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Chaos and quantization of the three-particle generic Fermi-Pasta-Ulam-Tsingou
model. I. Density of states and spectral statistics
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We study the mixed-type classical dynamics of the three-particle Fermi-Pasta-Ulam-Tsingou (FPUT) model
in relationship with its quantum counterpart and present new results on aspects of quantum chaos in this system.
First we derive for the general N-particle FPUT system the transformation to the normal mode representation.
Then we specialize to the three-particle FPUT case and derive analytically the semiclassical energy density of
states, and its derivatives in which different singularies are determined, using the Thomas-Fermi rule. The result
agrees with the numerical energy density from the Krylov subspace method, as well as with the energy density
obtained by the method of quantum typicality. Here, in paper I, we concentrate on the energy level statistics
(level spacing and spacing ratios), in all classical dynamical regimes of interest: the almost entirely regular, the
entirely chaotic, and the mixed-type regimes. We clearly confirm, correspondingly, the Poissonian statistics, the
Gaussian orthogonal ensemble statistics, and the Berry-Robnik-Brody (BRB) statistics in the mixed-type regime.
It is found that the BRB level spacing distribution perfectly fits the numerical data. The extracted quantum
Berry-Robnik parameter is found to agree with the classical value within better than one percent. We discuss the
role of localization of chaotic eigenstates, and its appearances, in relation to the classical phase space structure
(Poincaré and smaller alignment index plots), whose details will be presented in paper II, where the structure
and the statistical properties of the Husimi functions in the quantum phase space will be studied.
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I. INTRODUCTION

The Fermi-Pasta-Ulam-Tsingou (FPUT) model [1,2], is
the beginning of the massive use of numerical methods im-
plemented on electronic computers in the physical sciences
[3], has a long history and still, even after 68 years, presents
intriguing open questions due to its rich classical, and quantal,
structures and dynamics, not only in the case of large N-body
system but even in the simplest nontrivial case of just three
particles (N = 3) [4,5]. The study of this system certainly
initiated new developments in fundamental physics by the
pioneers in classical and quantum chaos, and in statistical
physics in general. There are hundreds of important papers
in the literature dealing with FPUT, which cannot be listed
and discussed here. We just refer to some important reviews
[6–14] covering the history of research starting from the initial
paradox to its fundamental resolution and the understanding
of the general behavior of the model, which turned out to be
of generic, mixed type, thereby giving rise to insights in both
scenarios, the integrable and the chaotic one.

Our aim in this paper is to perform a detailed study of the
classical dynamics of the system with three particles (N = 3),
and of its quantum counterpart. We perform the detailed anal-
ysis of the aspects of quantum chaos, by looking at the energy
spectra and their statistical properties, followed (in paper II)
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by the analysis of the Husimi functions of the eigenstates. Af-
ter introducing the normal modes the model is reduced to the
motion of just one particle in two-dimensional potential. The
cubic case (α-FPUT) is the celebrated Henon-Heiles Hamil-
tonian [15], which is nonintegrable and of the mixed type,
while the pure quartic potential, β-FPUT, is integrable, as
the angular momentum is preserved. We treat also the general
case, αβ-FPUT, which also is of the mixed type, but becomes
increasingly more regular as the parameter β → ∞, so that
the quartic potential asymptotically dominates the dynamics.

Our main results comprise a detailed analysis of the classi-
cal dynamics, also using the smaller alignment index (SALI)
chaos detecting technique [16–20], needed for the study of
quantum chaos. We then perform the exact analytic calcu-
lation of the semiclassical density of states (DOS) using the
Thomas-Fermi rule, needed for the unfolding of the quantum
energy spectra. The result agrees with the estimate of DOS
using the method of quantum typicality, as well as with the
numerical DOS. The level statistics clearly displays transi-
tion from the predominantly integrable regime to the chaotic
regime, as exhibited by the level spacing distributions and
the mean spacing ratio. As a side product of this study, we
also found a clear functional relationship between the nor-
malized mean spacing ratio and the Berry-Robnik parameter
(μc, which is the relative size of the classically chaotic region
in the phase space). By applying the Berry-Robnik-Brody
level spacing distribution (BRB), we find perfect agreement
between the quantum and classical value of μc. As extracted
from BRB, we find that most regimes are such that the chaotic

2470-0045/2024/109(5)/054210(17) 054210-1 ©2024 American Physical Society

https://orcid.org/0000-0002-3199-4648
https://orcid.org/0000-0002-1098-1928
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.109.054210&domain=pdf&date_stamp=2024-05-21
https://doi.org/10.1103/PhysRevE.109.054210


HUA YAN AND MARKO ROBNIK PHYSICAL REVIEW E 109, 054210 (2024)

eigenstates are largely extended, or just weakly localized. The
detailed study of the structure and statistics of the Husimi
functions, as well as the power-law decay of the fraction of
the mixed eigenstates will be treated in paper II.

