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Fiedler value: The cumulated dynamical contribution value of all edges in a complex network
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Fiedler value, as the minimal real part of (or the minimal) nonzero Laplacian eigenvalue, garners significant
attention as a metric for evaluating network topology and its dynamics. In this paper, we address the quan-
tification relation between Fiedler value and each edge in a directed complex network, considering undirected
networks as a special case. We propose an approach to measure the dynamical contribution value of each edge.
Interestingly, these contribution values can be both positive and negative, which are determined by the left and
right Fiedler vectors. Further, we show that the cumulated dynamical contribution value of all edges is exactly the
Fiedler value. This provides a promising angle on the Fiedler value in terms of dynamics and network structure.
Therefore, the percentage of contribution of each edge to the Fiedler value is quantified. Numerical results reveal
that network dynamics is significantly influenced by a small fraction of edges, say, one single directed edge
contributes to over 90% of the Fiedler value in the Cat Cerebral Cortex network.
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I. INTRODUCTION

Complex dynamical networks, comprised of a collection
of dynamical nodes and edges, display fascinating dynamics,
such as synchronization and diffusion [1–12]. The Fiedler
value [13,14], which measures synchronizability [1] and dif-
fusion rate [2], indicates the ability of convergence of all
nodes to a consistent state. A greater Fiedler value means
better dynamical performance.

In an undirected network, several methods have been pro-
posed to improve the Fiedler value by modifying the topology,
including adding or removing edges [15,16], rewiring edges
[17,18], and other ways [19–21]. Researchers have also de-
signed optimal synchronized networks with a fixed number
of nodes and edges [22,23]. Additionally, significant attention
has been given to the study of superdiffusion, which is a
phenomenon where the Fiedler value of a multiplex network
exceeds that of each individual layer [24–27].

Different from undirected networks, edges may have nega-
tive effects on Fiedler value in directed networks. Researchers
have primarily concentrated on studying the effect of adding
reverse edges to some specific directed networks. For exam-
ple, whether the diffusion rate (or consensus rate) of a directed
chain or a stem is inhibited by an additional reverse edge
[28–31], what is the necessary and sufficient condition of an
interfering reverse edge in a directed acyclic network [14]. In
the leader-follower interaction topology, the addition of edges
to a strongly connected follower graph can be qualitatively
analyzed using the right Fiedler vector [32,33].

However, in a general directed network, how to identify
the positive or negative effect of edges and the quantifi-
able relation between Fiedler value and each edge is still a
challenge. How much does each edge contribute to the Fiedler
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value? Which edges have a larger contribution? How do the
position and direction of edges affect the Fiedler value? This
paper systematically addresses these fundamental questions.

In Ref. [12], based on the sensitivity analysis of Fiedler
value, we have put forward an importance index of cycle
(edge) for an undirected network, which relies on the right
Fiedler vector. In this paper, we extend the method to measure
the dynamical contribution values of directed edges in a
network. The left and right Fiedler vectors jointly determine
the specific contribution values of all directed edges, with the
directionality of the edge requiring the involvement of the
left Fiedler vector. Further, we show that the Fiedler value is
exactly equal to the cumulated dynamical contribution value
of all edges. The undirected network is regarded as a special
directed network, ultimately resulting in a unified conclusion.
As a result, the quantitative relation between each edge and
network dynamics is established. The contribution of edges to
the dynamics in different networks is quantitatively analyzed
by numerical examples. Interestingly, the“Pareto principle”
is observed in the dynamical contribution of edges, with only
a small portion of edges having a significant impact on the
network.

II. DYNAMICAL CONTRIBUTION VALUE

Consider a directed connected graph G = (V, E ), where
V = {1, 2, ..., N} is the set of nodes and E = {ei j = (i, j) ⊆
V × V} the set of edges with initial weight one. The network
dynamics is described as

ξ̇i(t ) = f (ξi(t )) −
N∑

j=1

Li jξ j (t ), i = 1, 2, ..., N,

where ξi(t ) ∈ R is the state of the ith node, and f ∈ C[R,R]
the smooth nonlinear node dynamics. The network dynamics
is diffusion if f = 0. The Laplacian matrix is defined as
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FIG. 1. Adding weight ω to e12 in a sample network with initial
weight of one.

