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Chaos and quantization of the three-particle generic Fermi-Pasta-Ulam-Tsingou model. II.
Phenomenology of quantum eigenstates
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We undertake a thorough investigation into the phenomenology of quantum eigenstates, in the three-particle
Fermi-Pasta-Ulam-Tsingou model. Employing different Husimi functions, our study focuses on both the α-type,
which is canonically equivalent to the celebrated Hénon-Heiles Hamiltonian, a nonintegrable and mixed-type
system, and the general case at the saddle energy where the system is fully chaotic. Based on Husimi quantum
surface of sections, we find that in the mixed-type system, the fraction of mixed eigenstates in an energy shell
[E − δE/2, E + δE/2] with δE � E shows a power-law decay with respect to the decreasing Planck constant
h̄. Defining the localization measures in terms of the Rényi-Wehrl entropy, in both the mixed-type and fully
chaotic systems, we find a better fit with the β distribution and a lesser degree of localization, in the distribution
of localization measures of chaotic eigenstates, as the controlling ratio αL = tH/tT between the Heisenberg time
tH and the classical transport time tT increases. This transition with respect to αL and the power-law decay of
the mixed states, together provide supporting evidence for the principle of uniform semiclassical condensation
in the semiclassical limit. Moreover, we find that in the general case which is fully chaotic, the maximally
localized state, is influenced by the stable and unstable manifold of the saddles (hyperbolic fixed points), while
the maximally extended state notably avoids these points, extending across the remaining space, complementing
each other.
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I. INTRODUCTION

This paper is a continuation of our recent paper
(paper I) [1] in which we have studied in detail classical and
quantum aspects of the well known paradigmatic Fermi-Pasta-
Ulam-Tsingou (FPUT) model [2]. We are specializing on the
few-body case, the three-particle FPUT system, which is re-
duced to one particle in two-dimensional potential, described
as two identical harmonic oscillators coupled by cubic and
quartic potential terms. This is so called α-FPUT (system) in
the case of purely cubic couplings (it is precisely the cele-
brated Hénon-Heiles system [3]), or β-FPUT (in the case of
purely quartic couplings), and αβ-FPUT in the general case.

Our focus in paper I was the relevance of classical chaos,
in particular of the mixed-type structure of the phase space
and the degree of chaos as measured by the smaller alignment
index (SALI) method [4–8], for the quantal energy spectra
and their statistical properties. We analyzed the semiclassical
limiting behavior of the energy spectra. First, our explicit
analytic results for the quantum density of states (DOS), using
the Thomas-Fermi rule, are derived and compared with the
exact (numerical) quantum DOS. They nicely agree, as well
as they do agree with the DOS based on the quantum typ-
icality method [9–11], particularly concerning the smoothed
part. Next, the energy spectra were studied, in the case of
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mixed-type classical (divided) phase space. In the case of no
quantum (or dynamical) localization the Berry-Robnik (BR)
picture [12] is confirmed, the level spacing distribution fol-
lows the BR formula: The extracted quantum BR parameter
(the relative size of the chaotic component) agrees with the
classical value within better than one percent. If the localiza-
tion effects of the chaotic eigenstates are included, the level
spacing distribution is generalized to Berry-Robnik-Brody
(BRB) distribution, as the localized chaotic eigenstates are
(empirically) well captured by the Brody level spacing distri-
bution [13–15]. The BRB distribution is found to excellently
fit the numerical distribution. In this way we have followed the
classical and quantum transition from regularity to chaos, by
increasing the energy of the system. This transition also has
been described by the ratio of consecutive level spacings (so-
called spacing ratio, which does not depend on the unfolding
procedure).

In the present paper we study in detail the structure and sta-
tistical properties of the eigenstates, by means of the Husimi
functions, which are Gaussian smoothed Wigner functions, or
equivalently, absolute squared projections of the eigenstates
on the coherent states. We study the Husimi quantum sur-
faces of section (QSOS) [16,17], which are precise analog of
the classical Poincaré SOS, as well as various projections of
the Husimi functions. In doing so, the classical structure of
the mixed-type phase space is clearly revealed. We use the
overlap index M, introduced by Batistić and Robnik [18],
which measures the degree of the overlap of the QSOS with
the clasical regular (M = −1) or chaotic (M = +1) region,
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or it measures the partial overlap with both regions such that
|M| < 1. Using this index we look at its distribution at given
energy (in a very narrow energy shell, for the first time, in
a genuinely continuous Hamiltonian system with a smooth
potential) and sufficiently small Planck constant, comprising
about 1200 eigenstates. We show again that the fraction of
mixed states with |M| < 1 decreases as a power law with de-
creasing Planck constant, like it was shown before in billiards
[19], kicked top [20], and Dicke model [21].

Using the index M we separate the chaotic eigenstates
M � 0.8 (those which live inside the classical chaotic com-
ponent, and can be localized there) and study their quantum
phase space localization phenomena. We introduce various
entropy localization measures (ELM) based on α-Rényi-
Wehrl entropy: The information entropy at α = 1 and inverse
participation ratio at α = 2. Then we study the statistical prop-
erties of ELM, showing that their distribution is well captured
by the β distribution, in perfect agreement with the results of
the same analysis in many other systems, e.g., billiard systems
[19,22–24], kicked top [25], and Dicke model [26]. We also
observe that most localized eigenstates in the fully chaotic
(ergodic) general αβ-FPUT system, with λ = 1/16 at the
energy E = 1/3, are strongly localized around the hyperbolic
fixed point and its stable and unstable manifolds, contributing
to the lower tail of the localization measure distribution. This
is an analogy of the strong localization in the classical sticki-
ness regions observed in the ergodic lemon billiard [23]. This
effect, however, is expected to disappear in the strict semiclas-
sical limit, according to the principle of uniform semiclassical
condensation (PUSC) [27–32].

The paper is structured as follows. In Sec. II we define the
details of the classical FPUT system, specialize to the three
particle case and perform the quantization procedure by in-
troducing the rotated bosonic operators and the corresponding
circular two-mode basis and relating them to the Cartesian-
mode basis. In Sec. III we define the Husimi functions, the
quantum surface of section, i.e., Husimi QSOS, as well as
the various projections of the Husimi function. In Sec. IV
we introduce the overlap index M, look at its distributions,
and demonstrate the power-law decay of the fraction of the
mixed eigenstates with the decreasing Planck constant. In
Sec. V we introduce the localization measures based on the
Rényi-Wehrl entropy, and look at their distribution, also in re-
lation to the controlling parameter, the ratio of the Heisenberg
time, and the classical transport time. In Sec. VI we con-
clude and discuss the results and the outlook. We present in
Appendixes A–D mathematical details, as well as the gallery
of eigenstates, represented by the Husimi functions both for
the Hénon-Heiles system and the general case, in the Supple-
mental Material [33].

II. HAMILTONIAN AND CIRCULAR TWO-MODE BASIS

In this section, we present a brief overview of the
canonically equivalent Hamiltonian that governs the classical
dynamics of a three-particle FPUT, and its quantization using
rotated bosonic operators. Then, for the discussion of prop-
erties of circular two-mode basis, in which the matrix form
of Hamiltonian is expressed, we derive a Wigner d-matrix
decomposition of the unitary transformation from this circular
basis to the Cartesian two-mode basis.

FIG. 1. Classical Poincaré surface of section for α-FPUT with
α = 1 at two energies, E = 0.14 (a) and E = 0.16 (b), and for
the general case with λ = 1/16 at E = 1/3 the saddle energy (c),
generated by one single chaotic orbit.

A. Canonically equivalent Hamiltonian of generic
three-particle FPUT

The generic three-particle FPUT is a chain of N = 3 mov-
ing particles with nearest-neighbor interaction given by a
potential V , the Hamiltonian of such a system is given by

H =
N∑

j=1

(
y2

j

2
+ V (x j+1 − x j )

)
, (1)

with the periodic boundary condition x1 = xN+1, where x j is
the displacement of the particles with respect to the equilib-
rium positions and y j is the corresponding momentum, and
the potential is

V (s) = 1

2
s2 + α

3
s3 + β

4
s4. (2)

α-FPUT refers to the case β = 0, while in the β-FPUT case
α = 0. In paper I, after transforming to the normal mode
representation, we have rescaled the Hamiltonians in the cen-
ter of mass frame and obtained the canonically equivalent
Hamiltonians

Hα = 1

2

2∑
i=1

(
p2

i + q2
i

) + α

(
q2

1q2 − 1

3
q3

2

)
(3)

for α-FPUT, which is also known as the Hénon-Heiles Hamil-
tonian, where q1 and q2 are rescaled normal modes. Moreover,
for β-FPUT,

Hβ = 1

2

2∑
i=1

(
p2

i + q2
i

) + 3β

4

(
q2

1 + q2
2

)2
, (4)

while for the general case (αβ-FPUT),

H = 1

2

2∑
i=1

(
p2

i + q2
i

) + q2
1q2 − 1

3
q3

2 + λ
(
q2

1 + q2
2

)2
, (5)

where we denote the coupling parameter of the quartic term
as λ = 3β/(4α2). In Fig. 1 we show several examples of
classical Poincaré surface of section (SOS).

