if S(2)

max > S(1)
max, where a larger σ2 reduces

synchronizability.
In general, higher-order interactions do not always pro-

mote synchronization [21]. They inhibit the synchronization
of the system when the weights of the nonpairwise interac-
tions are higher than those of the pairwise interactions. With
this knowledge, we can promote or inhibit synchronization
by manipulating the weights and coupling strengths of the
pairwise and nonpairwise interactions.

054302-5



JENIFER, GHOSH, AND MURUGANANDAM PHYSICAL REVIEW E 109, 054302 (2024)

FIG. 3. Variations of (a) AR, (b) AC , (c) BR1 , and (d) BR2 against
K . When K is very large, AR and AC approach 1 and BR1 and BR2

approach r, so we can use the approximate formula rather than the
general formula.

C. Behavior of the constants AR, AC , BR1 , and BR2

Next, we analyze the behavior of the constants AR, AC , BR1 ,
and BR2 as the mean degree changes for a simplicial complex
with a mean degree of K . For this purpose, we choose the
values of the coupling strengths as σ1 = 0.001 and σ2 = 0.01
and vary S(1)

max/S(1)
min = 1, 2, 10, 100 by fixing all nodes to the

same degree as in the case of K-regular networks. Using
Eqs. (22) and (23), we calculate the values of AR, AC , BR1 ,
and BR2 for large values of mean degree K .

As we can see from Figs. 3(a) and 3(b), the heterogeneity
of the intensities has a small effect on AR, and the behavior
of AC appears independent of the intensities’ heterogeneity as
K increases. Both AR and AC quickly approach unity as K
increases.

Further, from Figs. 3(c) and 3(d), we observe that the
values of BR1 and BR2 are highly dependent on the heterogene-
ity of the intensities. BR1 remains close to r = 10 when the
intensities are not very heterogeneous. As the heterogeneity
increases, the values decrease for low Ks and slowly approach
r. The values of BR2 remain close to the upper bound when the
intensities are heterogeneous and slowly approach r. When
the intensities are homogeneous, i.e., S(1)

max/S(1)
min = 1, the val-

ues of BR2 remain close to r for all K .
From the behaviors of AR, AC , BR1 , and BR2 , we can ob-

serve that for K � 1 and not very heterogeneous networks,
the general formula approaches the approximated formula.
With this, we can easily analyze the synchronizability of
the weighted simplicial complexes in the presence of other
higher-order interactions, such as four-body interactions, five-
body interactions, etc., from the knowledge of mean degrees,
coupling strengths, and maximum and minimum intensities
for the interaction networks.

D. Verification with Rössler oscillators

To validate our findings, we verify the applicability of the
proposed model (1) or (3) by analyzing complete synchro-
nization in a system of identical Rössler oscillators. In this
case, we consider Eq. (3) to represent the dynamical equa-
tions of a weighted simplicial complex composed of Rössler

oscillators as

ẋi = −yi − zi + σ1
S(1)

i

K (1)
i

N∑
j=1

a(1)
i j (x j − xi )

+ σ2
S(2)

i

K (2)
i

N∑
j=1

N∑
k=1

a(2)
i jk

(
x2

j xk − x3
i

)
, (27a)

ẏi = xi + ayi, (27b)

żi = b + zi(xi − c), i = 1, 2, . . . , N (27c)

where a = 0.2, b = 0.2, and c = 9.0, and N is the total num-
ber of oscillators. We construct a weighted simplicial complex
comprising 50 Rössler oscillators. For a given node i, K (1)

i

and K (2)
i represent the degrees of pairwise and three-body

interactions, respectively, indicating the total number of links
and triangles to which the node belongs. S(1)

i and S(2)
i denote

the intensities of pairwise and three-body interactions, respec-
tively, for node i. The oscillators are coupled through their
x components for both pairwise and three-body interactions
(later we will show that the results are independent on the
choice of components). We fix the values of σ1, σ2, S(1)

max,
S(2)

max, S(2)
min, and vary the values of S(1)

min. The mean degrees are
K (1) = 28.4 and K (2) = 242.1. To perform the numerical anal-
ysis, we randomly distribute the degrees and the intensities.
We construct the adjacency tensors as we did previously. We
calculate the synchronization error using the formula [18]

E =
〈⎛
⎝ 1

N (N − 1)

N∑
i, j=1

‖x j − xi‖2

⎞
⎠

1
2 〉

T

, (28)

where x is the state of the node, 〈. . . 〉 represents the time
average over time T .