The paper is structured as follows. In Sec. II we perform
the reduction of the general FPUT system to normal modes. In
Sec. III we specialize to the three particle FPUT system, and
analyze in detail the transition from regularity to chaos in the
classical dynamics by means of the Poincaré surfaces of sec-
tion (SOS) as well as by SALI plots, and estimate the relative
size of the chaotic component μc. In Sec. IV we perform the
quantization of the three particle FPUT system by introducing
the rotated bosonic operators, leading to the matrix elements
in the circular two-mode basis. In Sec. V we calculate DOS by
use of the Thomas-Fermi rule, the quantum typicality method,
and by means of the numerical energy spectra. They all agree
very well. In Sec. VI we analyze the statistical properties
of energy spectra. In Sec. VII we conclude and discuss the
outlook.

II. INTRODUCING THE NORMAL MODES FOR THE
GENERAL FPUT SYSTEM

We consider a chain of N moving particles with nearest-
neighbor interaction given by a potential V , the Hamiltonian
of such a system is given by

H =
N∑

j=1

(
y2

j

2
+ V (x j+1 − x j )

)
, (1)

with the periodic boundary condition (PBC) x1 = xN+1, where
x j are the displacement of the particles with respect to the
equilibrium positions and y j are the corresponding momenta.
It should be noted that the original FPUT report used fixed
boundary condition (FBC) x1 = xN+1 = 0, having the follow-
ing Hamiltonian:

H =
N∑

j=1

y2
j

2
+

N−1∑
j=1

V (x j+1 − x j ). (2)

The αβ-FPUT model is given by the following choice of the
potential:

V (s) = 1

2
s2 + α

3
s3 + β

4
s4, (3)

where we will indicate as α-FPUT for the case β = 0, and as
β-FPUT the case α = 0.

The equations of motion from Eq. (1) with the quadratic
form of potential (α = β = 0) are

ẍ j = −∂H

∂x j
= x j+1 − 2x j + x j−1, x j = x j+N . (4)

Trying an oscillatory solution of the form x j = a je−iωt and
substituting this trial solution into the equations of motion,
one gets the equations of amplitude factors

(ω2 − 2)a j + a j+1 + a j−1 = 0, a j = aN+ j . (5)

These N linear homogeneous equations Apa = 0 for a =
[a1, · · · , aN ]T have a nontrivial solution only if the determi-
nant of the coefficient matrix Ap vanishes, where Ap can be
written explicitly as

Ap =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ω2 − 2 1 0 . . . 1

1 ω2 − 2 1 . . . 0

0 1 ω2 − 2 . . . 0
...

...
...

...
...

1 0 . . . 1 ω2 − 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (6)

a Toeplitz matrix [21]. The eigenvalues are

ωk = 2 sin
πk

N
, k = 0, . . . , N − 1. (7)

ωk are also the well-known normal mode frequencies. There
is a zero normal mode in the PBC case, obviously due to
the translational symmetry. From the diagonalization of the
Toeplitz matrix Ap, the normal modes can be constructed from
the eigenvectors. For N odd and k < N/2, (Qk, Pk ) the new
coordinates and momenta of the harmonic normal modes are

Q0 = 1√
N

N∑
j=1

x j, Qk =
√

2

N

N∑
j=1

x j sin
2 jkπ

N
,

QN−k =
√

2

N

N∑
j=1

x j cos
2 jkπ

N
. (8)

Specifically, if N is even, then we have additionally

QN/2 = 1√
N

N∑
j=1

(−1) jx j, (9)

and similar definitions for Pk . The resulting energy of k-th
normal mode is εk = 1