For the quantization, we define q̂± = q̂1 ± iq̂2, p̂± = p̂1 ±
i p̂2, and introduce the rotated bosonic operators as

a± = 1√
2

(a1 ∓ ia2) = 1

2
√

h̄
(q̂∓ + i p̂∓),

a†
± = 1√

2
(a†

1 ± ia†
2) = 1

2
√

h̄
(q̂± − i p̂±), (6)
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where the annihilation and creation operator fulfill the canoni-
cal commutation relations [ai, a†

j ] = δi j , with i, j ∈ {1, 2,±}.
We can then check that for n̂ the number operator and the
angular momentum operator �̂ = (q̂1 p̂2 − q̂2 p̂1)/h̄ fulfill

n̂ = a†
1a1 + a†

2a2 = a†
+a+ + a†

−a−,

�̂ = i(a†
2a1 − a†

1a2) = a†
+a+ − a†

−a−, (7)

and the quantized Hamiltonian of α-FPUT can be compactly
written as

Ĥα = h̄(n̂ + 1) − iα(q̂3
+ − q̂3

−)/6, (8)

while for the general case

Ĥ = h̄(n̂ + 1) − i(q̂3
+ − q̂3

−)/6 + λ(q̂+q̂−)2. (9)

In circular two-mode basis states |n, l〉, defined as the si-
multaneous eigenfunctions of n̂ and �̂, where l = −n,−n +
2, · · · , n (n ∈ N0), n is the radial quantum number and l
is the orbital angular momentum, we have the expressions
for matrix elements of the cubic and quartic coupling terms
(see Appendix A). The cubic term in quantum α-FPUT
couples states with �l = ±3; therefore, the coupling takes
place in three decoupled sets of basis states: the singlet
{a} l ∈ {· · · − 6,−3, 0, 3, 6 . . . }, two doublets with the same
eigenspectra {b} l ∈ {· · · − 5,−2, 1, 4 . . . } and {c} l ∈ {· · · −
4,−1, 2, 5 . . . }. This property of eigenspectra can also be ver-
ified from the C3v symmetry of the classical Hamiltonian, that
they must belong to the irreducible representations of the point
symmetry group C3v: The subspaces of two doublets are of E
symmetry and degenerate, and the singlet is a combination
of (A1, A2) symmetry. The quartic term in quantum β-FPUT
does not introduce any coupling between different l , due to
the conservation of angular momentum.

B. Properties of the circular two-mode basis

Given the definition of rotated-bosonic operators and the
corresponding circular two-mode basis |n, l〉, the Fock space
can be spanned as

|n, l〉 = |n+ + n−, n+ − n−〉 = (a†
+)n+ (a†

−)n−
√

n+!n−!
|00〉, (10)

where |00〉 is two-mode vacuum and n = n+ + n−, l = n+ −
n−. The interpretation of these relations is direct:

n̂+ = a†
+a+, n̂− = a†

−a−, �̂ = n̂+ − n̂−, (11)

n̂+ stands for counterclockwise rotation with positive angular
momentum, and n̂− refers to clockwise rotation with negative
angular momentum.

The expansion of Eq. (10) defines the unitary transfor-
mation � between the circular-mode basis |n, l〉 and the
Cartesian-mode basis |n1, n2〉

|n, l〉 =
∑
n1,n2

�nl
n1n2

|n1, n2〉, n = n1 + n2, (12)

where �nl
n1n2

, the elements of �, are all sums of many factorials
of large numbers with alternating signs for n � 1, because
of which a direct numerical evaluation would suffer from
serious errors and instability at large n, very similar to the

longstanding problem of the evaluation of the Wigner d matrix
at high spins [34].

To avoid these large factorials in the numerical evaluation,
a further analytical expression of �nl

n1n2
is essential. Setting

n = 2 j, l = 2m, in Appendix B we have proven that

|n, l〉 := |2 j, 2m〉 =
j∑

m′=− j

O j
m,m′ | j + m′, j − m′〉, (13)

with the correspondence

�nl
n1n2

= O j
m,m′ , n1 = j + m′, n2 = j − m′, (14)

where the coefficients O j
m,m′ are particular instances of the

rotation matrix elements, which we write as

O j
m,m′ = im′− jd j

m,m′ (π/2)

= im′− j〈 jm|e−iπJy/2| jm′〉, (15)

where d j
m,m′ (θ ) is the Wigner d matrix, Jy is one generator

of the Lie algebra of SU(2) and SO(3), component of the
angular momentum operator. O j

m,m′ then can be calculated
quite effectively by the sparse matrix exponential, using the
kernel polynomial method [10].

III. HUSIMI FUNCTION

As a Gaussian coarse graining of the Wigner function,
Husimi function is a powerful tool to study the quantum-
classical correspondence in quantum systems. Equivalently,
it can be defined as the projection of the wave function onto
the coherent state. In quantum three-particle FPUT, for the kth
energy eigenstate |Ek〉, the Husimi function is given by

Hk (α1, α2) ≡ Hk (q1, p1; q2, p2) = |〈α1, α2|Ek〉|2, (16)

where |α1, α2〉 = |α1〉 ⊗ |α2〉 is the product coherent state,
and

1

π2

∫
|α1, α2〉〈α1, α2|d2α1d2α2 = I. (17)

The coherent state |αi〉 defined as ai|αi〉 = αi|αi〉 with αi =√
1/2h̄(qi + ipi ), can be expanded in terms of Fock states as

follows:

|αi〉 = e− 1
2 |αi|2

∞∑
ni=0

α
ni
i√
ni!

|ni〉, i = 1, 2. (18)

The Husimi function for |Ek〉 can be then written as

Hk (α1, α2) =
∣∣∣∣ ∑

n1,n2

Bk
n1n2

〈α1|n1〉〈α2|n2〉
∣∣∣∣2

,

Bk
n1n2

=
∑
n,l

Ck
nl�

nl
n1n2

=
∑
j,m,m′

Ck
jmO j

m,m′ , (19)

where Ck
jm := Ck

nl = 〈n, l|Ek〉 are the expanding coefficients.
From the properties of circular two-mode basis, we have
verified in Appendix C that the Husimi function can be equiv-
alently expressed as

Hk (α1, α2) =
∣∣∣∣∑

n,l

Ck
nl〈α+, α−|n, l〉

∣∣∣∣2

, (20)
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FIG. 2. Examples of Husimi functions of six eigenstates in the energy interval [E − δE/2, E + δE/2] at E = 0.14 with δE/E 
 0.0014,
for the singlet of α-FPUT with α = 1. Here, the irreducible Hilbert space is of size NS = 60301, with the cutoff of n set to N = 600 and the
Planck constant h̄ = 1 × 10−3. Panels (a1)–(a6): Husimi QSOS given by Eq. (25) plotted in the logarithmic scale, the darkest blues show the
area where Q̄k (α2) < 10−11. Panels (b1)–(b6) are plots of the completely projected Husimi functions Pk (α2) of Eq. (26) and panels (c1)–(c6)
are the projected Husimi functions from the classical energy shell P̃k (α2) given by Eq. (27). Panels (d1)–(d6): projected Husimi functions in
configuration space P̃k (q) of Eq. (28). The darker colors in panels (b1)–(d6) for projected Husimi functions indicate larger density, where the
color scale on the right encodes the relative amplitude. Panels from the same column correspond to the same eigenstate.

where α± = (α1 ∓ iα2)/
√

2, and

〈α+, α−|n, l〉 := (α∗
+)n+ (α∗

−)n−
√

n+!n−!
e−(|α+|2+|α−|2 )/2 (21)

provides coherent state |α±〉 defined to be the eigenstate of the
(rotated) annihilation operator a±.

A. Husimi quantum Poincaré surface of section

To facilitate a comprehensive comparison with classical
calculations, especially the classical SOS, the Poincaré QSOS
based on Husimi function as the quantum analog of the clas-
sical SOS is necessary to be defined. Similar to the classical
SOS on q1 = 0 plane with p1 > 0, one can define the (nor-
malized) Husimi QSOS namely as

Q̄k (α2) = 1

Ak
Hk (ᾱ1, α2), ᾱ1 = (q̄1 + i p̄1)/

√
2h̄, (22)

where Ak = 1
π

∫
S Hk (ᾱ1, α2)d2α2 is a normalization constant

and S denotes the surface of section of the q1 = 0 plane at Ek .
q̄1 = 0, p̄1 = p+

1 (q1 = 0, q2, p2, Ek ) is the positive classical
momentum obtained from the classical Hamiltonian at the
surface of section,

p+
1 =

√
2Ek − 2H (q1 = 0, p1 = 0, q2, p2). (23)

The resulting Husimi QSOS of |Ek〉 then reads

Q̄k (α2) = 1

Ak

∣∣∣∣∣∣
∑
n1,n2

Bk
n1n2

〈ᾱ1|n1〉〈α2|n2〉
∣∣∣∣∣∣
2

. (24)

It can also be obtained directly from the circular basis accord-
ing to the expression given in Eq. (20),

Q̄k (α2) = 1

Ak

∣∣∣∣∣∣
∑
n,l

Ck
nl〈ᾱ+, ᾱ−|n, l〉

∣∣∣∣∣∣
2

, (25)

where ᾱ± = (ᾱ1 ∓ iα2)/
√

2. The Husimi QSOS proves valu-
able for investigating quantum systems with classical cor-
respondence. It can serve to unveil the phenomenology of
quantum eigenstates in mixed-type systems, such as the study
of statistical properties of the localization measure of chaotic
eigenstates, and the clarification of the effects of stickiness in
quantum states in billiard systems [22–24].