Then, we calculate the eigenratio and cost using the formu-
las (22) and (23). We consider three combinations of coupling
strengths and maximum intensities, and Fig. 4 shows the re-
sults. We choose the values for the S(1)

max, S(2)
max, σ1, and σ2 as

per the relations

S(1)
max × σ1 ∈ [1, 2], (29a)

S(2)
max × σ2 ∈ [10−4, 100]. (29b)

We choose the parameters from the range of coupling
strengths for synchronization in unweighted simplicial com-
plexes of Rössler oscillators [18] and the results are shown
in Fig. 4. We observe that as the eigenratio and cost de-
crease, the synchronization error also decreases, leading to
a more synchronized system. Complete synchronization (i.e.,
zero synchronization error) occurs when S(1)

min = 0.2 × S(1)
max,

or 20% of S(1)
max. This indicates that we can assess the synchro-

nizability of complex systems with higher-order interactions
using the eigenratio and cost, employing the general for-
mulas (22) and (23) when the system’s mean degree is
large. Additionally, we observe that a large S(1)

max/S(1)
min ratio

hinders synchronization. Therefore, to inhibit synchroniza-
tion in systems where its effects are undesirable, we can
increase the maximum intensity or decrease the minimum in-
tensity; conversely, to promote synchronization, we can do the
opposite.
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FIG. 4. Synchronizability of coupled Rössler systems (27) calculated using cost, eigenratio, and synchronization error (E ) for different
values of the coupling strengths (S(1)

max, S(2)
max, σ1, σ2): (a) (1, 10−3, 1, 0.1) (first column), (b) (10, 10−2, 0.1, 102) (second column), and (c)

(100, 1, 10−2, 10−4) (third column) chosen as per equation (29) and S(2)
min = 0.1 × S(2)

max. The synchronizability of the network is independent of
the individual values of the coupling strengths.

We validate our formula by conducting additional tests,
wherein we select degrees using power-law and uniform dis-
tributions. The results are shown in Fig. 5. We distribute
the degrees and intensities as power law and random (P-R),
uniform and random (U-R), and power law and uniform (P-
U) while maintaining all other parameters as in Fig. 4(a).
The results consistently demonstrate that synchronization is
independent of the connectivity patterns in simplicial com-
plexes. Therefore, the derived formula simplifies the problem
by reducing the necessity to compute adjacency tensors for
each interaction. Moreover, this formula facilitates a swift
and straightforward determination of when a system synchro-
nizes. We then increase the number of oscillators to N =
70, 100, 150, and 200 while maintaining all other parameters
as in Fig. 4(b). We observe that synchronization occurs at the
same value of S(1)

min as in the system with N = 50 oscillators.
This suggests that complete synchronization in weighted sim-
plicial complexes of identical oscillators is independent of the

total number of oscillators in the system. We plot the results
in Fig. 6. Notably, the synchronization errors for N = 150 and
200 are precisely the same. Analyzing large weighted com-
plex networks with higher-order interactions poses a major
challenge, especially due to the presence of a vast number of
nodes in natural and manmade systems. Our general formulas
(22) and (23) can significantly simplify the study of complete
synchronization in such systems.

Next, we check the synchronizability by taking three dif-
ferent coupling functions through different variables. We
consider the pairwise interactions through the x compo-
nents and three-body interactions through the y components
(x-y scheme). We then conduct additional experiments with
pairwise interactions through y components, three-body in-
teractions through x components (y-x scheme), and both
interactions through y components (y-y scheme). All other
values remain identical to those used in Fig. 4(a). Figure 7
demonstrates that the system synchronizes at the same value
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FIG. 5. Synchronizability calculated using (a) cost, (b) eigenratio, and (c) synchronization error (E ) for different distributions of the degrees
and the intensities: P-R, U-R, and P-U correspond to the degrees and intensities distributed using power law and random, uniform and random,
and power law and uniform, respectively. The other parameters are σ1 = 1, σ2 = 0.1, S(1)

max = 1, S(2)
max = 10−3, and S(2)

min = 0.1 × S(2)
max. System

synchronization is independent of the distributions of degrees and intensities.
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FIG. 6. Synchronizability calculated using (a) cost, (b) eigenratio, and (c) synchronization error (E ) for different system sizes
N = 50, 70, 150, 200 and σ1 = 10−2, σ2 = 10−4, S(1)

max = 100, S(2)
max = 1, and S(2)

min = 0.1 × S(2)
max. The complete synchronization of the system

is independent of the total number of nodes present in the network.

of S(1)
min, indicating that synchronization in weighted simplicial

complexes is independent of the specific interaction modes
among oscillators.

