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Analysis of double-resonance crossing in adiabatic trapping phenomena for quasi-integrable
area-preserving maps with time-dependent exciters

Armando Bazzani* and Federico Capoani †

Physics and Astronomy Department, Bologna University and INFN-Bologna, V. Irnerio 46, 40126 Bologna, Italy

Massimo Giovannozzi ‡

Beams Department, CERN, Esplanade des Particules 1, 1211 Geneva 23, Switzerland

(Received 28 February 2024; accepted 1 May 2024; published 23 May 2024)

In this paper we analyze the adiabatic crossing of a resonance for Hamiltonian systems when a double-
resonance condition is satisfied by the linear frequency at an elliptic fixed point. We discuss in detail the
phase-space structure on a class of Hamiltonians and area-preserving maps with an elliptic fixed point in
the presence of a time-dependent exciter. Various regimes have been identified and carefully studied. This
study extends results obtained recently for the trapping and transport phenomena for periodically perturbed
Hamiltonian systems, and it could have relevant applications in the adiabatic beam splitting in accelerator
physics.
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I. INTRODUCTION

The adiabatic theory for Hamiltonian systems addresses
the problem of understanding the consequences of slow
parametric modulations. The concept of adiabatic invariance
allows one to predict the long-term evolution of a system,
highlighting the fundamental properties of action variables
[1,2]. The theory has been fully developed in the case of
one degree-of-freedom systems [3–15], and its extension to
the multidimensional case or to symplectic maps [16] is a
difficult problem, mainly due to the small denominators of
perturbation theory and the ubiquitous presence of nonlinear
resonances in phase space [17,18].

The possibility of manipulating the phase-space struc-
ture in an adiabatic way has recently been considered for
novel applications in the realms of accelerator and plasma
physics [19–24]. For instance, nonlinear resonance trapping
and adiabatic transport have been used to manipulate the
distribution of charged particles to minimize particle losses
during the extraction process of a circular accelerator of
high-intensity beams [23,25,26]. Adiabatic manipulations are
also used to provide control of transverse beam emittances
[27–29]. These experimental procedures [27–29] require
very precise control of the efficiency of adiabatic trapping
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in resonances [12,30,31], as well as the change in phase
space during adiabatic transport. All these processes can be
modeled using multidimensional Hamiltonians or symplectic
maps [32,33].

An interesting and intriguing observation has been made
during the experiments carried out at the CERN Proton Syn-
chrotron (PS) for Multi-Turn Extraction (MTE) [26,27,34,35].
Experimental observations have clearly indicated that the
efficiency of beam trapping in a nonlinear resonance can
be improved by using an external exciter whose frequency
is set in resonance condition with the main frequency of
the system [27,34]. The resulting model is a quasiresonant
Hamiltonian system perturbed by a time-dependent exter-
nal exciter whose frequency satisfies a double-resonance
condition. We have studied in detail the phase-space struc-
ture of this system considering the adiabatic crossing of
the resonance in different dynamical regimes. The results
presented in the article extend the recent results presented
in Ref. [33].

The paper is organized as follows: In Sec. II the main
results of the theory of adiabatic invariance and separatrix
crossing are briefly summarized. In Sec. III we discuss two
models: A Hamiltonian model is introduced and used for
carrying out the analytical computations and to understand
the dependence of the phase-space structure on the system’s
parameters; a map model is used for numerical simulations
because it represents a more realistic model of dynamics. The
Hamiltonian system allows one to identify the phase-space
topologies and the various regimes of the system, and numer-
ical simulations verify the robustness of the analytical results.
The analysis of the trapping process is discussed in Sec. IV,
while numerical simulations are presented and discussed in
detail in Sec. V. Finally, conclusions are drawn in Sec. VI,
while some detailed computations can be found in the Ap-
pendixes.
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FIG. 1. Generic phase-space portrait divided into three regions
(I, II, III) by the separatrices �1(λ) and �2(λ).

II. ADIABATIC THEORY FOR TRAPPING
IN A STABLE RESONANCE

The results of this paper take advantage of the theory
of separatrix crossing under adiabatic conditions, which de-
scribes how an orbit may adiabatically cross a separatrix,
breaking the adiabatic invariance of the action in a controlled
way. Here we recall the main results that will be useful for the
analysis carried out in this paper.

According to Neishtadt’s theory of adiabatic trapping [3],
which can also be applied to area-preserving map models
[32,33], when a slow modulation of a parameter makes the
area of a separatrix-enclosed region of phase space equal to
2πJ0, where J0 is the initial action variable, the particle jumps
into another region of the phase space with a probability that
depends on the time derivative of the phase-space regions.

In general, consider a Hamiltonian system dependent on
a slowly modulated parameter λ = εt, ε � 1, whose phase
space is divided by two separatrices �1(λ) and �2(λ), into
three regions denoted as Regions I, II, and III according to
the sketch in Fig. 1. Let us indicate by Ai(λ) the area of the
region i for a certain value of λ.