In Figs. 2(a1)–2(a6) we show the Husimi QSOS of six
consecutive eigenstates in the energy interval [E − δE/2, E +
δE/2] at E = 0.14 with δE/E 
 0.0014, for the singlet of
α-FPUT with α = 1 (in all the following we set α = 1 as
default), where N the cutoff of n is 600 and h̄ = 1 × 10−3. The
narrow energy window fulfills δE/E � 1, and this ensures
that these consecutive levels are associated with the same
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FIG. 3. Husimi QSOS plotted in the logarithmic scale, of the
same eigenstate as the one shown in Fig. 2(a1), but with much higher
resolution about ∼1 × 106 grid points. It corresponds to SOS of
Fig. 1(a).

classical SOS of E = 0.14 in the semiclassical limit. From
the semiclassical counting the number of energy levels, there
are approximately 16 times more levels provided above this
energy for the numerical calculation, enough to achieve a
good convergence of the numerical results with respect to the
cutoff. A clear correspondence is observable when comparing
plots of the Husimi QSOS with the classical SOS shown in
Fig. 1(a). For this mixed-type system, the displayed eigen-
states do not solely concentrate on the invariant tori within
the integrable region nor do they evenly distribute across the
chaotic area:

(1) There are chaotic eigenstates with different degrees of
localization, located almost totally in the chaotic region such
as the ones shown in Figs. 2(a1)–2(a3), or flooding into the
regular areas such as the cases shown in Figs. 2(a4)–2(a5).

(2) Some eigenstates are strongly localized around regular
regions as shown in Fig. 2(a6). Surrounding the boundaries
that separate the chaotic and regular region, visible patterns of
Husimi QSOS manifest as a result of quantum tunneling.

One interpretation of these observations is that the Planck
constant we have chosen here, h̄ = 1 × 10−3, is not so deep in
the semiclassical limit. In the present context, we have not
shown eigenstates entirely confined within regular regions.
A more comprehensive exploration of this phenomenon is
reserved for detailed exposition in Sec. IV. Further numer-
ous illustrative examples can be found in the Supplemental
Material [33], specifically showcased in Figs. S1(a1)–
S1(a80). These instances have been derived from a larger
ensemble of eigenstates, a procedure undertaken after intro-
ducing the overlap index as a meaure to separate the chaotic
and regular eigenstates. According to PUSC of Wigner or
Husimi functions, the mixed states should disappear in the
semiclassical limit according to a power law described below,
leaving behind only regular and chaotic states.

From Fig. 3, a replot with enhanced resolution of
Fig. 2(a1), we have another important observation: the
nonuniformity (localization) of chaotic eigenstates is at-
tributed to the classical boundaries between regular and

chaotic regions, where variations in the magnitude of the
Husimi QSOS are evident across these boundaries. Further-
more, within the chaotic region, there are embedded weak
(approximate) zeros of the Husimi QSOS [35–37], shown in
Fig. 3 inside the light spots some magnitude smaller than
the surroundings, which also contribute to the nonuniformity.
These weak zeros are owing to the mathematical property
of Husimi functions as the square moduli of complex an-
alytic functions, also referred to as the Bargmann-Husimi
representation of quantum states. Further factorization of the
Bargmann transform [38,39] proves that the Husimi functions
are completely determined by its zeros, therefore the geom-
etry of the quantum state can be essentially described by the
distribution of the zeros, the so-called stellar representation of
quantum states. The distributions of zeros show contrasting
behaviors for regular and chaotic states: they form regular
ordered patterns along the lines of invariant curves for regular
states and exhibit more disordered patterns for chaotic states.
Qualitatively, this can be seen in Fig. 3, where regular and
chaotic regions coexist: The zeros around the regular island
seem to lie on the outmost invariant torus, while in the chaotic
region they are scattered over the entire area.

Moreover, we show in Figs. 4(a1)–4(a6) examples of the
Husimi QSOS for the singlet of general FPUT, with λ =
1/16 and h̄ = 5 × 10−3, in an energy interval at E = 1/3,
the saddle energy (for more details of saddles, see paper I),
with δE/E 
 0.002. The classical SOS of the general case is
shown in Fig. 1(c), and indicates that the system is classically
fully chaotic at this energy, which has also been verified
by our calculation of μc, the relative phase space volume
of the chaotic region (volume in the energy surface of the
phase space by Liouville measure, see paper I). All Husimi
QSOSs of the chaotic eigenstates are nonuniformly extended,
and show different disordered pattern of weak zeros. The
nonuniformity disappears in the semiclassical limit according
to PUSC (see below).

B. Projected Husimi function

To identify quantum scars (or periodic orbits) embedded in
quantum states [40–42] and enhance the visualization of the
Husimi function, we project the Husimi function Hk (α1, α2)
completely into the phase space (q2, p2) of the second oscil-
lator, as

Pk (α2) = 1

π

∫
Hk (α1, α2)d2α1

=
∑

n1,n2,n′
2

Bk
n1n2

Bk∗
n1n′

2
〈α2|n2〉〈n′

2|α2〉, (26)

by first integrating out the variable α1. Pk (α2) can be referred
to as the completely projected Husimi function, because it in-
cludes all energy shells, bringing about a blurred visualization
of quantum scars [43].

Yet another definition of the projected Husimi function is
by first intersecting the Husimi function with the classical
energy shell at the respective eigenenergy Ek , and finalize
the integration thereafter (see Appendix C for details on the
computation of this projection), written as

P̃k (α2) = 1

2π h̄

∫
δ(Ek − H (q, p))Hk (α1, α2)dq1d p1. (27)
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FIG. 4. Examples of Husimi functions of six eigenstates in the energy interval [E − δE/2, E + δE/2] at E = 1/3 with δE/E 
 0.002, for
the singlet of general FPUT with λ = 1/16. Here, the cutoff of n is set to N = 600 and the Planck constant h̄ = 5 × 10−3. Panels (a1)–(a6):
Husimi QSOS given by Eq. (25) plotted in the logarithmic scale. Panels (b1)–(b6): projected Husimi functions in configuration space P̃k (q)
given by Eq. (28) plotted with the color scale on the right encoding the relative amplitude. Panels in the same column correspond to the same
eigenstate.

In Figs. 2(b1)–2(b6) we show the plots of Pk (α2) and in
Figs. 2(c1)–2(c6) the plots of P̃k (α2), for the same six con-
secutive eigenstates. Comparing these two type of plots, it is
evident that the completely projected Husimi function Pk (α2)
is just the blurred projected Husimi function. In all panels, the
scaring of chaotic eigenstates is evident.

To further clarify the corresponding family of periodic or-
bits contributing to the scaring, it is much better to project the
Husimi function into the configuration space. Similar to the
method used to obtain the projected Husimi function in phase
space of the subsystem, we can have the projected Husimi
function in configuration space as

P̃k (q) = 1

2π h̄

∫
δ(Ek − H (q, p))Hk (α1, α2)dp. (28)

It is worth noting that the projected Husimi function P̃k (q) we
have defined above, is related to the configuration-space prob-
ability density |ψk (q)|2 of the eigenstate (see the derivation
and flowchart shown in Fig. 13, Appendix C), where ψk (q)
can be written as a summation of the product of Hermite-
Gauss modes

ψk (q) = 〈q|Ek〉 =
∑
n1,n2

Bk
n1n2

〈q1|n1〉〈q2|n2〉, (29)

with

〈qi|ni〉 = 1

π1/4
√

2ni ni!
Hni (qi )e

−q2
i /2, i = 1, 2, (30)

where Hni (x) is Hermite polynomials. For large N , evaluating
ψk (q) becomes significantly harder for N > 100 due to large
factorials. In contrast, calculating projected Husimi functions
P̃k (q) remains easy, even for N > 1000.

In Figs. 2(d1)–2(d6) we present P̃k (q) the projected
Husimi functions in configuration space for mixed-type sys-
tem, of the same eigenstates which have been plotted in other
panels using other Husimi functions. As a comparison, we
also show in Figs. 4(b1)–4(b6) P̃k (q) for the general FPUT, of

which the corresponding classical dynamics is fully chaotic.
The chaotic eigenstates in all projections, either for mixed-
type system, or for fully chaotic system, display scarring
that may be associated with one single particular periodic
orbit from the corresponding classical dynamics, or as a su-
perposition of several periodic orbits, similar to the case of
Hydrogen atom in a uniform strong magnetic field [44–46].
In both α-FPUT and the general case, because of the same
C3v symmetry of the potentials, we see the scars in Figs. 2(d3)
and 4(b2), supported by the unstable periodic orbit from the
same B (“base”) family, which has been calculated by the
monodromy method [47]. Other periodic orbits underlying
different quantum scars, which have not been calculated by
the monodromy method, are possible to be classified using
the frequency analysis [48,49], is subject of our forthcoming
papers.