L = D − A, where Aji = 1 if and only if there is a directed
edge ei j from node i to node j, otherwise Aji = 0. D is a
diagonal matrix with elements representing the sum of the cor-
responding rows of A. Provided with a network that contains
a directed spanning tree, the real part of nonzero Laplacian
eigenvalues are positive. Connectivity of a network refers to
the Fiedler value, the minimal real part of the nonzero Lapla-
cian eigenvalue, denoted as Re[λ2(L)]. If λ2(L) is a complex
value, there exists a conjugate eigenvalue λ3(L) that satisfies
Re[λ2(L)] = Re[λ3(L)]. Without loss of generality, we define
the eigenvalue with the nonnegative imaginary part as λ2(L).
The corresponding normalized left and right eigenvectors are
referred to as the left and right Fiedler vectors, respectively.

First, we introduce the contribution value of each edge in a
directed network. The graph G after the addition of weight ω

to edge ei j is denoted as Gω
ei j

. Consequently, the correspond-
ing Laplacian matrix is modified to Lω

ei j
= L(G) + ωLei j . For

example, the Laplacian matrix after introducing weight ω to
edge e12 in Fig. 1 is

Lω
e12

=

⎛
⎜⎜⎝

0 0 0 0
−1 2 −1 0

0 −1 1 0
0 0 −1 1

⎞
⎟⎟⎠ + ω

⎛
⎜⎜⎝

0 0 0 0
−1 1 0 0

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠.

It is clear that the larger the absolute value of Id
ei j

=
Re[λ2(Lω

ei j
)]−Re[λ2(L)]

ω
(ω � 1), the more sensitive edge ei j is, and

the greater the positive or negative contribution of the edge to
the Fiedler value. Defined as the dynamical contribution value
of edge ei j , Id

ei j
represents the initial slope of the Fiedler value

with the edge weight variations. It provides insights into the
dynamical contribution value of each edge.

Undirected graphs can be classified as a special case of
directed graphs, characterized by bidirectional edges. The
contribution value of an undirected edge e′

i j is defined as the
sum of the contribution value of its corresponding directed
edges ei j and e ji, denoted as Iu

e′
i j

= Id
ei j

+ Id
e ji

. Both e′
i j and

e′
ji refer to the same edge. We denote E ′ as the set of all

undirected edges in an undirected network.

III. MAIN RESULTS

In this section, we derive a concise expression of the con-
tribution value and establish the relation between the edges
and the Fiedler value.

A. Directed networks

The perturbation theory [34] is used to calculate Id
ei j

.
With ω � 1, λ2(Lω

ei j
) and the corresponding right eigenvector

x2(Lω
ei j

) are expressed as

λ2
(
Lω

ei j

) = λ2(L) + k1ω + O(ω2), (1)

x2
(
Lω

ei j

) = x2(L) + t1ω + O(ω2), (2)

where k1 and t1 represent some constant and constant vector,
respectively. Due to that, Lω

ei j
= L + ωLei j and

Lω
ei j

x2
(
Lω

ei j

) = λ2
(
Lω

ei j

)
x2

(
Lω

ei j

)
, (3)

and substituting Eq. (1) and Eq. (2) into Eq. (3), one gets

Lt1 + Lei j x2(L) = λ2(L)t1 + k1x2(L). (4)

Left multiply Eq. (4) by left eigenvector yT
2 (L), where

yT
2 (L)L = λ2(L)yT

2 (L), one has

k1 = yT
2 (L)Lei j x2(L)

yT
2 (L)x2(L)

. (5)

Setting yT
2 (L)x2(L) = 1 and ignoring O(ω2), one easily gets

Re
[
λ2

(
Lω

ei j

)] = Re[λ2(L)] + Re
[
yT

2 (L)Lei j x2(L)
]
ω

= Re[λ2(L)] + Re[y j (x j − xi )]ω,

where xp and yp are the pth component of x2(L) and y2(L),
respectively. This implies that the first-order derivative of the
Fiedler value can be obtained by the left and right eigenvctors
of λ2(L).

As a result, the dynamical contribution value of directed
edge ei j is Id

ei j
= Re[y j (x j − xi )]. The right Fiedler vector

provides the information of the starting and ending nodes,
whereas the left Fiedler vector only provides the information
of the end node. Consequently, the combination of the left
and right Fiedler vectors provides comprehensive information
about the edge’s position and direction.

Further, for any vectors u and v, due to the characteristics
of Laplacian matrix, one obtains

uT Lv =
N∑

i, j=1

Ljiu jvi

=
N∑

i, j=1

(Dji − Aji )u jvi

=
N∑
j

D j ju jv j −
∑

(i, j)∈E
u jvi

=
∑

(i, j)∈E
u j (v j − vi ).