2 (P2
k + ω2

k Q2
k ). Applying the inverse

(Fourier) transform, one has the transformation from Q → x
(similar transformation for P → y) as

x j = Q0√
N

+
√

2

N

�N/2�∑
k=1

(
Qk sin

2 jkπ

N
+ QN−k cos

2 jkπ

N

)
,

(10)

for odd N . If N is even, then we have

x j = 1√
N

Q0 + (−1) j

√
N

QN/2 +
√

2

N

N/2−1∑
k=1

(
Qk sin

2 jkπ

N
+ QN−k cos

2 jkπ

N

)
. (11)
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III. EMERGENCE AND ANALYSIS OF CLASSICAL CHAOS

A. Classical Hamiltonian and the structure of the potential well

The three-particle FPUT system with PBC is governed by
Hamiltonian from Eq. (1) with N = 3. From the transforma-
tion defined in Eq. (10), one can easily prove that Hamiltonian
of α-FPUT takes the form

Hα = 1

2

2∑
k=0

P2
k + 3

2

2∑
k=1

Q2
k + 3α√

2

(
Q1Q2

2 − 1

3
Q3

1

)
, (12)

and the quartic term of β-FPUT

3∑
j=1

β

4
(x j+1 − x j )

4 = 9β

8

(
Q2

1 + Q2
2

)2
. (13)

Using the approach outlined by Ford in Ref. [10], we transi-
tion to the center of mass frame, where Q0 is absent from Hα ,
indicating constant momentum P0 for the center of mass. Sub-
sequently, through the rescaling t = τ/

√
3, Q1 = √

2q2, and
Q2 = √

2q1, we obtain canonically equivalent Hamiltonians

Hα = 1

2

2∑
i=1

(
p2

i + q2
i

) + α

(
q2

1q2 − 1

3
q3

2

)
(14)

for α-FPUT, which is exactly the Hénon-Heiles Hamiltonian
[15] and for β-FPUT

Hβ = 1

2

2∑
i=1

(
p2

i + q2
i

) + 3β

4

(
q2

1 + q2
2

)2
. (15)

For the general three-particle FPUT, we set the scale as t =
τ/

√
3, Q1 = √

2q2/α, Q2 = √
2q1/α and get

H = 1

2

2∑
i=1

(
p2

i + q2
i

) + q2
1q2 − 1

3
q3

2 + λ
(
q2

1 + q2
2

)2
, (16)

where we denote the coupling parameter of the quartic term

λ = 3β/(4α2). (17)

In polar coordinates q1 = r cos φ, q2 = r sin φ, the Hamilto-
nian of three-particle α-FPUT is

Hα = 1

2

(
p2

r + ṗ2
φ

r2

)
+ 1

2
r2 + α

3
r3 sin 3φ, (18)

with momenta pr = ṙ, pφ = r2φ̇. The associated equation of
motion in polar coordinates are

ṗr = −r − αr2 sin 3φ, ṗφ = αr3 cos 3φ. (19)

For the general FPUT given in Eq. (16)

ṗr = −r − r2 sin 3φ − 4λr3, ṗφ = r3 cos 3φ. (20)

The fixed points of the Hamiltonian flow are the points
(r, pr, φ, pφ )m where all four derivatives for canonical mo-
tions are equal to zero. Thus, there are three unstable fixed
(saddle) points depending on α for α-FPUT

(r, pr, φ, pφ )m = (1/α, 0, φm, 0), (21)

with φm = π/2, 7π/6, 11π/6, and the energy at saddles
Es = 1/6α2, also known as the escape energy. For the general

case, the fixed points are

(r, pr, φ, pφ )m = (λ±, 0, φm, 0), λ± = 1 ± √
1 − 16λ

8λ
,

(22)

where (λ−, 0, φm, 0) are saddles for couplings λ � 1/16,
(λ+, 0, φm, 0) are stable fixed points if λ < 1/16. There is no
unstable fixed point for λ > 1/16, while the point of origin is
stable fixed point in all cases.

In Fig. 1 we show the equipotentials and schemes of poten-
tial landscape, for both α-FPUT and the general case, in which
all the fixed points (except the point of origin) are identified.
These fixed points are the classical origins of the so-called
excited state quantum phase transitions (ESQPT) [22], which
will be revealed in the study of density of states in Sec. V.
Clearly, the structure of equipotentials has C3v symmetry with
respect to the rotation of φ, due to the algebraic form of
the classical Hamiltonians. Thus, we see the 2π/3 rotation
symmetry and the reflection symmetry.

B. Poincaré maps and SALI plots

We integrate the equations of motion using the Adams-
Moulton solver [23], and present in Fig. 2 various classical
Poincaré SOS (q2, p2) on q1 = 0 plane for three energies,
of both α-FPUT with α = 1 and the general FPUT with
λ = 1/16. It was found that for α-FPUT, i.e., the well-known
Hénon-Heiles model, below the order-chaos threshold energy
E = 0.5Es obtained from the concavity-convexity analysis
of Toda [24], all orbits lie on well-defined two-dimensional
invariant tori in the four-dimensional phase space, as shown
in Fig. 2(a). Above the threshold energy, there are chaotic
orbits which fill a three-dimensional volume of phase space,
as shown in Figs. 2(b) and 2(c).