We close Sec. III B with one of the main conclusions of
this work: For a much more detailed study of the structure
and the statistics of localization measure of chaotic eigen-
states, one needs both Husimi QSOS and projected Husimi
functions. The former is essential for the classification of
different behaviors of eigenstates in mixed-type systems, be-
cause eigenstates in these systems can spread either over the
integrable region, or a chaotic component, or there is the
flooding of chaotic eigenstates from the chaotic region into
the regular region, the so-called mixed states, if the semi-
classical limit is not reached. The latter serves as a valuable
tool for identifying highly localized states and especially the
periodic orbits underlying quantum scarred states. These dif-
ferent types of Husimi functions work together to investigate
the mechanisms of localization, enabling a comprehensive
examination of this phenomenon.

IV. FRACTION OF MIXED EIGENSTATES

Due to the correspondence between the Husimi QSOS and
classical SOS, as shown in Sec. III A, we employ Husimi
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FIG. 5. (a) The histogram of distribution of the overlap index M for an ensemble of approximately 1200 eigenstates, in the energy interval
[E − δE/2, E + δE/2] at E = 0.14 with δE/E 
 0.01, for the singlet of α-FPUT, where the irreducible Hilbert space is of size NS ∼ 3.75 ×
105. Here, the cutoff N = 1500 and the Planck constant h̄ = (4 ± 0.016) × 10−4. (b) Regions of different (logarithmic) values of the SALI
on the classical SOS for E = 0.14 the same as Fig. 1(a), at t = 1000: the initial conditions colored dark blue correspond to chaotic orbits,
the yellowish color indicates ordered motion, and the intermediate color suggests sticky orbits. Panels (b1)–(b4): Husimi QSOS plotted in the
logarithmic scale, for four eigenstates selected from the ensemble, with different values of M index, from left to right M 
 −1, −0.5, 0.5, 1,
respectively, where the darkest blue indicates area where Q̄k (α2) < 10−11.

QSOS for the identification of regular, mixed, and chaotic
eigenstates, by the criterion of overlap with the classical SOS,
where one can use the SALI method to identify whether an
initial condition on the classical SOS belongs to the chaotic
or regular regions. As it was introduced and implemented
in previous works, for the kth eigenstate |Ek〉, the overlap is
quantified by the overlap index Mk , defined as [18,50,51]

Mk =
∫
S

dq2d p2 C(q2, p2)Q̄k (α2), (31)

where C(q2, p2) is +1 if (q2, p2) ∈ S belongs to the chaotic
region and −1 if it lies in the regular regions. By discretizing
the classical SOS into a rectangular grid of points indexed
by (i, j) centered in cells of equal area, Mk can be calculated
numerically as

Mk =
∑
i, j

Ci, jQ̄i, j
k /

∑
i, j

Q̄i, j
k , (32)

where Ci, j := C(q2,i, p2, j ), Q̄i, j
k := Q̄k (q2,i, p2, j ).

According to PUSC of Husimi functions, in the sufficiently
deep semiclassical limit, Mk should be either +1 or −1, for
chaotic or regular Husimi QSOS, respectively. However, as it
has been revealed in systems such as quantum billiards, the
actual value of Mk varies from −1 to +1, if the semiclassical
limit is not yet reached. This is confirmed by the histogram
shown in Fig. 5(a), where we show the distribution of the
overlap index M for an ensemble of approximately 1200
eigenstates, in the energy interval [E − δE/2, E + δE/2] at
E = 0.14 with δE/E 
 0.01, for the singlet of α-FPUT. It ex-
hibits a bimodal distribution, where the two peaks are located
at each end with M = −1 and M = +1. In the calculation
of M, we use the SALI method to numerically compute Ci. j

across the SOS. The criterion for the classification of initial

conditions belonging to a chaotic region is that SALI � 10−8

at t = 1000 (the unit of dimensionless time is one period of
the linear oscillator, for more details about this criterion, see
paper I). Figure 5(b) shows the SALI plot on the classical
SOS, where the value of SALI of each point is plotted us-
ing an assigned color accordingly. It shows some similarity
compared with classical SOS shown in Fig. 1(a), but there
are more details visible especially the stickiness on the border
between the regular and chaotic region. The relative area of
the chaotic components on the classical SOS ηc computed by
SALI is 0.674 at E = 0.14, where

ηc =
∫
S dq2d p2χc(q, p)

A(S )
, (33)

where A(S ) is the surface area of S the classical SOS,
χc(q, p) denotes the characteristic function of the chaotic
component, which takes the value of 1 on chaotic region and
zero otherwise.

In Figs. 5(b1)–5(b4) we show four typical examples of
Husimi QSOS from the ensemble, with different values of
M. Except the M = −1 state living in the regular islands
and the M = +1 state extending across the chaotic region,
there are mixed eigenstates with |M| < 1: the M 
 −0.5 state
shown in Fig. 5(b2) lives predominantly in the vicinity of the
regular islands with a small contribution in the main part of
the chaotic sea, which is referred to as the hierarchical state
in the study of quantum standard map [52]. It also exhibits
the tunneling process between the different islands. Most im-
portantly, there is the M 
 0.5 state shown in Fig. 5(b3) that
is flooding from the chaotic sea to the regular region. While,
it must be pointed out, the state shown in Fig. 2(a6) is of
M 
 0.52, although predominantly inside the chaotic region,
it is much less extended, due to dynamical localization. This
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FIG. 6. The histogram of distribution of overlap index M for
an ensemble of approximately 1200 eigenstates from the singlet of
α-FPUT, in the energy interval [E − δE/2, E + δE/2] with δE/E 

0.01, for energies E = 0.14 (top panels), and E = 0.16 (bottom pan-
els). The Planck constant is h̄ = h̄0 ± jh̄0/1000, where from left to
right h̄0 = 1 × 10−3 (with j = 0, 1, 2, 3, 4, 5), 7 × 10−4 (with j =
0, 2, 4), 4 × 10−4 (with j = 4).

reveals that the overlap index M is not directly correlated with
the extendedness, which we will discuss in more detail in
Sec. V, studying the statistics of the localization measures.

To illustrate a general trend in the reduction of mixed
eigenstates as one approaches a deeper semiclassical limit, we
have calculated the M index of an ensemble of about 1200
eigenstates, in narrow energy intervals with δE/E 
 0.01, for
different values of the Planck constant. It is worth emphasiz-
ing here in the numerical calculation of Husimi QSOSs, there
is an unavoidable computing limitation of the smallness of
h̄, due to the exponential term e−|α|2/2 = e−(p2+q2 )/2h̄ in the
definition of coherent state basis. From the analytical expres-
sion of the semiclassical density of states, consequently there
is a limitation of the number of energy levels in the energy
intervals. To achieve a statistically reasonable size of each
ensemble, we set h̄ = h̄0 ± jh̄0/1000, where the chosen j en-
sures the h̄ ∈ [h̄0 − δh̄0/2, h̄0 + δh̄0/2] with δh̄0/h̄0 � 0.01.
The narrow energy window and narrow window of Planck
constant ensure that eigenstates from the same ensemble have
approximately the same classical correspondence. Figure 6
shows the distribution of M index at two energies, for three
different h̄. The relative area of chaotic components is ηc =
0.865 on classical SOS at E = 0.16, therefore the relative
fraction of M = 1 states shown in Fig. 6(b) is larger than in
the case E = 0.14 shown in Fig. 6(a), where ηc = 0.674, and
for the M = −1 states the opposite.

With the decreasing h̄, the relative fraction of M = ±1
states increases accordingly, meaning that increasingly more
states either live in the purely regular region or the chaotic
sea, while the fraction of mixed eigenstates decreases, when
approaching a deeper semiclassical limit. To quantify the de-
cay of the fraction of mixed states, we define

χM (E , h̄) = N (M ∈ {M0, M1} |E , δE , h̄)

N (E , δE , h̄)
(34)

as the fraction of eigenstates with the overlap index M0 �
M � M1, given the total number of states N (E , δE , h̄) in an
energy interval, within δE � E . For the case −0.8 � M � 0,
the mixed states with more regular region occupation, we
see in Fig. 7(a) a power-law decay of χM (E , h̄) ∼ h̄ξ with

FIG. 7. Decay of the fraction of mixed eigenstates χM (E , h̄) with
respect to the Planck constant h̄, at two energies E = 0.14 (squares)
and E = 0.16 (circles), where δE/E 
 0.01 and N (E , δE , h̄) ≈
1200. The dash-dotted lines and dashed lines show the power law
χM (E , h̄) ∼ h̄ξ , where (a) is for mixed eigenstates with −0.8 � M �
0, and in (b) − 0.8 � M � 0.8.

respect to the decreasing value of h̄, where ξ = 0.421 for E =
0.14 and ξ = 0.320 for E = 0.16. For mixed eigenstates with
|M| � 0.8, with states neither predominantly in the regular
islands nor in the chaotic sea, χM (E , h̄) also follows a power
law of h̄, but with slightly different power exponents, as shown
in Fig. 7(b). It should be noted that the power-law decay of the
fraction of mixed states we have found here is different from
the result in Ref. [52] for quantum standard map, regarding the
power-law decay of the hierarchical states, which generally
predominantly live in the vicinity of the regular islands, by
definition the M � 0 states.