E. Verification with real-world connectivity structure

Up to now, we verified our derived analytical theories on
synthetic network structures. Finally, we verify our formula on
real-world connectivity networks [22]. The system is a collec-
tion of ants, where the nodes represent the ants, and the links
represent interactions between them within a day. The weight
of links represents the frequency of interaction. We consider
all triangles as three-body interactions and assign weights to
each proportional to the weights of the links in the triangles.
At each time instant, there may be two agents (nodes) that are
not connected, i.e., the whole network is disconnected at that
time. However, the union of all the connections over the entire
period of time gives a connected network, which is a neces-
sary condition for complete synchronization in a graph. The
real-world connectivity network has N = 152, K (1)

max = 143,
K (1)

min = 32, K (2)
max = 7.1K with mean degree K (1) = 102, av-

erage number of triangles K (2) = 4.1K , S(1)
max = 2064, S(2)

max =
5101.32, S(1)

min = 187, and S(2)
min = 387.62. Previously, the os-

cillatory dynamics was used to represent the dynamics of each
nodes in the modeling of opinion formation in social systems
[23] since the opinions are not necessarily stationary always.
In our case, we model the dynamics of ant colony interaction
network and place chaotic Rössler oscillators on that network.

We chose the values for σ1 and σ2 according to the relations in
Eq. (29). We fix σ1 = 0.001 and vary σ2 from 10−5. Figure 8
displays the results. One may note that as the eigenratio and
the cost decrease, the synchronization error also decreases.
The system is synchronized when the values of the eigenratio
and the cost are at a minimum for the chosen values of the cou-
pling strengths. From these results, we can conclude that it is
possible to predict the complete synchronizability of complex
systems with higher-order interactions using our formula.

As a whole, it is intriguing to note that complete syn-
chronization in large complex networks is independent of the
total number of nodes present in the system and the way
they are connected. Synchronization depends on the coupling
strengths and the degree of connection between nodes. If all
nodes are connected with nearly equal strengths, the sys-
tem is easily synchronized. However, if some nodes have
significantly stronger connections compared to others, achiev-
ing synchronization becomes challenging. By knowing the
weights of links and triangles, we can calculate intensities.
Subsequently, coupling strengths must be chosen based on the
relationships mentioned earlier. This allows us to predict when
synchronization will occur, which is applicable to a broad
range of complex systems.

IV. CONCLUSION

In this paper, we have analyzed the nature of synchroniza-
tion in randomized weighted simplicial complexes of identical
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FIG. 7. Synchronizability calculated using (a) cost, (b) eigenratio, and (c) synchronization error (E ) for the interactions happening between
different components. Here � represents the result for x-y scheme (i.e., pairwise interaction through x components and three-body interactions
through y components), × for y-x (pairwise interaction through y components and three-body interactions through x variable), and ◦ for y-y
(both interactions through y components). The other parameters are σ1 = 1, σ2 = 0.1, S(1)

max = 1, S(2)
max = 10−3, and S(2)

min = 0.1 × S(2)
max. The

synchronizability of the system is independent of the way the nodes are interacting.
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FIG. 8. Synchronizability of real-world connectivity network [22] of N = 152 oscillators modeled by Rössler systems calculated using
(a) cost, (b) eigenratio, and (c) synchronization error (E ) by varying the nonpairwise coupling strength σ2.

oscillators with natural coupling. We derived general formulas
for the eigenratio and the cost and verified these theoretical re-
sults for various network topologies with diffusive couplings
and intensity distributions. Our observations indicated that
synchronization is independent of the structure of simplicial
complexes, the way the oscillators interact with one another,
and the total number of oscillators present in the system. We
observed complete synchronization for fixed values of σ1, σ2,
S(1)

max, S(2)
max, and S(2)

min, when S(1)
min = 0.2 × S(1)

max (i.e., 20% of
S(1)

max). Notably, the synchronization error values for N = 150
and 200 are nearly identical, indicating that synchronization is
independent of the number of oscillators when N is large. Our
general formula provides a good approximation for complete
synchronization in these cases.

Furthermore, our observations highlighted that the ef-
fect of coupling strengths varies depending on the largest
intensity. When S(1)

max > S(2)
max, an increase in σ2 enhances

synchronizability. Conversely, when S(2)
max > S(1)

max, synchro-
nization decreases with an increase in σ2. The behaviors of
constants AR, AC , BR1 , and BR2 suggest that the approximated
formula, containing only coupling strengths and intensities,
can be used.

We have validated our results by applying the gen-
eral formula to determine the synchronizability of weighted

simplicial complexes of diffusively coupled identical Rössler
oscillators in Sec. III D. We further verified our results using
real-world connectivity structure where the Rössler oscilla-
tors are placed on each node in Sec. III E. From numerical
simulations in Secs. III D and III E, we see that the results
are robust on the number of nodes, components through
which they are coupled, and the distributions of degree and
intensities.

In conclusion, we demonstrated that the synchronizabil-
ity of large randomized weighted simplicial complexes with
natural coupling can be determined using mean degrees, cou-
pling strengths, and intensities without the need to construct
connectivity matrices or explicitly calculate their eigenvalues.
These formulas substantially reduce computation time and
cost when assessing a system’s tendency to synchronize. In
essence, these formulas enable the prediction and control of
synchronizability in complex networks with higher-order in-
teractions, achieved by manipulating the degrees, weights, and
coupling strengths.
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