Let χc(q, p) denote the characteristic function of the
chaotic component, which takes the value of 1 on chaotic
region and zero otherwise. To numerically compute χc across
the energy surface, we employ SALI method. This method
relies on the evaluation of deviation vectors from a given
orbit, based on the equations of the tangent map obtained by
linearizing the difference equations of a symplectic map as the
following:

ẇ = � · ∇2H (x) · w, � =
[

0 −Id

Id 0

]
, (23)

where x = (q, p) and the deviation vector w = δx, ∇2H (x) is
the Hessian matrix, Id being d-dimensional identity matrix.

In Fig. 3 we present a dense grid of initial conditions
(q2, p2) from the same SOSs as Figs. 2(a)–2(f), where the
value of SALI of each point is plotted using an assigned
color accordingly. Upon comparing with the corresponding
SOS in Fig. 2, we can have a much more detailed picture
of the regions where chaotic or regular motion occurs, and
at the borders between these regions we find intermediate
colors which correspond to sticky orbits. Figure 4 illustrates
a typical time-evolution of the SALI, for three types of orbits:
the regular, the sticky ones, and the chaotic, it shows that
the sticky orbit takes a considerable longer integration time
than the chaotic ones to reveal its true chaotic nature. Our
criterion for the classification of initial conditions belonging
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FIG. 1. Equipotentials (upper panel) and schemes of potential landscape (lower panel), for α-FPUT and the general case of different
couplings λ, in polar coordinates. The stable and unstable (saddle) fixed points are denoted by open and full (black) circles. (a1), (a2) α-
FPUT, this is exactly the well-known Hénon-Heiles equipotential, where the line shown in red is the equipotential curve corresponding to the
escape (saddle point) energy, Es = 1/6α2. (b1), (b2) For λ = 1/18, all equipotentials are confined, but below the critical (saddle point) energy
indicated by red (dashed) line, the equipotentials are composed of disconnected parts. (c1), (c2) For λ = 1/16, all equipotentials are confined
and connected, but there exists a critical energy Es = 1/3 where saddles still exist. (d1), (d2) For λ = 3/40, all saddles disappear.

to a chaotic region is that SALI � 10−8 at t = 1000, implying
that the deviation vectors have been aligned. Here, the unit of
(dimensionless) time is one period of the linear oscillator.

C. Relative Liouville volume measure of the
chaotic part of the phase-space

Hamiltonian systems with classically mixed-type dynam-
ics, as exemplified in the Poincaré maps and SALI plots
in Sec. III B, have regular quasi-periodic motion on d-
dimensional invariant tori for some initial conditions (d the
degrees of freedom), and chaotic motion for the complemen-

FIG. 2. Classical SOS (q2, p2) on q1 = 0 plane generated from
10 (random) orbits for different energies. The top panel is for three-
particle α-FPUT (with α = 1): (a) For energy E = 0.5Es at the
threshold energy, the closed curves correspond to regular classical
orbits. (b) For energy E = 0.75Es above the threshold energy. (c) For
energy E = Es at the escape energy. (d–f) in the bottom panel are
sections for λ = 1/16 of the general FPUT, at three energies E =
0.2, 1/3, 0.4, while E = Es = 1/3 is the energy of the saddles.

tary initial conditions. The energy shell is therefore filled by
regular and chaotic orbits. We define the chaotic fraction μc

as the relative Liouville volume measure of the chaotic part of
the phase-space as [25,26]

μc = �c

�
=

∫
dqdpχc(q, p)δ(E − H (q, p))∫

dqdpδ(E − H (q, p))
, (24)

where � is the phase space volume of the entire energy sur-
face, and �c the Liouville phase space volume of the chaotic
region. μc can be used as an indicator of chaos, measures the
transition from integrable dynamics with μc = 0 to the fully
chaotic (ergodic) dynamics μc = 1.

From a statistical viewpoint, μc can be approximated by
the ratio of the number of chaotic orbits Nc signified by the
SALI to the number Na of all orbits, in a large enough sample
chosen from the entire energy surface,

μc = �c

�
≈ Nc

Na
. (25)

The numerical precision of μc would be improved by increas-
ing Na (randomly selected from the whole available phase
space). It should be noted that μc is not the relative area
of the chaotic region in SOS, but of the volume in the full
phase space. For the relation between these two quantities, see
Refs. [25,26].