Upon examining various power-law decays in Fig. 7, it was
observed that the states with M � 0 exhibit a slower decay
rate than those with M > 0 at E = 0.14. Conversely, at E =
0.16, the trend reverses, with the M > 0 states demonstrating
a slower decay compared to the M � 0 states. While we
have shown in Sec. III A (see more examples in Supplemental
Material [33] Figs. S1(a1)–S1(a80) marked by the overlap
index), for states with M � 0, the predominant mechanism
involves (chaos-assisted) tunneling between regular islands,
whereas for states with M > 0, the primary phenomenon is the
flooding of chaotic states into regular regions. It delineates the
disparities between these two tunneling mechanisms as one
approaches the semiclassical limit.

V. LOCALIZATION MEASURES
OF CHAOTIC EIGENSTATES

The study of Husimi functions in Sec. III, either the Husimi
QSOS or the projected Husimi functions, clearly demonstrates
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the localization of chaotic eigenstates to varying degrees
within the same narrow energy interval, in both α-FPUT the
mixed-type system and the general case with λ = 1/16 which
is fully chaotic, ergodic. To further quantify the extent of lo-
calization, following the developed method that has been used
to reveal the scaling behavior of localization [53,54] in natural
basis, and recently for the study of Poincaré-Husimi functions
in different type of quantum billiards (see Refs. [22,24]), we
define localization measures based on the Rényi-Wehrl en-
tropy [55] of the Husimi QSOS. While the entropy of Husimi
QSOS of the chaotic eigenstate |Ek〉 is given as

H (α)
k := 1

1 − α
ln

∫
Sc

dq2d p2[Qk (α2)]α, (35)

where (q2, p2) ∈ Sc and Sc (compact phase space) denotes the
chaotic region on the classical SOS, Qk (α2) is the rescaled
Husimi QSOS

Qk (α2) = Q̄k (α2)/
∫
Sc

dq2d p2Q̄k (α2). (36)

The Rényi-Wehrl ELM is then defined as

Lα
k = exp H (α)

k

A(Sc)
, (37)

where A(Sc) is the surface area of Sc. Obviously, for fully
chaotic systems Sc ≡ S and Qk (α2) ≡ Q̄k (α2). The latter
equivalence is also true for mixed-type systems, if it is in the
semiclassical limit. But as we have shown in Sec. IV, for a
regime that is not deeply semiclassical, there exist states that
live both in the regular and chaotic region, with the overlap
index |M| < 1, thus Qk (α2) �= Q̄k (α2), and it becomes neces-
sary to establish a criterion for identifying chaotic eigenstates:
states with M � Mc can be declared chaotic. Reference [18]
has demonstrated that there exist two natural criteria, one from
classical referring to the relative Liouville measure of the
classical part of the phase space μc, the other from quantum,
referring to the agreement of the chaotic level statistics with
the Brody distribution. In the following, we choose Mc = 0.8,
so that the states predominantly live in the chaotic region, to
just make sure that only chaotic eigenstates are being used.

In the limit α → 1, Eq. (35) gives the Wehrl entropy, an
information entropy based on Husimi functions. The α = 2
Rényi-Wehrl ELM is the inverse participation ratio (IPR).
The Réyni-Wehrl entropy is a nonincreasing function of the
parameter α, and as α tends towards infinity, it is increas-
ingly determined by events of highest probability, therefore
quite straightforwardly, one can use higher order Rényi-Wehrl
ELM to detect highly localized or scarred states, as demon-
strated in recent studies of the Dicke model with projected
Husimi functions (see Ref. [56]). There are asymptotic limits
of Rényi-Wehrl ELMs Lα

|R〉, from the eigenvector statistics of
random unitary matrices [57–59] (see details in Appendix D),
where |R〉 is a random pure state of size N � 1, so that

L1
|R〉 = eγ−1, L2

|R〉 = 0.5, (38)

where γ denotes the Euler constant so that L1
|R〉 ≈ 0.66. It

is necessary to point out that these asymptotic limits do not
contradict the microcanonical assumption [60] for an ergodic
system and the PUSC for the mixed-type system, namely

that in the semiclassical limit, the local averaged Wigner (or
Husimi) function can be written as

�̄k (q, p) = δ(Ek − H (q, p))χc(q, p)∫
dqdpδ(Ek − H (q, p))χc(q, p)

, (39)

which means that the state is uniformly extended over the
entire phase space in the fully chaotic system, and over chaotic
invariant components in the mixed-type. This uniformity re-
sults in α Rényi-Wehrl ELM of the averaged state to be
Lα

k = 1. The “local” means that the average is taken over
many oscillations of the wavefunction, while the scale of
these oscillations is of order h̄, as pointed out by Berry (see
Ref. [29]).

Thus, following the statistics given by random matrix the-
ory (RMT), the localization measure of the (fully extended)
chaotic state is Lα

k = Lα
|R〉, calculated from Husimi functions

without local average. The localization phenomena in the
chaotic eigenstates implying Lα

k < Lα
|R〉, are determined by

the ratio of the Heisenberg time tH and the classical transport
time tT , as the localization control parameter, denoted as

αL = tH/tT , (40)

where tH = 2π h̄ρ(E ) with ρ(E ) the quantum density of states
(DOS). The chaotic eigenstates are maximally localized if
αL � 1, and maximally extended if αL � 1, in between there
is a distribution of the localization measures.

A. Classical transport time and Heisenberg time

The classical transport (diffusion) time tT as a classical
time scale, is the typical time needed for an ensemble of
sharply distributed initial momentum with zero variance, to
spread uniformly over the classical chaotic component. That
is, one needs to estimate the time scale tT of the momentum
spreading characterized by σ 2

p (t ), the variance of momentum,
at which it reaches a certain saturation value. While the satu-
ration value can be obtained from the long time average σ 2

p ,
the estimation of the exact time of reaching it is not obvious,
as shown in Figs. 8(a1) and 8(b1), because in practice there
are fluctuations around σ 2

p . As an analog to the definition
of quantum relaxation time [61,62], we define the classical
transport time as∣∣σ 2

p (t ) − σ 2
p

∣∣ � ε1, for all tT � t � trec, (41)

where ε1 is some small quantity and t � trec is the classical
recurrence time. Another equivalent definition is that μ2

p(t )
the temporal fluctuation of σ 2

p (t ) across time windows [t −
�t/2, t + �t/2], as shown in Fig. 8(a2) and 8(b2), fulfills that
μ2

p � ε2 for t � tT , ε2 as the threshold is also a small quantity.
Comparing these two definitions and the correspondent

numerical results shown in Fig. 8, we found that practically
it is more convenient to estimate tT according to the temporal
fluctuation. In Fig. 8(c) we show tT as a function of energy E
in α-FPUT, with two different thresholds: 1% and 2% of the
peak value of μ2

p(t ). The general behavior of the transport time
versus energy is similar under two thresholds, as expected, and
it exhibits an almost monotonic decrease as energy increases,
because chaos is more pronounced (larger μc) at higher ener-
gies within this range of energy. In the following, we opt for
the 2% threshold in our estimation for two specific reasons:
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FIG. 8. (a1) The variance of momentum σ 2
p = 〈p2〉 − 〈p〉2 vs t

for α-FPUT with α = 1 at E = 0.14, where σ 2
p is calculated with

4000 initial conditions from the classical SOS that are uniformly dis-
tributed in the chaotic region with q2 ∈ [−0.25, −0.15] and p2 = 0.
The red dashed horizontal line indicates σ 2

p , the longtime averaged
value of σ 2

p . (a2) The temporal fluctuation of σ 2
p , as a function of

time, across the time windows [t − �t/2, t + �t/2], with �t = 30,
and the blue dashed horizontal line indicates the threshold 2% of the
peak value of μ2

p. (b1), (b2) Analogous data as (a1), (a2) respectively,
at E = 0.16. (c) Classical transport time tT as a function of energy E
in α-FPUT (Hénon-Heiles), using two different thresholds. (d) tT vs
E in general FPUT (2% threshold).

it aligns more consistently with the results obtained from the
definition in Eq. (41) and exhibits fewer anomalies compared
to the 1% threshold. For the general FPUT with λ = 1/16,
numerical results of tT are shown in Fig. 8(d).

Regarding the Heisenberg time tH = 2π h̄ρ(E ), the quan-
tum DOS ρ(E ) has a semiclassical approximation g(E ),
obtained from the Thomas-Fermi rule

g(E ) = 1

(2π h̄)2

∫
dqdpδ(E − H (q, p)), (42)

which is the volume of the available classical phase space
for a given energy E divided by (2π h̄)2. For α-FPUT of
the Hénon-Heiles potential, when E � 1/6α2, the resulting
Thomas-Fermi expression [1] is

g(E ) = 3

4π h̄2

[∫ π/3

0
r2
+dφ +

∫ 2π/3

π/3
r2
−dφ

]
, (43)

where

r+(φ) = 1

α sin 3φ

(
cos

θ

3
− 1

2

)
, if sin 3φ � 0,

r−(φ) = −1

α sin 3φ

(
cos

θ + π

3
+ 1

2

)
, if sin 3φ � 0, (44)

FIG. 9. Scaled semiclassical DOS 2π h̄2g(E ) for α-FPUT (a) and
the general case (b), where the red dashed vertical lines denote the
saddle energies (see paper I). (c) Ratio αL as a function of 1/h̄, where
black dashed line is for E = 0.14 and blue dash-dotted line for E =
0.16, in α-FPUT, with respect to the bottom x axis (colored in black).
On the lines the black and blue dot indicate αL at h̄ = 4 × 10−4.
The red solid line is for E = 1/3 in general FPUT, with respect to
the top x axis in red color, where the red dot indicates the ratio at
h̄ = 2 × 10−3.

and cos θ = 12Eα2 sin2 3φ − 1, θ ∈ [0, π ]. For the general
case with λ = 1/16, an analytical expression of g(E ) depends
on the solving of a quartic equation (for a detailed derivation,
see paper I). The scaled semiclassical DOS f (E ) = 2π h̄2g(E )
for two cases, as a function of energy, is shown in Figs. 9(a)
and 9(b). Therefore, the controlling ratio

αL = 2π h̄ρ(E )

tT

 2π h̄g(E )

tT
= f (E )

h̄tT
. (45)

In Fig. 9(c) we show αL as a function of 1/h̄, at two
energies for α-FPUT, and at the saddle energy E = 1/3 for
the general case. The increase in αL in relation to 1/h̄ at
E = 0.14 is slower compared to E = 0.16, attributable to the
larger classical transport time at the former energy. While,
in the general case at E = 1/3 with h̄ = 2 × 10−3, the ratio
is comparable to that of the α-FPUT system at E = 0.16
with h̄ = 4 × 10−4. These distinctions and comparisons will
manifest in the distribution of localization measures, as we
will illustrate in the subsequent discussion.