When u, v are the right Fiedler vector x2(L) and the left
Fiedler vector y2(L) correspondingly, with yT

2 (L)x2(L) = 1,
one gets

yT
2 (L)Lx2(L) = λ2(L).
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Hence, one obtains

Re[λ2(L)] =
∑

(i, j)∈E
Re[y j (x j − xi )] =

∑
(i, j)∈E

Id
ei j

. (6)

Equation (6) illustrates not only the individual dynamical
contribution value of each edge, but also the quantitative
relation between each edge and Fiedler value. Interestingly,
the Fiedler value represents the cumulated contribution of all
edges in a directed network.

B. Undirected networks

In the case of undirected networks, the Laplacian matrix
is symmetric. Consequently, the left and right eigenvectors of
the same eigenvalue are equal and both composed of real val-
ues. Then Iu

e′
i j

= Id
ei j

+ Id
e ji

= x j (x j − xi ) + xi(xi − x j ) = (xi −
x j )2, where xp is the pth component of Fiedler vector x2(L),
which is exactly the unit eigenvector corresponding to λ2(L).
This is consistent with the importance index of undirected
edges [12]. Further, one also obtains

λ2(L) = xT
2 (L)Lx2(L)

=
∑

(i, j)∈E ′
(xi − x j )

2 =
∑

(i, j)∈E ′
Iu
e′

i j
. (7)

Hence, the quantitative relation between the Fiedler value and
each edge is unified, regardless of whether the network is
directed or undirected.

IV. NUMERICAL RESULTS

To verify the effectiveness of our method, some sample
networks and two experimental networks are shown.

A. Sample networks

References [28,29] have highlighted that the reverse edges
can inhibit the diffusion rate in a directed chain network. Be-
sides detecting the inhibition of the reverse edges, our method
quantifies the degree of inhibition. Figure 2 reveals that
the contribution values of the forward edges e12, e23, ..., e67

are positive, and their contribution decreases in turn, while
the reverse edges e62 and e53 contribute to the diffusion rate
negatively. The contribution value becomes more negative as
the reverse range increases. The sensitivity simulation verifies
that if the weight of a reverse edge is increased, there is
a corresponding decrease in the Fiedler value. Even if the
dynamical contribution value works with small ω, simulations
demonstrate that the edge ranking is effective with rela-
tively large ω. Consequently, the quantitative analysis method
clearly depicts how each edge affects network dynamics.

In a general directed network, the contribution values of
edges are shown in Fig. 3. By using the left and right Fiedler
vectors, the positive and negative effects of all edges are iden-
tified and quantified. The cumulated dynamical contribution
value of all edges is Re(λ2) = 1.4811.

Different from directed edges, all edges in undirected net-
works have nonnegative effects [Iu

e′
i j

= (xi − x j )2]. The result

is intuitively illustrated in two sample networks.

FIG. 2. A directed chain network with seven nodes and two
reverse edges. The table provides the dynamical contribution value
Id
ei j

of each edge. The Fiedler value Re(λ2) = 0.0912 = ∑
(i, j)∈E Id

ei j
.

The graph depicts the Fiedler value versus ω.

Figure 4 shows two representative networks. In Fig. 4(a),
the contribution values of the bridge edge e′

17 and any other
edge are 0.1982 and 0.0060, respectively. The total sum of
contribution values amounts to λ2 = 0.2582. Notably, the
contribution rate of the bridge edge is 76.8%. Fiedler value of
a fully connected network with N nodes is N . However, when
one node is hanged, as seen in Fig. 4(b), the Fiedler value
decreases to one. It suggests that even small local changes
significantly impact the network dynamics. It is found that
the most important edge is e′

17, whose contribution value is
0.8333, followed by the edges connected to node one with
contribution values 0.0060 s, while the remaining edges have
contribution values of 0 s. Although there are many edges
in this network, only a few really contribute to the network
dynamics. This is the reason why the Fiedler value of this
network remains relatively small, even with a fully connected
portion.

The above intuitive examples show that in networks with
severely uneven distribution of degrees, the distribution of
edge contribution values follows the “Pareto principle.” This
principle is also observed in networks with relatively even
distribution of degrees, such as random networks, as shown

FIG. 3. A directed network comprising six nodes and 11 edges.
The gray (red) edges indicate the nonnegative (negative) effects on
the Fiedler value. The quantified contribution values are presented in
tables.
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FIG. 4. (a) A bistar network with 12 nodes and a bridge edge.
(b) A fully connected network with an additional hanging node. The
contribution value Iu

e′
i j

of each edge is marked next to the corre-

sponding edge, in which edges with the same color signify equal
contribution value. The contribution rate of each edge is then pre-
sented below the network, which is the ratio of the contribution value
to the Fiedler value.

in Fig. 5. This phenomenon is further supported by the subse-
quent experimental networks [35].