The chaotic fraction μc as a function of quartic coupling
strength λ and energy E is plotted in Fig. 5(a) as a heat map.
In all numerical computations, we set Na = 2000, at which
point the computation of μc has converged, as shown in the
inset of Fig. 5(b). The heat map exhibits a rather complex
dependence of μc on λ and E . Within the relevant ranges, the
regularity of the system generally decreases with increasing
E for each λ. It can be expected that at much higher energies,
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FIG. 3. Regions of different (logarithmic) values of the SALI on the SOSs the same as Figs. 2(a)–2(f), at t = 1000. The initial conditions
colored dark blue correspond to chaotic orbits, the yellowish indicates ordered motion, and the intermediate suggests sticky orbits.

when the quartic term of the potential dominates, μc would
decrease with increasing E . For λ � 1/16, the transition en-
ergy to chaos rises with increasing λ, contrasting with the
reverse trend for λ < 1/16. This is tied to the structure of
equipotentials depicted in Fig. 1.

For α-FPUT with α = 1, it shows in Fig. 5(b) that μc

is zero below the threshold energy E = 0.5Es for α-FPUT,
and increases monotonically with respect to the energy above
the threshold, until the escape energy. The dependence of μc

on the energy for the general case with λ = 1/16, shown in
Fig. 5(c), is more complicated: it stays zero below a threshold
energy, then increases monotonically until it saturates to μc =
1 for a while, and finally it slowly decreases at higher energies,
where the quartic term of the potential starts to dominate,
exhibiting a transition from chaos to order.

IV. QUANTIZATION OF THE THREE-PARTICLE
FPUT SYSTEM

The fact that C3v symmetry exists in the classical Hamil-
tonian, is more evident in the polar coordinates than in the

FIG. 4. Evolution of the SALI with respect to time t , for three
initial conditions chosen from Fig. 3(b) denoted by R (regular), S
(sticky), and C (chaotic), while the integration time step �t=0.05.
The SALI of sticky orbit takes longer time about t = 900 to approach
the threshold value (it sticks to the border between the chaotic and
regular region up to about t = 400) than the chaotic case, which
quickly reaches the threshold and below at about t = 300.

Cartesian coordinates as we have discussed in Sec. III A. To
take a better advantage of this symmetry, we define q̂± =
q̂1 ± iq̂2, p̂± = p̂1 ± i p̂2, and introduce the rotated bosonic
operators [27]

a± = 1√
2

(a1 ∓ ia2) = 1

2
√

h̄
(q̂∓ + i p̂∓),

a†
± = 1√

2
(a†

1 ± ia†
2) = 1

2
√

h̄
(q̂± − i p̂±), (26)

where the annihilation and creation operator fulfill the canoni-
cal commutation relations [ai, a†

j ] = δi j , with i, j ∈ {1, 2,±}.
We can then check that for number operator n̂ and angular

FIG. 5. (a) Heat map plotting the chaotic fraction μc of the clas-
sical phase space as a function of λ and E . (b) μc versus E for the
α-FPUT with α = 1 (the inset shows at E=0.14, the convergence of
μc with respect to Na the total number of samples). (c) μc versus E
for the general case with λ = 1/16, the inset demonstrates that the
value of μc will finally decrease at much higher energies, where the
quartic term of potential starts to dominate.
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momentum operator �̂ = (q̂1 p̂2 − q̂2 p̂1)/h̄,

n̂ = a†
1a1 + a†

2a2 = a†
+a+ + a†

−a−,

�̂ = i(a†
2a1 − a†

1a2) = a†
+a+ − a†

−a−. (27)

The quantized Hamiltonian of α-FPUT is

Ĥα = h̄(n̂ + 1) − iα(q̂3
+ − q̂3

−)/6, (28)

and for the general case,

Ĥ = h̄(n̂ + 1) − i(q̂3
+ − q̂3

−)/6 + λ(q̂+q̂−)2. (29)

As [n̂, �̂] = 0, n̂ and �̂ possess simultaneous eigenfunctions
|n, l〉, which we refer to as the circular two-mode basis, with
l = −n,−n + 2, · · · , n (n ∈ N0), n the radial quantum num-
ber and l the orbital angular momentum. One can then express
the annihilation and creation operator in this circular basis, as
well as the operators q̂±. Consequently, the matrix elements
of the cubic coupling terms are given as