If an orbit of an initial condition in Region III encloses an
area A0 = 2πJ0, where the action J0 is the adiabatic invariant,
when λ assumes a value so that AIII(λ̃) = A0, then the particle
will enter Region I or II according to the probability PIII→i

given by the formula

PIII→i =

⎧⎪⎨
⎪⎩

0 if ξi < 0
ξi if 0 � ξi � 1
1 if ξi > 1

i = 1, 2, (1)

where

ξi = dAi/dλ

dAI/dλ + dAII/dλ

∣∣∣∣
λ=λ̃

. (2)

III. THE DYNAMICAL MODELS

A. The map model

We consider a modified version of the Hénon map [36] by
adding a cubic nonlinearity and a modulated exciter

(
xn+1

pn+1

)
= R(ω0,n)

(
xn

pn + x2
n + κx3

n + εn cos(ωnn + ψ0)

)
,

(3)

where R(ω0,n) represents a time-dependent rotation matrix
(here and in the following, the subscript n means that a quan-
tity varies depending of the turn number). The reason for
adding a cubic nonlinearity is twofold: it makes the system
closer to that used in the application [26,27,34,35] and it
makes it possible to build an interpolating Hamiltonian that,
even at the lowest order of perturbation theory, is capable of
describing the topological structure of the phase space. The
external exciter is customarily described by its frequency ωn,
its strength ε, and its phase ψ0. All three parameters can be
set to be time-dependent, but in our studies we vary only the
first two.

Our aim is to study the system under the effect of two
simultaneous resonance conditions. Setting ωr ∈ 2πQ as the
resonant frequency of the original, Hénon-like, unperturbed
system, we choose the time-dependent rotation frequency
ω0,n, then the exciter frequency ωn so that ω0,n ≈ ωn ≈ ωr,
to impose a 1 : 1 resonant condition between the rotation
frequency of the Hénon-like system and the external exciter.
We also introduce the two parameters δn and �n to account
for the distance to each resonance, i.e. ω0,n = ωr + δn and
ωn = ωr + �n. The three parameters δn, �n, and εn depend
on the iteration number, which is slowly modulated to satisfy
an adiabatic condition.

We consider the case close to the resonance 1:4, i.e.,
ωr/(2π ) = 1/4, and, according to the Poincaré-Birkhoff the-
orem [37], we expect that a chain of four resonance islands
enclosing a central core appears in phase space for certain
values of δn. However, the effect of the second resonance
condition 1:1, generated by the external exciter, changes the
structure of the phase space. To study the effect of an adia-
batic modulation of δn, we set �n = 0, so that the excitation
frequency is exactly resonant with ωr, and we analyze the
phase-space structure in the so-called frozen map. This means
that we study the phase space of the map generated by the
fourth iterate of Eq. (3) in which the parameters are kept
constant, i.e., independent from the number of turns n. Differ-
ent values of the parameters are used and the corresponding
phase-space portraits are shown in Fig. 2 (top). The effect of
the adiabatic modulation of δn can now be seen as a contin-
uous sequence of the phase-space topologies at constant, i.e.,
“frozen,” values of δ. Of course, when ε = 0 (bottom), one
retrieves the well-known four-island structure of the Hénon
map [36,38]. The second resonance acts on the island struc-
ture by enlarging the size of one or two selected islands and
reducing the size of the others, as we can see comparing, in
Fig. 2, the top with the bottom plots. Furthermore, when ε

is large enough w.r.t. δ, other fixed points disappear, as is
visible in the top-left and top-center plots of Fig. 2, where
the perturbation is strong enough to destroy some islands.
Varying δn in the represented range of values one crosses those
two different resonant conditions, whose interplay creates this
peculiar phase-space structure and new possibilities in terms
of separatrix crossing.

Following the sketch in Fig. 3, which represents a sit-
uation where all four islands and the core are present, we
outline the identification of each island by means of cardinal
points according to their position in the phase space (x, p).
Furthermore, the color used in this figure corresponds to the
convention used in subsequent figures, for the sake of clarity.
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FIG. 2. Phase-space portraits of the Poincaré map of Eq. (3) sampled every four iterations. We use three values of δ that account for three
possible resonance topologies when ε = 1 × 10−4 (top), and we compare them with the unperturbed Hénon-like map at ε = 0 (bottom). The
other parameters values are ωr/(2π ) = 1/4, ω0 + ωr + δ, � = 0, κ = 0.1, ψ0 = 0).

FIG. 3. Separatrices (black lines) of the Poincaré map of Eq. (3)
sampled every four iterations. The four islands and the core have
been filled with the colors used in Figs. 4, 7, 8, and 10 to refer to
each region. The naming convention of the various regions is also
reported here [parameter values: ωr/(2π ) = 1/4, � = 0, ε = 10−4,
κ = 0.1, ψ0 = 0, and δ/ε2/3 = 1].

Notable is the peculiar structure of the separatrices: without
the exciter, there exists a single separatrix that connects the
hyperbolic fixed points and encloses the elliptic fixed points.
In the presence of the exciter, the single separatrix of the
Hénon map (see the bottom plots of Fig. 2) splits into two
structures: one divides the core region from the west island
and encloses a region of the phase space that contains the other
three islands; the other encloses the remaining three islands
but does not include the core region. This is visible in the
rightmost column of Fig. 2 (top). As ε → 0, the separatrix that
surrounds the three islands and the outer separatrix merge.

Comparing the top with the bottom plots of Fig. 2, we also
observe that as ε increases, for ψ0 = 0, the east island grows,
whereas the surface of the other islands shrinks (the island
opposite the dominant, the west island in this case, becomes
even smaller). Of course, since the exciter frequency is exactly
1/4, the islands remain fixed in phase space only when we
consider the stroboscopic map (i.e., the fourth iterate of the
original map). If we were to observe each iteration of the
map, we would see islands rotating each turn by π/2, so that
the main island, depending on the value of n (mod 4), can be
found at each cardinal point.