B. Experimental networks

In Fig. 6, it is observed that the contribution rate of directed
edge e27,25 is 94.3%. If edge e27,25 does not exist, the network

FIG. 6. A directed Cat Cerebral Cortex network with 65 nodes
and 1139 edges. The contribution rate of edge e27,25 is 94.3%, while
the total contribution rates of all the gray edges are 5.7%, composed
of 15.1% and −9.4%.

is a leader-follower type with only one source node 25. The
edge e27,25 represents the feedback provided by the follow-
ers to the leader. The Fiedler value of the original network
in Fig. 6 is 0.9852. When this edge is deleted, the Fiedler
value becomes 0.0492, accompanied by a noticeable decrease
in the diffusion rate of the network in Fig. 7. The second

FIG. 5. Distribution of dynamical contribution values for all edges across varying probabilities p in random networks with 100 nodes,
where each dot represents the dynamical contribution value of edge ek numbered in ascending order [Directed networks: (a), (b), (c); Undirected
networks: (d), (e), (f)].
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FIG. 7. The diffusion error ei(t ) = |ξi(t ) − s(t )| versus time t
in the original Cat Cerebral Cortex network, in the network with
the removal of edge e27,25 and e25,23, respectively, where ξ̇i(t ) =
−∑N

j=1 Li jξ j (t ) and s(t ) =
∑65

i=1 ξi (t )
65 . The error state is obtained by

averaging the initial values within the range of [−1, 1] after 20
simulations. Each colored curve represents the error state of a node.
The orange curve specifically corresponds to node 25, which is the
end of edge e27,25. When all error states are equal to zero, it signifies
that the nodes have reached a steady state.

important edge e25,23, which contributes only 0.5%, has little
impact on the diffusion rate. Undoubtedly, edge e27,25 is of
significant importance (the contribution rate is 94.3%), while
the remaining edges of the network make a humble dynamical
contribution (the total contribution rates of all the remaining
edges are 5.7%, composed of 15.0% positive contribution
rates and 9.4% negative contribution rates). Figure 8 depicts
the C. elegans metabolic network, which was employed to
observe the distribution of important triangles in Ref. [12].
It is seen that only five edges in blue, in total 2025 edges,
account for an 88.7% contribution rate to the Fiedler value.
Notably, these edges coincide with the ones comprising the
vital triangles of Ref. [12].

V. DISCUSSION AND CONCLUSION

In this section, we further conclude the relation between
edges and the Fiedler value in weighted networks. The
weighted Laplacian matrix is denoted as W , where Wji is
the weight of the edge ei j . In a weighted directed network,
the contribution value is expressed as Iwd

ei j
= WjiRe[y j (x j −

xi )], where xp and yp are the pth component of left Fiedler
vector x2(W ) and right Fiedler vector y2(W ), respectively.
Further, one obtains Re[λ2(W )] = ∑

(i, j)∈E Iwd
ei j

. In a weighted
undirected network, the contribution value is expressed as
Iwu
e′

i j
= Iwd

ei j
+ Iwd

e ji
= Wi j (xi − x j )2, where xp is the pth com-

ponent of Fiedler vector x2(W ). Further, one gets λ2(W ) =∑
(i, j)∈E ′ Iwu

e′
i j

. Hence, a comprehensive set of methods for edge

dynamics has been developed, regardless of the directionality
and weight of the edge.

In conclusion, this paper has effectively quantified the
relation between edges and Fiedler value in a network, provid-
ing valuable insights into network dynamics. The dynamical
contribution value of each edge has been measured using

FIG. 8. An undirected C. elegans metabolic network with 453
nodes and 2025 edges. The blue edges contribute totally 88.7%,
while the gray edges make a total contribution of 11.3%.

only two Fiedler vectors. The right Fiedler vector provides
the information of the starting and ending nodes, while the
left Fiedler vector only provides the information of the end
node. Interestingly, the edge dynamical contribution value can
predict the result of a period of weight variation. It is critical
not only for the diffusion analysis but also for the assessment
of edge vulnerabilities.

Further, the network dynamics index, the Fiedler value,
has been illustrated from an interesting lens: the cumulated
contribution value of all edges. The summation formula, from
an algebraic perspective, has been endowed with dynamical
significance. What’s more, numerical examples have verified
the effectiveness of the results and revealed that only a few
edges make a significant contribution to the network dynam-
ics. Especially in the Cat Cerebral Cortex network with 2025
edges, one single directed edge has been found to contribute
over 90% of the Fiedler value, greatly influencing the dif-
fusion rate of the network. This “Pareto principle” of edge
dynamical contribution provides a theoretical basis for edge-
based pinning control and helps to promote further research.
These findings would have potential implications in the fields
of physics, biology, chemistry, and engineering.
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