〈n′, l ′|q̂3
±|n, l〉 = h̄3/2δl ′,l±3

∑
m∈M1

k±
m (n, l )δn′,n+m, (30)

where M1 = {±1,±3}, k+
m (n, l ) = k−

m (n,−l ). For the quartic
coupling term, we have

〈n′, l ′|(q̂+q̂−)2|n, l〉 = h̄2δl ′l

∑
m∈M2

km(n, l )δn′,n+m, (31)

with M2 = {0,±2,±4} (see all the derivations and expres-
sions for k±

m and km in Appendix A).
So in the circular basis |n, l〉, the cubic terms in quantum

α-FPUT couple states with �l = ±3. Consequently, the cou-
pling takes place in three decoupled sets of basis states: {a} l ∈
{· · · − 6,−3, 0, 3, 6 . . . }, {b} l ∈ {· · · − 5,−2, 1, 4 . . . }, and
{c} l ∈ {· · · − 4,−1, 2, 5 . . . }. Each set has nondegenerate
eigenvalues, set {a} the singlet maps onto itself under time
reversal and set {b} maps onto set {c} and vice versa. Due
to the time reversal symmetry of the FPUT Hamiltonian, set
{b} and set {c} are doublets and have the same eigenspectra
[28]. The number of states N (the size of the Hilbert space
composed of both the singlet and doublets) for fixed N as the
cutoff of n, is (N + 1)(N + 2)/2, the dimensions of subspace
of the singlets NS and ND of the doublets are

NS = ND = (N + 1)(N + 2)

6
, if N �≡ 0 (mod 3),

NS = N (N + 3)

6
+ 1, ND = NS − 1, otherwise. (32)

The quartic term in the three-particle quantum β-FPUT does
not introduce any coupling between different l , due to the
conservation of angular momentum.

The property of eigenspectra can also be verified from the
C3v symmetry of the classical Hamiltonian with respect to
the rotation of φ, that they must belong to the irreducible
representations of the point symmetry group C3v (Mulliken
notation): the subspaces of two doublets are of E symmetry,
and the singlet is a combination of (A1, A2) symmetry. In Ap-
pendix B we give more details about the state representation
and symmetries, based on a new basis defined as |n, l, s〉 [29],

|n, l, s〉 = al,s(|n, l〉 + s|n,−l〉)/
√

2, s = ±1, (33)

where al,s = smod(l,3) and l � 0.

V. DENSITY OF STATES

The fixed points of classical Hamiltonian we discussed
in Sec. III A correspond directly to the singularity which
appears in the derivative of smoothed DOS and in energy
densities of various observables, whose quantum analogs are
also referred to as ESQPT, widely studied in various quantum
systems such as Lipkin-Meshkov-Glick (LMG) model, the
Dicke model [30,31], and the interacting boson systems. In
the following, we give the analytical result of the smoothed
DOS and its derivative for both α-FPUT and the general case,
using the Thomas-Fermi rule. Then by using the method of
quantum typicality [32–37], we verify that the obtained quan-
tum density of states, as well as the ones calculated by the
Krylov subspace method [38–40], agree with the smoothed
DOS.

A. Thomas-Fermi rule

The Thomas-Fermi expression for DOS is given as

g(E ) = 1

(2π h̄)2

∫
dqdpδ(E − H (q, p)), (34)

which is the volume of the available classical phase space for a
given energy E divided by (2π h̄)2. g(E ) is also referred to as
the semiclassical approximation (smooth component) of the
quantum density of states, obtained from the contribution of
zero-length orbits in path integral, according to Gutzwiller’s
trace formula [41,42]. As a consequence of the quadratic
momentum in the Hamiltonians, the integral can be simplified
(see Appendix C),

g(E ) = 1

2π h̄2

∫
dq1dq2 = 1

2π h̄2

∫
rdrdφ, (35)

given the constraint V (r, φ) � E . Thus, a further simplifica-
tion of the integral depends on solving V (r, φ) = E for r(φ)
the root. For α-FPUT of the Hénon-Heiles potential, bounded
solution exists when E � 1/6α2,

r+(φ) = 1

α sin 3φ

(
cos

θ

3
− 1

2

)
, if sin 3φ � 0,

r−(φ) = −1

α sin 3φ

(
cos

θ + π

3
+ 1

2

)
, if sin 3φ � 0, (36)

where cos θ = 12Eα2 sin2 3φ − 1, θ ∈ [0, π ]. The resulting
Thomas-Fermi expression is then

g(E ) = 3

4π h̄2

[∫ π/3

0
r2
+dφ +

∫ 2π/3

π/3
r2
−dφ

]
. (37)