The measure of the island area as a function of δ̂ = δ/ε2/3

is shown in Fig. 4 (left), while in the right plot we show the
ratio between the area of the main island and the sum of the
areas of all islands. We observe that as ε → 0 or δ → ∞ one
recovers the 1/4 ratio, as expected in the case of the modified
Hénon map without the exciter. In contrast, for small values
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FIG. 4. Left: Plot of the area Ai of each island and of the core region in the fourth iterate of the map of Eq. (3) as a function of δ̂ = δ/ε2/3.
Note that the lines for the north and south islands are almost perfectly overlying. The slope quoted is the angular coefficient of the linear fit of
each line performed in the interval 1 � δ̂ � 4. Right: Ratio between the area of the main island (east) and the sum of all islands using the data
of the left plot [parameter values: ωr/(2π ) = 1/4, � = 0, κ = 0.1, ψ0 = 0].

of δ and large values of ε, the main island becomes larger than
the others. Furthermore, from the plot on the left, one observes
that the variation of Ai as a function of δ̂ becomes linear for
large values of the parameter. Note also that the choice of
this combination of model parameters δ and ε is justified by
the analysis of the normal form Hamiltonian that is discussed
in Sec. III B.

The same figure highlights two critical values of the
rescaled parameter. The east, south, and north islands are
created for a positive value of δ̂, which corresponds to a
bifurcation point when the separatrix enclosing these islands
is created. For lower values of δ̂, the phase-space structure that
morphs into the east island is the only stable region whose
center is displaced from the origin by the exciter’s action, and
therefore there is no island present. Then there is a second crit-
ical value of δ̂ for the other two regions (i.e., the core and the
west island), which are defined by the second inner separatrix.
These critical values will be discussed in conjunction with the
Hamiltonian model in Sec. III B.

Although it is the largest island, the variation in the surface
of the east island is not the largest. As resonance trapping is
determined by their area derivative, we can expect that the
majority of particles found in that island after the modulation
process comes from the displacement of the center rather than
from the separatrix crossing.

If ε is fixed and δ varies, all island areas increase, but the
east island remains the largest. The area ratio between the east
island and the sum of the four islands is higher for small values
of δ and tends to 1/4 (i.e., the islands enclose the same area)
as the frequency moves farther from the resonance (see right
plot of Fig. 4). We will properly justify these observations
by means of a numerical analysis of the variation of the
islands’ area.

The phase-space topology is also influenced by the ex-
citer phase ψ0. It is straightforward to verify that if ψ0 =
m π/2, m ∈ N, the resulting map coincides with the case
ψ0 = 0 after m additional turns. Therefore, the effect of the
exciter phase is a rotation of the phase space. When ψ0 as-
sumes intermediate values between mπ/2 and (m + 1)π/2,

the result is more interesting. In fact, as ψ0 increases, the area
of the main island decreases and that of an adjacent island
increases. At the middle point, when ψ0 = (2m + 1)π/4, two
islands of equal size become dominant. This transition is
clearly visible in Fig. 5.

B. Hamiltonian model

We introduce a Hamiltonian model to study the phase-
space structure of the map model (3) when �n = 0 and
ωr/(2π ) = 1/4. The model can be derived from the quasires-
onant normal form Hamiltonian of a Hénon map close to the
fourth-order resonance and adding the duly averaged contri-
bution of the external exciter. Details of this computation are
given in Appendix A, and the resulting Hamiltonian reads

H = δ(λ)J + J2

(

2

2
+ A cos 4θ

)

+ 1

2
ε
√

2J cos(θ + ψ0). (4)

In Fig. 6 we observe that, depending on the values of δ,
ε, and ψ0, the phase-space portraits of Eq. (4) present the
same features as those of Eq. (3), with the appearance of
resonance islands of unequal area. However, it is worth noting
that the position of the fixed points in the phase space is not
the same for the map or for the Hamiltonian. This is due
to the difference in the dependence of the orbit frequency
on the action that, in the Hamiltonian, is truncated at the
second order in J . The presence of a positive cubic term, i.e.,
κ > 0, in the map is necessary to have closed separatrices
in the phase space of the normal form Hamiltonian at order
O(J2). Resonance islands can also be found for κ � 0, but to
retrieve the same topology, one must perform an additional
step in the normal form computation, which makes the model
overly complicated.

From Eq. (4) we can also retrieve some scaling properties
of the parameters. Let J = Ĵε2/3 and δ = δ̂ε2/3, the Hamilto-
nian can be scaled by defining a slow time t̂ = ε4/3t , and we
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FIG. 5. Phase space portraits of the Poincaré map of Eq. (3) sampled every four iterations for three values of the initial phase ψ0. The phase
of exciter selects the island that becomes larger than the others [parameter values are ωr/(2π ) = 1/4, � = 0, ε = 10−4, κ = 0.1, δ̂ = 0.75].

obtain

Ĥ = δ̂(λ)Ĵ + Ĵ2

(



2
+ A cos 4θ

)
+ 1

2

√
2Ĵ cos(θ − ψ0),

(5)

which means that if the ratio δ/ε2/3 is kept constant, the
resulting phase-space portraits of the Hamiltonian of Eq. (4)

are similar (up to a scaling of the action by a factor ε−2/3).
From this consideration one observes that, since ε and δ are
found in reciprocal positions, the phase-space topologies that
the system crosses, increasing ε at constant δ, have a reversed
order when increasing δ at constant ε.