B. Distribution of localization measures

The distributions of Rényi-Wehrl ELMs have been studied
thoroughly in different families of billiards (with or without
stickiness, mixed or ergodic), demonstrating that the ELMs
of a sequence of consecutive eigenstates conform to a shared
empirical distribution, well described by the β distribution
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[22,63], namely

P(Lα ) = 1

C
(Lα )βa

(
Lα

0 − Lα
)βb

, (46)

where Lα
0 is the upper limit of the interval [0,Lα

0 ] on which
P(Lα ) is defined, βa and βb are two positive shape parameters,
the normalization constant C is given by

C = (
Lα

0

)βa+βb+1
B(βa + 1, βb + 1), (47)

where B(x, y) = ∫ 1
0 t x−1(1 − t )y−1dt is the β function. This

has also been confirmed in the Dicke model and in the kicked-
top model [25,26]. Given the variance of β distribution

σ 2(Lα ) = (
Lα

0

)2 (βa + 2)(βb + 2)

(βa + βb + 4)(βa + βb + 3)2
, (48)

therefore the variation in shape parameters is directly as-
sociated with the degree of localization of the eigenstates,
controlled by the ratio αL: A greater value of the parameter
βa generally results in a more compact distribution with a
reduced width, and in the limit βa → ∞, P(Lα ) = δ(Lα −
Lα

0 ), while the statistics from RMT shows that P(Lα ) =
δ(Lα − Lα

|R〉) for N � 1, in agreement with Shnirelman’s
theorem [27].

In a genuine continuous Hamiltonian system with a smooth
potential, obtaining a statistically meaningful number of con-
secutive eigenstates within a narrow energy window, for the
study of distribution of localization measures, poses a sig-
nificant challenge. Owing to the sparse matrix representation
of quantum three-particle FPUT Hamiltonian, for the first
time, we can employ the Krylov subspace method to obtain
N (E , δE , h̄) ∼ 1 × 103 consecutive states of the singlet, with
δE � E for the statistics of the Rényi-Wehrl ELMs. And for
the numerical calculation of ELMs, we need to discretize the
Eqs. (35)–(37), so that

H (α)
k = 1

1 − α
ln

∑
i, j

(
Qi, j

k

)α
, Lα

k = exp H (α)
k

Nc
, (49)

where Qi, j
k = Q̄i, j

k /
∑

i, j Q̄
i, j
k , and (i, j) indicates grid points

(q2,i, p2, j ) ∈ Sc, Nc is the number of grid points of the chaotic
parts from SOS.

In Fig. 10 we show the distributions of the α = 1 and α = 2
Rényi-Wehrl ELMs, for the M � 0.8 eigenstates, as a function
of the Planck constant h̄, at two energies for the singlet of
α-FPUT. The comparison is made with the best-fitting β dis-
tribution in the main figures, complemented by an evaluation
of cumulative distributions, as illustrated in the inset. At each
energy, as h̄ decreases, the agreement between P(Lα ) and the
β distribution improves. This improvement is characterized by
reduced fluctuations and a decline in the proportion of ELMs
with Lα > Lα

|R〉, mostly ascribed to the influence of finite-size
effects, because our numerical calculations involve the dis-
cretization of SOS with a grid size �q2 = �p2 = 5 × 10−3.
A larger grid size (larger than the Planck cell) is equivalent
to local averaging, resulting Lα = 1 for the fully extended
(chaotic) states. At each energy, the value of the parameter βa

in the best-fitting parameters for P(L1) generally increases as
h̄ decreases. Moreover, the value of βa is higher at E = 0.16
compared to E = 0.14 for the same Planck constant, even
when comparing the case of the former with h̄ = 9 × 10−4

to the latter with h̄ = 4 × 10−4. It can be explained by exam-
ining the controlling ratio αL as depicted in Fig. 9(c): In all
cases, the ratio at E = 0.16 is greater than that at E = 0.14,
resulting in better fittings and a reduced degree of localization,
characterized by the shrinking of the distributions.

The observations above are clearly illustrated in Fig. 11,
where βa from the best-fitting β distribution is plotted against
the controlling ratio αL, for two energies of α-FPUT. Addi-
tionally, a case with λ = 1/16 at saddle energy E = 1/3 and
h̄ = 2 × 10−3 is depicted, along with the distribution of ELMs
shown in Fig. 12 (top panels). It suggests that βa increases
linearly with αL within the relevant range of values, although
this trend is less pronounced for smaller αL values, where the
goodness of fitting is less prominent, as shown in the inset of
Fig. 11 with lower R2 values. It is also evident from this inset
that larger values of αL correspond to improved fitting. As one
expects, when αL � 1, the correlation suggests that βa tends
towards infinity. However, as unveiled in the study of quantum
billiards [22], where the studied range of αL extended to about
few hundred, this transition might be very slow. In this regard,
establishing a functional relationship between αL and βa over
a broader range remains an interesting open problem.

As discussed earlier, higher order Rényi-Wehrl ELMs am-
plify differences in probability densities, resulting in a broader
distribution compared to the lower orders. Meanwhile, the
more localized states in the lower tail of the distribution be-
come more prominent, as illustrated in Figs. 10–12, where the
difference between P(L1) and P(L2) of IPR is demonstrated.
Having chosen the maximally localized and extended states
from the distribution of α = 1 ELMs in the general case, as in-
dicated in the top left panel of Fig. 12, we then depict both the
Husimi QSOS and projected Husimi functions for these two
states. Remarkably, the results demonstrate that the maximally
localized state concentrates around the saddle points, while
the maximally extended state notably avoids these points,
extending across the remaining space, complementing each
other. Identified as unstable (hyperbolic) fixed points, these
saddles are elucidated in paper I, in polar coordinates (r, φ)
as (2, φm), where sin 3φm = −1, q1 = r cos φ, q2 = r sin φ.
Even more strikingly, the Husimi QSOS of the maximally
localized state shows that the localization is influenced by the
stable and unstable manifold of these saddles, which exist in
isolation and embedded in a sea of chaos, similar to the finding
in Ref. [64]. An extensive study of the classical periodic orbits
and the stable and unstable manifolds of hyperbolic points, in
relation to quantum scars, will be presented in a forthcoming
paper.

One can observe more examples of states (see
Figs. S2(a1)–S2(a32) [33]), which are localized around
the saddle points. It is this specific type of strong localization
that contributes to the bulge, causing a deviation from the β

distribution in the lower tail. While most states notably avoid
the saddles, displaying a much lesser degree of localization,
some exhibit clear evidence of quantum scarring, indicating
the presence of underlying unstable periodic orbits.

VI. CONCLUSIONS AND DISCUSSION

In conclusion, this work presented a systematic study of the
phenomenology of quantum eigenstates in the three-particle
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FIG. 10. Distributions of the α = 1 and α = 2 Rényi-Wehrl ELMs, for the M � 0.8 eigenstates, as a function of the Planck constant h̄
(indicated at the top of each column, the Planck constant remains constant across each respective column), at two energies for the singlet
of α-FPUT. The main figures show the histogram and its best-fitting β distribution, while the insets show the corresponding cumulative
distribution. (Colors online: black are data, red is the best-fitting). The vertical dash lines indicate L1

|R〉 ≈ 0.66 for α = 1 cases and L2
|R〉 = 0.5

for α = 2, from random pure states. Parameters of the best fit β distribution for P(L1) from left to right: at E = 0.14 are (6.81,2.32), (7.91,2.80),
(7.49,2.26), (7.17,2.35) and at E = 0.16 are (8.87,2.33), (10.49,3.02), (11.27,3.62), (13.17,4.55) with L1

0 = 0.76, where for P(L2) here we set
L2

0 = 0.64. Eigenstates for the statistics in each panel, are selected from an ensemble of N (E , δE , h̄) ≈ 1200 states with δE/E 
 0.01.