From the evaluation of g(E ) we can calculate the derivative
g′(E ) and obtain

g′(E ) =
√

2

π h̄2

∫ π

θE

sin
(

θ
6 + π

3

)
√

12Eα2 − 1 − cos θ
dθ, (38)

where θE is given by cos θE = 12Eα2 − 1. Writing the scaled
energy E = 1/6α2 − δ with δ → 0+, this integral for g′(E )
can be approximated by Legendre’s incomplete elliptic in-
tegral of the first kind, from which we extract explicitly in
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FIG. 6. Scaled available phase space volume 2π h̄2g(E ) for the three-particle α-FPUT (α = 1) as a function of energy E (a), the general
case with λ = 1/16 (b), and λ = 3/40 (c). The derivatives of scaled g(E ) are shown as inset at the top left, where the red dash indicates the
energy of saddles E = Es. Polar plots of the available phase space (gray zones) for different energies are shown in the bottom and top right.

Appendix C the logarithmic singularity

g′
(

1

6α2
− δ

)
≈ − c√

2π h̄2
ln

3δα2

8
, (39)

where c is a constant that fulfills
√

3/2 < c < 1. For the
general case, the integral in Eq. (35) depends on solving the
quartic equation

E = V (r, φ) = 1

2
r2 + 1

3
r3 sin 3φ + λr4. (40)

An analytical representation of the solution of the quartic
potential could be found. Examining the potential landscapes
illustrated in Fig. 1 and supported by discriminant analysis, it
is evident that for λ � 1/16, there exists only one real positive
root, which can be represented by hyperbolic functions. In
Appendix C we have derived the analytical expression of this
root, from which one can directly evaluate the integral in
Eq. (35) and then the derivative.

In Fig. 6, we present plots illustrating the scaled available
phase space volume 2π h̄2g(E ) and its derivative with respect
to energy. Additionally, polar plots in the insets depict the
available phase space for α-FPUT with α = 1, as well as the
general cases with λ = 1/16 and λ = 3/40. The derivative
shows logarithmic divergence at E = Es = 1/6 for α-FPUT
as we have extracted in Eq. (39), and at E = Es = 1/3 for the
general case with λ = 1/16, where Es is the energy of saddles.
This behavior can be understood by looking at the geometry
(polar plots) of the available phase space: when E approaches
Es, the saddles emerge and the boundary of the available phase
space is not smooth anymore. For λ = 3/40 > 1/16, there are
no evident discontinuities, because there are no saddles.

For λ < 1/16, multiple roots would emerge below the sad-
dle energy, accordingly, the parameter space of λ can further
be partitioned into two distinct λ-regions: 0 < λ < 1/18 and
1/18 < λ < 1/16. In the first region the three potential wells
are the deepest, while in the second region the central well is
the deepest, at λ = 1/18 all four stable minima are the same
[see Fig. 1(b2)]. Therefore, in the first region, as the energy
increases, a notable transformation occurs in the geometry of
the available phase space: it evolves from three disconnected
parts to four disconnected parts, ultimately culminating in an
interconnected configuration. Conversely, in the subsequent
region (1/18 < λ < 1/16), there is a transition from a single

connected part to four disconnected parts, before eventually
returning to the interconnected.

The global minimum of energy for λ < 1/16 is the
minimum energy of all stable fixed points, defined as
Emin = min{V (λ+, φm), 0}. The local minimum energy El be-
tween the stable fixed points and the energy of the saddles Es

are given as

El = max{V (λ+, φm), 0}, Es = V (λ−, φm), (41)

where Emin � El < Es, λ± and φm are defined in Eqs. (21)
and (22) in Sec. III A. In Fig. 7 we show Emin as a function
of λ, and a scheme of two λ-regions in one inset, where the
other inset reveals that there is a discontinuity of the first
derivative of Emin at λ = 1/18, a signature of so-called first-
order quantum phase transition. The analytical solution of the
quartic equation in Eq. (40) varies with respect to energy, in
two λ-regions, as we have clarified in Appendix C, where the
explicit expressions of g(E ) are given.