Appendix B discusses in detail the fixed points and res-
onance islands of the Hamiltonian (4). In particular, we
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FIG. 6. Top: Phase-space portraits of the Hamiltonian of Eq. (4) with ψ0 = 0 and κ = 0.1, for three values of the scaled parameter δ̂ =
δ/ε2/3 representing three topological structures, similar to those shown in the top plots of Fig. 2 for the map model (note that no scaling is
applied in Fig. 2). The coordinates have also been rescaled by the factor ε1/3. Note that for κ = 0.1, the two critical values of δ̂ where the
solutions bifurcate are δ̂1 = 0.348 and δ̂2 = 0.179. Bottom: Phase-space portraits of the Hamiltonian of Eq. (4) with δ̂ = 0.75 and κ = 0.1, for
three values of the initial phase ψ0, corresponding to Fig. 5 for the map model. The same coordinate scaling has been used.
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FIG. 7. Theoretical probability ξ , according to Eq. (2), for a
particle to be trapped in an island or the core depending on the value
of the map main frequency ω0. For the sake of comparison with the
case of the Hénon map without exciter, the continuous black line
represents the trapping probability in an island when ε = 0. This plot
has been made by numerically computing the derivative of the area
of each phase-space region of the map of Eq. (3) (parameter values:
� = 0, ε = 10−4, ψ0 = 0).

establish the dependence of the phase-space topology on the
parameter δ̂ = δ/ε2/3, and we identify two critical values of δ̂

associated with the emergence of fixed points: δ̂1 = 3κ1/3/4
and δ̂2 = (3/4)[κ2/3(κ + 1)1/3(κ − 1)−2/3].

The relevance of these concepts can be seen in Fig. 6,
where one observes the nice correspondence between the
Hamiltonian normal form and the map phase-space portraits
of Figs. 2 (top) and 5, when the same values of δ, ε, and
ψ0 are used (note that no scaling is applied in Fig. 2). The
Hamiltonian description succeeds in reproducing all possible
phase-space topologies of the map depending on the scaled
parameter δ̂ and on the initial exciter phase.

IV. QUALITATIVE ANALYSIS
OF THE TRAPPING PROCESS

Consider the evolution of an orbit of the map defined by
Eq. (3). At the beginning, i.e., n = 0, we set ω0,0 = π/2 − δ

and ε0 = 0, and then the map is iterated for 2N turns. During
the first N turns, ε increases linearly from 0 to εN = ε, while
ω0 remains constant. During the second N turns, we keep εn =
ε and linearly increase ω0 by 2δ. With this strategy, the first
part of the process is meant to slowly introduce the effect of
the exciter, whereas in the second part the actual resonance-
crossing process takes place.

To understand the resonance trapping process in terms of
the separatrix-crossing theory developed by Neishtadt, whose
main result is the probability formula given in Eq. (2), we
consider the dependence of the values of the area of the islands
and the core region on the parameter δ̂ (see Fig. 4), and the
dependence of the trapping probability ξ of an orbit in any of
the phase-space region as a function of ω0, i.e., of δ, which
varies linearly (see Fig. 7), which are related to the process
we describe in this section.

Depending on the values of ε and δ, during the first phase
of the process, resonance islands may or may not be present in

the phase space. However, as the frequency ω0,n increases and
goes beyond the resonant value ωr, the four islands eventually
appear.

If we follow the evolution of the phase-space topology of
the fourth iterate of the map (3) during the trapping process,
it is possible to understand how a given initial condition will
be trapped in one of the possible phase-space regions. In the
initial state of the modulation process, when δ < 0 and ε = 0,
there are no resonance islands, the stable fixed point is at the
origin of the phase space, and inside the stability domain of
the map, the orbits of the initial conditions rotate around the
stable fixed point.

As ε increases, the central fixed point moves in the x
positive direction (or, using our geographical terminology,
it moves eastward). As this process is adiabatic, the orbits
moving around the central fixed point will also be displaced
eastward, and when ε reaches the final value, the orbits will
rotate centered around the new position of the stable fixed
point. All initial conditions at low amplitude will remain in the
stable basin of the fixed point, which defines the main island.

For δ̂ > δ̂2 two new islands appear in the phase space: One
is the north island, and the second is the south island. As can
be seen from the evolution of the areas Ai (see Fig. 4), the
size of the secondary islands increases at the same rate as that
of the principal, but their area is always smaller. Therefore,
as Fig. 7 shows, there is a range of ω0 (i.e., of δ), for which
the area derivative w.r.t. δ of these secondary islands is higher
than that of the principal. Hence, in this range the particles will
preferentially be trapped in the north or south islands. As the
area of the island structure grows while ω0 is changed, orbits
whose initial conditions are in the outer region will initially
be trapped in the east island and later also in the new islands,
and we have a minimum value for the action to be trapped
in them.

Finally, when δ̂ > δ̂1, a new separatrix appears and the last
island is created in the phase space on the opposite side of the
principal one. This is the smallest island, but also has a peak
of the time derivative of its area, which corresponds to a peak
in the probability of trapping. Therefore, a certain fraction of
high-amplitude particles will enter the last one. Together with
the smaller island, a new fixed point is created in the central
region, and the core area will also trap some high-amplitude
particles. Finally, for even higher values of δ we see that
the area derivatives of the five regions tend to be equal, and,
therefore, no island is privileged when δ̂ is sufficiently large.
Note that this also explains the absence of dominant islands
for the standard Hénon map, corresponding to ε = 0.

Figure 7 also reports the trapping probability for the case
of the nominal Hénon map, i.e., without an external exciter.
A single curve is shown as the four islands behave the same.
Furthermore, note that according to Ref. [38], for ε = 0 one
should expect ξ → 1/4 if ω0/2π → 0.25, but the numerical
computation of ξ is made difficult by the small values of the
islands and core areas close to the resonance, which explains
the missing part of the curve.