FPUT model, considering both the α-type, which is canoni-
cally equivalent to the celebrated Hénon-Heiles Hamiltonian,
a nonintegrable and mixed type system, and the general case at
the saddle energy where the system is fully chaotic (ergodic).
While employing the circular (two-mode) basis for quanti-
zation, we have derived a Wigner d-matrix decomposition
of the unitary transformation from this circular basis to the
Cartesian two-mode basis. The analytical expression of this
unitary transformation plays a vital role for the discussion
and comparison of various Husimi functions, with a particular
focus on the completely projected Husimi function and the
projected Husimi function from the energy shell in (q2, p2)
phase space. The latter can be regarded as a blurred version
of the former, as pointed out in Ref. [43], and we make use
of this effect to establish a connection (equivalence) between
the projected Husimi function in configuration space and

the probability density in configuration space from the wave
function.

Through a comprehensive examination of Husimi func-
tions, representing various eigenstates, we have identified the
correspondence between the Husimi QSOS and classical SOS.
This correspondence establishes a valuable tool for distin-
guishing regular, mixed, and chaotic eigenstates in mixed-type
systems. Furthermore, it allows for the quantification of local-
ization of the chaotic eigenstates. However, various projected
Husimi functions prove to be effective tools for identifying
highly localized states, and especially the periodic orbits un-
derlying the quantum scarred states.

By introducing the overlap index M, a measure to quantify
the overlap between the Husimi QSOS and the classical SOS,
we define in mixed-type system, a quantity χM (E , h̄), the
fraction of mixed eigenstates within an ensemble of states
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FIG. 11. The parameter βa extracted from the best-fitting β dis-
tribution, versus the controlling ratio αL, for the singlet of α-FPUT
with various Planck constant h̄, at two energies E = 0.14 (squares)
and E = 0.16 (circles). The (triangle) data point indicated by the
arrow corresponds to the general case with λ = 1/16 at E = 1/3,
is obtained from the distribution of ELMs shown in Fig. 12. The
inset displays the coefficient of determination, R2, plotted against αL,
which serves as a measure of the goodness of fit.

FIG. 12. Top panels: distributions of the α = 1 and α = 2 Rényi-
Wehrl ELMs of N (E , δE , h̄) 
 1200 eigenstates, from the singlet of
general FPUT with λ = 1/16, at energy E = 1/3 with δE/E 
 0.01
and h̄ = 2 × 10−3. Parameters of the best-fitting β distribution for
P(L1) are (11.60, 2.55), L1

0 = 0.72 and L2
0 = 0.59. The vertical

dashed lines indicate Lα
|R〉. Middle panels: Husimi QSOSs given

by Eq. (25) (plotted in the logarithmic scale) of the maximally
localized and extended states, which are pointed out by red arrows
in the left top panel. Bottom panels: Projected Husimi functions in
configuration space P̃k (q) given by Eq. (28) (the color scale encodes
the relative amplitude), for the same two states plotted previously in
the middle panels.

in an energy interval [E − δE/2, E + δE/2], where δE � E .
For states with |M| � 0.8, i.e., states not entirely supported
by either the regular islands or the chaotic region, there is
a power-law decay with the decreasing value of h̄, namely
χM (E , h̄) ∼ h̄ξ . For states with −0.8 � M � 0, a power-law
decay is also observed, yet with a slightly different power
exponent. Moreover, the exponent varies with energy, while
the relative phase space volume of the chaotic region varies
with respect to energy, in the mixed-type system.

Upon examining various power-law decays, it was ob-
served that the mixed states with M � 0 exhibit a different
decay rate than those with M > 0. For mixed states with
M � 0, the predominant mechanism involves (chaos-assisted)
tunneling between regular islands, whereas for mixed states
with M > 0, the primary phenomenon is the flooding of
chaotic states into regular regions. It delineates the disparities
between these two tunneling mechanisms as one approaches
the semiclassical limit. It is noteworthy to mention that within
the gallery of states (see the Supplemental Material [33]), we
have identified also a recurring pattern of states with M 

−1. Integrating this observed pattern of M 
 −1 states with
the PUSC picture poses an intriguing open question for our
future work.

We investigate the localization measure Lα of chaotic
eigenstates, as defined in terms of the Rényi-Wehrl entropy,
in both mixed-type system and the fully chaotic system. Lα is
normalized exponential of the α-Rényi-Wehrl entropy. While
α = 1 refers to the Wehrl (information) entropy localization
measure, the α = 2 case refers to the inverse participation
ratio. The analysis is based on Husimi QSOS. For the first
time, we explore the distribution of localization measures
P(Lα ) for an ensemble of eigenstates from a narrow energy
window, in a genuinely continuous Hamiltonian system with
a smooth potential. The degree of localization in the chaotic
eigenstates is determined by the controlling ratio αL = tH/tT ,
between the Heisenberg time tH and the classical transport
time tT . We have shown that a larger value of αL leads to a
more accurate fit with a β distribution of P(Lα ), where βa

serves as the fitting parameter, and to its larger value. The
monotonically increasing trend observed in the values of βa

concerning αL implies that when αL � 1, βa tends towards
infinity, although this transition may be very slow. The con-
dition βa � 1 leads to P(Lα ) = δ(Lα − Lα

|R〉), where Lα
|R〉 is

the localization measure of the random pure state from RMT.
This transition with respect to αL(∼1/h̄) and the power-law
decay of the mixed states with decreasing h̄, together provide
supporting evidence for the PUSC in the semiclassical limit.
A theoretical analysis of the localization properties of chaotic
eigenstates, especially a mathematical proof of the β distri-
bution describing the distribution of localization measures of
chaotic eigenstates, is still an open question. We will leave this
study for future work.

Moreover, we have found that the maximally localized
state in the general case, which is a fully chaotic system, is
influenced by the stable and unstable manifold of these sad-
dles, which exist in isolation and embedded in a sea of chaos,
while the maximally extended state notably avoids these
points, extending across the remaining space, complement-
ing each other. It is this specific type of strong localization
that contributes to the bulge, causing a deviation from the β
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distribution in the lower tail, which is expected to disappear in
the strict semiclassical limit, according to PUSC.

In the examination of projected Husimi functions, whether
in configuration space or the phase space of a subspace, we
have demonstrated the existence of distinct quantum scars. An
extensive study of the classical periodic orbits, including the
stable and unstable manifolds of hyperbolic points, in relation
to quantum scars, will be present in our forthcoming paper.
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APPENDIX A: MATRIX ELEMENTS IN CIRCULAR FOCK
BASIS FOR DIFFERENT COUPLING TERMS

Matrix elements in the circular basis of the cubic coupling
terms are (for detailed derivation, see paper I)

〈n′, l ′|q̂3
±|n, l〉 = h̄3/2δl ′,l±3

∑
m∈M1

k±
m (n, l )δn′,n+m, (A1)

where M1 = {±1,±3}, k+
m (n, l ) = k−

m (n,−l ), and

k+
−1 = 3

√
(n − l )(n − l − 2)(n + l + 2)/8,

k+
1 = 3

√
(n − l )(n + l + 2)(n + l + 4)/8,

k+
−3 =

√
(n − l )(n − l − 2)(n − l − 4)/8,

k+
3 =

√
(n + l + 2)(n + l + 4)(n + l + 6)/8. (A2)

For the quartic coupling, there is

〈n′, l ′|(q̂+q̂−)2|n, l〉 = h̄2δl ′l

∑
m∈M2

km(n, l )δn′,n+m, (A3)

where M2 = {0,±2,±4}, and the coefficients

k0 = 3

2
n2 − 1

2
l2 + 3n + 2,

k−2 = n
√

n2 − l2, k2 = (n + 2)
√

(n + 2)2 − l2,

k−4 = 1

4

√
n2 − l2

√
(n − 2)2 − l2,

k4 = 1

4

√
(n + 2)2 − l2

√
(n + 4)2 − l2. (A4)

So in the circular basis |n, l〉, the cubic terms in quantum
α-FPUT couple states with �l = ±3. Therefore, the cubic
coupling takes place in three decoupled sets of basis states,
two doublets and one singlet, agrees with the fact that C3v

symmetry exists in the classical Hénon-Helies potential. The
quartic term in the three-particle quantum β-FPUT does not
introduce any coupling between different l , due to the conser-
vation of angular momentum.

APPENDIX B: UNITARY TRANSFORMATION BETWEEN
THE CARTESIAN- AND CIRCULAR-MODE

To get the unitary transformation between the circular-
mode basis |n, l〉 and the Cartesian-mode basis |n1, n2〉, first
we expand Eq. (10) by using the definition of rotated bosonic
operator given in Eq. (6),

|n, l〉 =
∑
n1,n2

�nl
n1n2

|n1, n2〉 = (a†
+)n+ (a†

−)n−
√

n+!n−!
|00〉 = 1

2n/2

(a†
1 + ia†

2)n+ (a†
1 − ia†

2)n−
√

n+!n−!
|00〉

=
n+l

2∑
k1=0

n−l
2∑

k2=0

ik1−k2

2n/2

( n+l
2

k1

)( n−l
2

k2

)√
(n − k1 − k2)!(k1 + k2)!(

n+l
2

)(
n−l

2

)
!

|n − k1 − k2, k1 + k2〉. (B1)

Denoting n = 2 j, l = 2m, one can rewrite Eq. (B1) as

|n, l〉 = |2 j, 2m〉 =
j+m∑
k1=0

j−m∑
k2=0

ik1−k2

2 j

√
( j + m)!( j − m)!(2 j − k1 − k2)!(k1 + k2)!

k1!k2!( j + m − k1)!( j − m − k2)!
|2 j − k1 − k2, k1 + k2〉. (B2)

Replacing k1 + k2 = j − m′, where − j � m′ � j obtained directly from 0 � k1 + k2 � 2 j,

|n, l〉 =
j+m∑
k1=0

j−m∑
k2=0

i2k1− j+m′

2 j

√
( j + m)!( j − m)!( j + m′)!( j − m′)!