V. SIMULATION RESULTS

Detailed numerical simulations have been carried out with
the aim of understanding and controlling the trapping process
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FIG. 8. Fraction of particles trapped in each island and their sum for initial conditions of the map of Eq. (3) as a function of the initial
amplitude

√
2J0 = √

x2
0 + p2

0 of the particles for four values of exciter strength ε. Data for the graphs were collected by simulating several
uniform initial annular distributions, each containing Np = 1 × 103 particles, for each bin of the histogram (bin width 0.01). Note that the upper-
left plot corresponds to a standard Hénon map without external exciter parameter values: ωr/(2π ) = 1/4, δ/(2π ) = 5 × 10−4, ω0 = ωr + δ,
κ = 0.1, ψ0 = 0, N = 105; note that those parameter values are those taken as default for the subsequent studies].

and adiabatic transport within the stable islands of the map (3).
The quantities ε and δ have been linearly varied as a function
of the number of turns to observe how the trapping in each
island depends on various parameters of the system.

We study the evolution of Np = 3 × 103 particles, dis-
tributed with an initial action average 〈J0〉 = 〈x2

0 + p2
0〉/2,

after 2N turns of the map, using the process described in
Sec. IV. At the end of the modulation, each particle orbit can
be classified using the main and secondary tune values. Tune
analysis is performed to provide an accurate identification
of the region in which each initial condition is trapped at
the end of the evolution process. The region identification
is performed by looking at the frequency of the final orbits,
according to the approach described in Appendix C.

The first study consists of scrutinizing how the initial dis-
tribution of particles is transformed into the final one, i.e., how
the initial conditions are shared between the islands. Figure 8
shows the fraction of particles found in each island, for a
family of uniform annular initial distributions, as a function

of their amplitude
√

x2
0 + p2

0 = √
2J0. For each histogram

bin, Np = 1 × 103 particles have been generated, uniformly
distributed in an action interval of width of 0.01, and we
calculated, at the end of the modulation process, how many

particles of each annulus were trapped in each island. This
is repeated for four values of the final exciter amplitude. We
observe that when ε = 0, all islands have the same behavior
and capture particles at the same amplitudes. Furthermore, at
small amplitude, the islands do not trap any initial condition,
and these are then left orbiting around the stable fixed point
at the origin of the phase space. As ε increases, we see that
particles, even at low amplitudes, are trapped more and more
in the main island (the east island), whereas smaller islands
begin to trap particles only at higher amplitudes. This behavior
is not possible for the standard Hénon map, which is shown in
the top-left plot, and is the main effect that led to the use of an
exciter in the application of this process to accelerator physics.

The final distributions of the particles are shown in Fig. 9,
where the color scale encodes the initial amplitude. As the
value of ε increases, the asymmetry between the islands
becomes more and more visible. Furthermore, the set of par-
ticles left at the center of the phase space is reduced until
it is completely emptied at the largest value considered, i.e.,
ε = 10−3. It should be noted that low-amplitude particles are
trapped in the inner region of the islands, or in the center, for
the case ε = 0. However, as ε increases, the low-amplitude
particles are trapped in the main island, while the other is-
lands trap the higher-amplitude particles, in agreement with
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FIG. 9. Final state in the phase space (x, p) for a family of initial annular uniform distributions of particles with amplitudes 0 �√
x2

0 + p2
0 � 0.25 for four values of ε using the same parameters of the numerical simulations whose results are shown in Fig. 8. Note that the

upper-left plot corresponds to a standard Hénon map without external exciter. The color scale encodes the initial amplitude.

the results shown in Fig. 9. The red halo visible in Fig. 9 is
generated by large-amplitude particles that are not trapped in
any island.

Several additional studies were carried out with the aim
of assessing the dependence of the trapping process on the
parameters of the model considered. We defined a set of
parameter values that we consider as the default when others
are varied to study the dependence of the trapping frac-
tion. The default values consist of the maximum exciter
amplitude (ε = 1 × 10−4), its constant frequency (ω/(2π ) =
1/4), its phase (ψ0 = 0), and we also include the octupo-
lar coefficient (κ = 0.1). The rotation frequency ranges from

ω0,0/(2π ) = ω0,N/(2π ) = 1/4 − δ/(2π ) to ω0,2N/(2π ) =
1/4 + δ/(2π ), with δ/(2π ) = 5 × 10−4. The total number of
simulated turns is 2N = 2 × 105, and the initial conditions are
normally distributed, inspired by what occurs in accelerator
physics applications, in both x and p, with standard deviations
σx = σp = 0.1, which account for an initial average action of
〈J0〉 = 0.01. Although the approach followed here provides
an essential understanding of the main features of the process
under study as a function of the various model parameters,
it goes without saying that a global optimization of the en-
tire process e.g., in the sense of defining the target trapping
fraction in each island, which would be needed in the case of
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FIG. 10. Final trapping fraction in each island, in the core region, in the external region, and ratio between the final trapping fraction in
the main island and that of the sum of all islands for a normal random distribution of Np = 3 × 103 initial conditions under the evolution of
the map of Eq. (3) with ω/(2π ) = 1/4 changing one parameter at a time and keeping all the others fixed to the default values of ε = 10−4,
δ/(2π ) = 5 × 10−4, κ = 0.1, ψ0 = 0, 〈Ji〉 = 0.01, N = 105 (the vertical line represents the default value of the parameter). Starting from the
top-left graph, the final trapping fraction of the distribution is plotted against the exciter strength value ε (log scale), the main frequency change
2δ (log scale), the number of time steps N (log scale), the strength of the cubic nonlinearity κ (linear scale), the initial phase of the exciter ψ0

(linear scale), and the average initial action 〈Ji〉 (linear scale). The legend shown on the top-left graph is valid for all other graphs.

realistic applications, would require a global multiparameter
optimization, not a scan of a single parameter at a time.