( j + m − k1)!k1!( j − k1 − m′)!(k1 − m + m′)!
| j + m′, j − m′〉,

=
j∑

m′=− j

∑
k

i2k− j+m′

2 j

√
( j + m)!( j − m)!( j + m′)!( j − m′)!

( j + m − k)!k!( j − k − m′)!(k − m + m′)!
| j + m′, j − m′〉. (B3)

The reordering of the double summation introduces a new range of k,

kmin = max(0, m − m′), kmax = min( j − m′, j + m).
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Thus, the unitary transformation can be further expressed as
the following:

|n, l〉 =
j∑

m′=− j

O j
m,m′ | j + m′, j − m′〉, (B4)

where the coefficients O j
m,m′ are expressed as

O j
m,m′ =

k=kmax∑
k=kmin

i2k− j+m′
[cos(π/4)]2 j−2k+m−m′

× [sin(π/4)]2k−m+m′
W jmm′

k , (B5)

with

W jmm′
k =

√
( j + m)!( j − m)!( j + m′)!( j − m′)!

( j + m − k)!k!( j − k − m′)!(k − m + m′)!
.

Comparing with the Wigner’s formula for Wigner d matrix
[65]

d j
m,m′ (θ ) =

∑
k

(−1)k

(
cos

θ

2

)2 j−2k+m′−m

×
(

− sin
θ

2

)2k+m−m′

w
jmm′
k , (B6)

where

w
jmm′
k =

√
( j + m)!( j − m)!( j + m′)!( j − m′)!

( j − m − k)!k!( j − k + m′)!(k + m − m′)!
,

and k ∈ [max(0, m′ − m), min( j − m, j + m′)], we get

O j
m,m′ = im′− jd j

m′,m(−π/2) = im′− jd j
m,m′ (π/2), (B7)

using one of the symmetries d j
m′,m(−θ ) = d j

m,m′ (θ ). So finally
we have

|n, l〉 =
j∑

m′=− j

im′− jd j
m,m′ (π/2)| j + m′, j − m′〉. (B8)

Recently, it was found that the employing of Jacobi method
can avoid the error and instability introduced by the summa-
tion over many terms with large numbers of alternating signs,
based on the expansion of Wigner d-function in terms of the
Jacobi polynomials [66],

d j
m,m′ (θ ) = ξm,m′

[
s!(s + μ + ν)!

(s + μ)!(s + ν)!

]1/2

×
(

sin
θ

2

)μ(
cos

θ

2

)ν

P(μ,ν)
s (cos θ ), (B9)

where μ, ν, and s are related to m, m′, and j by

μ = |m − m′|, ν = |m + m′|, s = j − 1
2 (μ + ν),

(B10)

and

ξm,m′ =
{

1 if m′ � m,

(−1)m′−m if m′ < m,
(B11)

where the Jacobi polynomial can be calculated by the recur-
rence relations. Here we generate all the elements of Wigner

d matrix straightly from another definition with

d j
m,m′ (θ ) = 〈 jm|e−iθJy | jm′〉, (B12)

where Jy is one generator of the Lie algebra of SU(2) and
SO(3), also a component of the angular momentum opera-
tor. The sparse matrix exponential (by employing the kernel
polynomial method) would be more effective than the Jacobi
method to generate the unitary matrix or the Wigner d matrix
for large j.

APPENDIX C: EQUIVALENT HUSIMI FUNCTIONS

The equivalence between two Husimi functions results di-
rectly from the following equation:

〈α1, α2|n, l〉 = 〈α+, α−|n, l〉, (C1)

given the coherent state a±|α±〉 = α±|α±〉, written as

|α±〉 = e−|α±|2/2eα±a†
±|0±〉, (C2)

where the vacuum two-mode state in two different represen-
tations |0+0−〉 ≡ |00〉. Equation (C1) can easily be verified
from the following derivation:

|α+, α−〉 = e−(|α+|2+|α−|2 )/2eα+a†
+eα−a†

−|0+0−〉
= e−(|α+|2+|α−|2 )/2eα+a†

++α−a†
−|0+0−〉

= e−(|α1|2+|α2|2 )/2eα1a†
1+α2a†

2 |00〉 = |α1, α2〉. (C3)

Physically, it is a quite obvious result, because |α+, α−〉 and
|α1, α2〉 correspond to the same point in phase space.

By employing these equivalent Husimi functions, we can
simplify the numerical computation of various projected
Husimi functions. To compute P̃k (α2), we first intersect
the Husimi function with the classical energy shell at the
corresponding eigenenergy Ek , and then proceed with the
integration [56], yielding

P̃k (α2) = 1

2π h̄

∫
δ(Ek − H (q, p))Hk (α1, α2)dq1d p1

= 1

2h̄

∫ p+
1

p−
1

d p1

∑
q1=q±

1

Hk (q1, p1; q2, p2)

|∂H (q, p)/∂q1|

= 1

h̄

∫ p+
1

p−
1

d p1
Hk (q+

1 , p1; q2, p2)

|∂H (q, p)/∂q1|q1=q+
1

, (C4)

where q±
1 are two roots of the equation H (q, p) = Ek , p±

1 roots
of the equation

∂H (q1, p1, q2, p2)

∂q1

∣∣∣∣
q=q±

1

= 0, (C5)

and the Husimi function

Hk (q+
1 , p1; q2, p2) =

∣∣∣∣∣∣
∑
n,l

Ck
nl 〈̃α+, α̃−|n, l〉

∣∣∣∣∣∣
2

, (C6)

where α̃1 = (q+
1 + ip1)/

√
2h̄, α̃± = (̃α1 ∓ iα2)/

√
2, accord-

ing to Eq. (20). It should be noted that the last integral for
projected Husimi function can be computed effectively by a
Chebyshev-Gauss quadrature method.
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FIG. 13. A flowchart illustrating the relation between the pro-
jected Husimi function in configuration space and the configuration-
space probability density |ψk (q)|2, linked through the Wigner
function.

The computation of the projected Husimi function P̃k (q)
follows the same approach,

P̃k (q) = 1

2π h̄

∫
δ(Ek − H (q, p))Hk (α1, α2)d p1d p2

= 1

h̄

∫ p+
2

p−
2

d p2 Hk (q1, p+
1 ; q2, p2)/p+

1 , (C7)

where p±
2 = ±√

2(Ek − V ), p+
1 =

√
2(Ek − V ) − p2

2, and
V (q1, q2) being the potential of the classical Hamiltonian.
The relationship between the projected Husimi function in
configuration space P̃k (q), and the configuration-space prob-
ability density |ψk (q)|2 from wavefunction can be clarified by
drawing connections to the Wigner function.

While the configuration-space probability density |ψk (q)|2
can be expressed in terms of the Wigner function Wk (α1, α2)
as

|ψk (q)|2 =
∫ ∞

−∞
Wk (α1, α2)d p1d p2, (C8)

the Husimi function Hk (α1, α2) can be understood as the
Weierstrass transform of the Wigner function (smoothing by

a Gaussian filter),

Hk (α1, α2) = 4

π2

∫
e−2|α1−β1|2 e−2|α2−β2|2

× Wk (β1, β2)d2β1d2β2. (C9)

Hence, P̃k (q) represents the integration over momentum
within the energy shell Ek of Hk (α1, α2). However, |ψk (q)|2
corresponds to the integration over momentum across the en-
tire momentum space of the Wigner function. The connection
is visually depicted in the flowchart presented in Fig. 13. In
our analysis of P̃k (q2, p2) the projection from energy shell
and the completely projected Husimi function Pk (q2, p2) of
Eq. (26), as discussed in Sec. III B, we observed that inte-
grating over the entire space leads to a blurring effect when
compared to the integration specifically over the energy shell.
This blurring effect can be interpreted as a form of coarse
graining. Following the flowchart, one might reasonably con-
jecture that P̃k (q) is equivalent to |ψk (q)|2, though lacking a
rigorous mathematical proof.

APPENDIX D: LOCALIZATION MEASURES
FROM RANDOM MATRIX STATISTICS

The random unitary matrix and random pure state statis-
tics lead to an ensemble average of the Rényi-Wehrl entropy
[57–59] 〈

H (α)
|R〉

〉
N

= 1

1 − α
ln

�(N + 1)�(α + 1)

�(N + α)
, (D1)

where �(x) denotes the � function. We can then define the
corresponding Rényi-Wehrl ELM in large N limit as the upper
bounds

Lα
|R〉 = lim

N→∞
exp

〈
H (α)

|R〉
〉
N

N
= �(1 + α)1/(1−α). (D2)

Then, one has L1
|R〉 = eγ−1, L2

|R〉 = 0.5, where γ denotes the
Euler constant so that L1

|R〉 ≈ 0.66.
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