Figure 10(a) shows the fraction of initial conditions trapped
in each island and the ratio between the trapping in the main
island (as ψ0 = 0, this is the east island) as a function of the
final exciter amplitude ε. We observe that the difference in
trapping between islands increases with ε. The peculiar be-
havior of the dominant island is clearly visible: For all values

of ε > 10−5, it can be observed that the east island captures
the highest fraction of initial conditions (up to ≈60% of the
initial distribution, which represents ≈90% of the islands),
followed by the north and south islands and then the smallest
west island. The effect is more prominent for large values of
ε, whereas for ε → 0 all islands tend to behave the same.
Note that the situation at ε = 10−6 is almost indistinguishable
from that of the Hénon map without exciter. However, the
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total number of particles in the islands increases only slightly,
and until ε ∼ 1 × 10−4. Above that value, the total number of
particles in the islands is reduced because a larger number of
particles are expelled to the external region of the phase space.

If we study the trapping properties as a function of the fre-
quency excursion 2δ (for which ω varies from ω − δ to ω + δ)
[see Fig. 10(b)], we observe that if the frequency variation is
not large enough, most particles will not be trapped in the
islands, but will be expelled in the external region. In this
situation, the area of the island structure is not large enough
to match the initial action of most particles, which therefore
do not get trapped. At the other extreme, for large values of
2δ/(2π ), a small decrease in trapping is observed in some
islands, which is due to the loss of particles due to escape to
infinity induced by nonlinearities. It is worth observing and
stressing how the parameter δ can be used to improve the
trapping fraction with respect to the default case.

The role of adiabaticity is visible in the results shown in
Fig. 10(c), where we present the trapping fraction in each
region as a function of the number of turns N during which the
modulations are performed. The fraction of particles success-
fully trapped increases with N reaching a plateau at N ∼ 104,
therefore confirming that the default value of 105 represents a
sufficiently slow modulation to apply adiabatic theory to the
system.

The role of the cubic nonlinearity present in the map is
studied and visible in the results shown in Fig. 10(d), where
we analyze the trapping fractions as a function of κ . The main
effect of the parameter κ , which represents the strength of
the cubic nonlinearity, is to cause a deformation of the phase
space, changing the shape of the islands. Furthermore, it also
reduces the extent of the stable region of the phase space, i.e.,
the region where a bounded motion occurs, causing escape
to infinity of orbits of several initial conditions. This behavior
becomes dominant in the region κ < −0.1. However, for large
positive values of κ , the islands become smaller and the time
derivative of their surface changes: Fewer particles are trapped
in the islands, although the ratio between the trapped fraction
in the main island and all islands does not change much from
what was observed when κ = 0.

Figure 10(e) shows the fraction of initial conditions trapped
in each island as a function of the exciter phase ψ0. We see
that, depending on ψ0, a different island will capture most
of the initial conditions, as we observed when looking at the
phase space of the stroboscopic map with different exciter
phases. This change is a smooth function of ψ0, and there
are special values of ψ0 for which two dominant islands are
present and whose size is comparable. The trapped fraction in
all islands, as well as the final population of the core and of
the external regions, is constant w.r.t. ψ0.

Finally, Fig. 10(f) shows the evolution of the trapping frac-
tion in each phase-space region as a function of the action
average of the initial distribution 〈Ji〉 = (σ 2

x + σ 2
p )/2. This

plot represents an integration over the initial normal random
distribution of what was observed in Fig. 8, which was ob-
tained using concentric annular distributions of the initial
conditions. As particles close to the origin are more likely to
be trapped in the main island, this effect is more prominent in
the case of initial distributions corresponding to small values
of 〈Ji〉. However, the other islands are populated with initial

FIG. 11. Comparison between the total trapping fraction into the
four islands using a double-resonant approach (ε = 10−4, black line),
and the Hénon map (with cubic nonlinearity, but no external exciter)
splitting (ε = 0, dashed line) as a function of the action average of the
normal distribution of the initial conditions. The vertical dotted line
represents the value of 〈Ji〉 used in other studies [parameter values:
ωr/(2π ) = 1/4, δ/(2π ) = 5 × 10−4, κ = 0.1, ψ0 = 0, N = 105,
Np = 3 × 103].

conditions starting at higher amplitudes. Therefore, wider dis-
tributions present a more balanced output, reducing the ratio
between the trapped fraction in the main island and the total
fraction trapped in all the islands. This improved balance is
achieved at the price of a reduced total number of trapped
particles in the islands, as the high-amplitude fraction of the
distribution of initial conditions lies beyond the phase-space
region covered by the islands. In this case, also, a higher value
of the parameter δ would allow an optimization of the trapping
process.

As a last consideration, we would like to highlight the pe-
culiar behavior introduced by the double-resonance condition,
which is shown in Fig. 11, as this can play a fundamental role
for applications. In that plot, the fraction of initial conditions
trapped in the islands is shown as a function of the average
action of the normal distribution of the initial conditions.
Two cases are reported, namely the Hénon map (with cubic
nonlinearity but no external exciter) and the special map with
external exciter fulfilling a double-resonance condition.

The difference in behavior between the two models is
clearly seen for initial distributions with an average action
value close to zero. In this condition, the Hénon map features
a total fraction of initial conditions trapped in the islands that
goes to zero, while when the exciter is in action, the fraction of
initial conditions trapped in the islands tends to one. The dif-
ference between the two models fades away as 〈Ji〉 increases.
Therefore, the use of the exciter with a double-resonance
condition allows efficient control of particle trapping even
for the case of initial distributions of a rather small extent in
phase space, for which the natural trapping would naturally be
very low.

VI. CONCLUSIONS

In this paper we have presented the detailed study of a
double-resonance condition for a 2D model of a nonlinear
Hénon-like map. The double resonance occurs because the
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main frequency of the map is close to a rational value (1:4
in our case), and the corresponding resonance is excited by
the nonlinearities of the map and the frequency of a time-
dependent external exciter, whose frequency is in resonance
1:1 with the main frequency of the system.

The corresponding normal form Hamiltonian model has
been constructed and studied in detail. This model is of
paramount importance for understanding the scaling proper-
ties for the various model parameters and the fixed point and
islands topology in the phase space, which can be transferred
to the map model. The Hamiltonian model clearly indicated
that the key feature introduced by the double-resonance condi-
tion is an asymmetry in the island structure of the Henon map.
In fact, one island grows and becomes dominant with respect
to the other three. Furthermore, the structure of the single
separatrix of the Hénon map is completely altered and split
in two separatrices. These effects provide an original and new
phase-space foliation that has deep implications for adiabatic
trapping and transport in phase space.

After the analysis of the phase-space topology, the study of
adiabatic trapping in the islands was carried out. According
to the theory of adiabatic resonance crossing, a distribution
of initial conditions can be partially trapped into the various
structures in phase space, generated by separatrices of the
frozen system. By means of detailed numerical simulations,
we showed that trapping actually occurs and we studied the
dependence of its properties on the various model parameters.
These studies can be used to optimize the trapping process,
which is an essential aspect for the application of this novel
double-resonance system. It is important to stress that the
results obtained qualitatively agree with the experimental ob-
servations and that the use of an external exciter that satisfies a
double-resonance condition allows the probability of trapping
to increase in the islands.
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APPENDIX A: DERIVATION OF THE HAMILTONIAN
MODEL OF EQ. (4)

To derive the normal form Hamiltonian for the map of
Eq. (3), we initially take advantage of the known Birkhoff
normal form expansion of the pure Hénon map close to the
fourth-order resonance up to the third order, which provides
an interpolating Hamiltonian of the form

H(φ, J ) = ω0(λ)J + J2

[

2

2
+ A cos(4φ − 2πt )

]
, (A1)

where ω0(λ) = π/2 + δ(λ), λ = εt , and the normal form
computation gives the coefficients of the Hamiltonian [38]:


2 = − 1
8 − 3

8κ + O(δ),

A = 1
16 (1 − κ ) + O(δ). (A2)

Then we introduce the resonant exciter that corresponds to
a linear term ∝ x in the Hamiltonian according to the defini-
tion in the map (3). To express x as a function of action J and

angle φ, we introduce the complex variables z = x − ip, its
complex conjugate z∗, the conjugating function of the normal
form transformation �(ζ , ζ ∗), and action 2J = ζ ζ ∗. At the
first perturbation order in J the expansion of x reads

x = z + z∗

2
= ζ + ζ ∗

2
+ �(ζ , ζ ∗) + �∗(ζ , ζ ∗)

2
, (A3)

with

�(ζ , ζ ∗) =
∑
n�2

n∑
k=0

φk,n−kζ
kζ ∗n−k . (A4)

In action-angle variables, Eq. (A3) becomes

x(φ, J ) =
√

2J cos φ

+
∑
n�2

(2J )n/2
∑
k�n

Re(φk,n−k ) cos[(2k − n)φ]

=
∑
��1

x�(J ) cos(�φ), (A5)

where

x1(J ) =
√

2J

⎡
⎣1 +

∑
n�1

(2J )nRe(φn+1,n + φn,n+1)

⎤
⎦,

x�(J ) =
∑

n

(2J )n/2Re
(
φ n+�

2 , n−�
2

+ φ n−�
2 , n+�

2

)
� > 1, (A6)

and it is worth noting that the numbers � and n in the previous
equation must have the same parity.

The Hamiltonian of Eq. (A1), with the contribution of the
exciter, then can be written as

H = ω0(λ)J + J2

[

2

2
+ A cos(4φ − 2πt )

]

+ ε
∑

�

x�(J ) cos(�φ) cos(ωt + ψ0). (A7)

The last term of Eq. (A7), can be rewritten introducing the
slow angle θ = φ − πt/2 according to

cos(�φ) cos(ωt + ψ0)

= 1

2

[
cos

[
�θ + � + 1

2
πt + �(λ)t + ψ0

]

+ cos

[
�θ + � − 1

2
πt − �(λ)t − ψ0

]]
, (A8)

where �(λ) = ω − ωr . When �(λ) = 0, the time average of
Eq. (A8) is cos(θ + ψ0)/2 only for � = 1, and zero otherwise,
and the averaged expansion of x, up to order J3, becomes

〈x(J )〉 =
√

2J[1 + 2J Re(φ21 + φ12)]

=
√

2J (1 + c1J ), (A9)

where c1 is a constant term whose value can be retrieved from
the computation of the terms of � in normal form [in our case,
we have c1 = 2Re(φ21 + φ12) = O(δ)]. Neglecting terms of
order O(δ) in the resonant term, the Hamiltonian of Eq. (4)
follows.
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FIG. 12. Left: Main tune ν0 [color scale, computed as in Eq. (C1)] for a grid of initial conditions (x0, p0) of the map of Eq. (3). Separatrices
have also been represented (black line). Right: Secondary tune ν1 [color scale, computed as in Eq. (C2)] for the same set of initial conditions
and the same map [parameter values: � = 0, ε = 10−4, δ/(2π ) = 0.005, ψ0 = 0].

APPENDIX B: FIXED POINTS AND RESONANCE ISLANDS

To describe the properties of the Hamiltonian phase space
[see Eq. (4)] and to discuss the resonance-trapping phenomena
when the parameters ε and ω0 are varied, we start from the
fixed-point analysis in the case ψ0 = 0. Since

∂H
∂θ

= −4AJ2 sin 4θ − ε

2

√
2J sin θ, (B1)

we have exact solutions to the fixed-point equation for θ =
0, π and approximate solutions at O(ε), close to θ = ±π/4
and θ = ±π/2. In the first case, it is more convenient
to write the Hamiltonian using Cartesian coordinates X =√

2J cos θ, Y = √
2J sin θ , and consider the solutions of ∂∗

∂HX
at Y = 0 that reduce to the cubic equation

−κ

3
X 3 + δX + ε

2
= 0. (B2)

The exact solutions could be retrieved using the well-known
Cardano formulas. However, for a qualitative analysis of the
existence of solutions, it suffices to study the sign of the
discriminant κδ3 − 27κ2ε2/64. Assuming κ > 0 and ε > 0,
we have three real solutions if

δ

ε2/3
>

3

4
κ1/3 = δ̂1 (B3)

and a single real (positive) solution otherwise. According to
Descartes’ rule of signs, one of the three real solutions is
found on the positive X semiaxis (i.e., at θ = 0) and two on the
negative one (θ = π ). The three real solutions are the elliptic
points of three stable regions: the center and two islands,
the west and east islands, according to our nomenclature.
For δ smaller than the critical value, the real single solution
coincides with the origin of the phase space when ε = 0, and
represents the displacement of the central region, which is
found at a distance ≈ ε for small values of ε and ≈ ε1/3 for
large values of the exciter amplitude. The solutions for Y = 0
are given by the equation

−κ2 − 1

4κ
X 3 + δ

κ − 1

κ
X + ε

2
= 0 (B4)

with

Y = ±
√

4δ

κ
− X 2

κ
, (B5)

which gives up to six extra fixed points, symmetrical w.r.t. the
axis X = 0.

Assuming κ < 1, Eq. (B4) has up to three real roots if

δ

ε2/3
>

3

4

[
κ2(κ + 1)

(κ − 1)2

]1/3

= δ̂2 (B6)

and one real root otherwise. For κ < 1/3 we have δ̂2 < δ̂1.
In the top three plots of Fig. 6 we show three different

phase-space portraits of the Hamiltonian of Eq. (4) for ψ = 0,
κ = 0.1 and three possible configurations depending on the
value of δ̂ = δ/ε2/3 (where the scales of x and p depend on
the value of ε). For δ̂ < δ̂2, we only have a fixed point on the
positive semiaxis x, which means that a single island (the East
island) is present in the phase space. For δ̂2 < δ̂ < δ̂1 we still
have a fixed point on the positive x semiaxis and the other
four symmetric fixed points (two elliptic and two hyperbolic),
which create two equal islands, the north and south islands.
Finally, for δ̂ > δ̂2 we have three real roots, both in Eq. (B2)
and in Eq. (B4). On the x axis, we can find the centers of three
regions: The newly created west island, the stable center, and
the usual east island, while we still have the north and south
islands. Of course, for ε = 0 we retrieve, as δ̂ → ∞, the usual
structure of the Hénon map.

APPENDIX C: USE OF THE MAIN TUNE TO IDENTIFY
PHASE-SPACE REGIONS

The frequency (main tune) associated to each closed orbit
is evaluated using the so-called average phase advance method
[39,40] over N = 4096 turns:

ν0 = 1

2πN

N∑
n=1

atan
xn pn−1 − xn−1 pn

xnxn−1 + pn pn−1
. (C1)

In the left plot of Fig. 12 we have computed the main tune
ν0 for a set of initial conditions defined on a grid in the phase
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space (x, p), and we observe that ν0 locks to the exact resonant
value ωr/(2π ) = 1/4 not only within the islands, but also in
the area enclosed by the outer separatrix. This result allows
distinguishing between initial conditions that are in the region
enclosed by these separatrices, but not those that are in the
islands. To this end, we used the secondary tune ν1, which is
the average phase advance computed on the stroboscopic map,
i.e.using only the fourth iterate of the map, according to

ν1 = 4

2πN

N/4∑
n=1

atan
x4n p4n−4 − x4n−4 p4n

x4nx4n−4 + p4n p4n−4
, (C2)

and which is plotted, for the same set of initial conditions, in
the top-right plot of Fig. 2. In fact, it can be observed that ν1

changes sign within and outside the islands. The secondary

tune ν1 is the rotation frequency of a particle around the
center of the island and can be used to discriminate whether
or not a particle is in an island. Moreover, its sign provides the
direction of rotation around the stable fixed point, which can
be used to distinguish between the islands and the core region.

Therefore, we define a particle to be trapped in an island if
ν0 = 1/4 and ν1 < 0. Furthermore, by looking at the angle
in the phase space of the final condition, it is possible to
determine the specific island where the particle is. The par-
ticles with ν1 > 0 are in the core region and the remaining
particles, i.e., those with ν0 
= 1/4 are classified in the external
region. It should be mentioned that given the finite precision
of the method used to determine ν0, a tolerance, based on the
precision of the method [39,40], should be defined to assess
when ν0 can be considered equal to 1/4.
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