The scaled available phase space volume and the deriva-
tives as a function of E are plotted in Fig. 8 for three quartic
couplings. For λ = 1/20 < 1/18, the energy at the three sta-
ble fixed points (around the point of origin) are the global
minimum, while E = 0 the energy at the point of origin is
a local minimum above Emin, showing that there is a step

FIG. 7. Energy minimum Emin as a function of the quartic cou-
pling λ, the vertical (dashed) line indicates λ = 1/18. The inset
(bottom right) shows the first-order derivative of Emin(λ), while the
inset on the top left is a scheme for two λ-regions: 0 < λ < 1/18
(left) and 1/18 < λ < 1/16 (right).
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FIG. 8. Scaled available phase space volume 2π h̄2g(E ) for the general three-particle FPUT as a function of energy E , for λ = 1/20 (a),
1/18 (b), and 3/52 (c). The derivative of scaled g(E ) is shown as inset at the top left, the red dashes indicate the critical energies at classical
fixed points. The available phase space for different energies are shown as polar plots.

discontinuity of g′(E ) at E = El = 0, and a logarithmic diver-
gence at E = Es. For λ = 1/18 there is no stable fixed point
above Emin = 0, therefore no step discontinuities occur. When
λ = 3/52 (1/18 < λ < 1/16), it shows that at El > 0 there is
a step discontinuity of g′(E ), and at E = Es the logarithmic
divergence occurs. These changes can be well understood by
looking at the geometry of the available phase space of each
λ interval (see the polar plots in Fig. 8): when energy goes
across El , the number of disconnected parts changes, while
the boundary remains smooth, but as energy approaches Es,
the boundary of the available phase space is not smooth.

B. Method of quantum typicality

The method of quantum typicality is an approximation
scheme based on typicality, in which approach the DOS is ob-
tained by solving the time-dependent Schrödinger equations,
through implementing the Chebyshev expansion techniques
(see Ref. [37]), followed by the fast Fourier transformation
(FFT) of the retarded Green’s function. Given the density of
states of a quantum system

ρ(E ) =
∑

n

δ(E − En) = 1

2π

∫ +∞

−∞
dt eiEt Tre−iĤt , (42)

where Ĥ is the Hamiltonian of the quantum system and n
runs over all eigenvalues of Ĥ (in this subsection we put
h̄ = 1). The trace in the integral can be estimated accurately
by sampling over random vectors

1

N Tre−iĤt ≈ 〈ψ (0)|ψ (t )〉 = 〈ψ (0)|e−iĤt |ψ (0)〉, (43)

where N = dim{Ĥ} denotes the dimension of the Hilbert
space and |ψ (0)〉 is a random state drawn according to the
Haar measure. The error scales with 1/

√
N , and |ψ (t )〉 can

effectively be calculated by making use of the Chebyshev
polynomial method for the matrix exponential.

The quantum DOS then can be approximated by

ρ(E ) ≈ N
2π

∫ +T

−T
eiEt 〈ψ (0)|ψ (t )〉dt, (44)

where T denotes the time range required to obtain the energy
resolution π/T . To cover the full range of eigenvalues, a

sampling interval �t = π/||Ĥ || (the 2-norm of Ĥ ) is suffi-
cient according to the Nyquist sampling theorem, implying
a restriction of the time steps that can be used. In practice,
the integration over time in Eq. (44) can be performed by the
discrete Fourier transform as

ρ(kπ/T ) ≈ NT

2πM

M−1∑
j=−M

eiπ jk/M〈ψ (0)|ψ ( jτ )〉, (45)

with k = −M, · · · , M − 1, and τ = T/M < �t is the time
step at which we sample the inner product 〈ψ (0)|ψ (t )〉, where
in evaluation one can use FFT.

C. Quantum density of states—Numerical results

In Sec. IV we give the matrix representation of the
Hamiltonian for α-FPUT and the general case in circular-
mode basis. In calculations of quantum DOS we set N =
1200. It turns out that the convergence of numerical so-
lutions is better in circular-mode basis than in Cartesian-
mode basis. To obtain quantum density of states, generally
exact diagonalization (ED) is required, which is only fea-
sible for small Hilbert space. However, in our numerical
computations, where typically N ∼ 106, employing ED
becomes impractical.

For quantum three-particle α-FPUT, i.e., the quantum
Hénon-Heiles model, we set the Planck constant h̄ = 3 ×
10−4. The number of energy levels below the classical es-
cape energy Es is less than one third of the whole truncated
spectra, and numerically the energy eigenvalues closest to Es

change less than one percent of the averaged level spacing as
the cutoff N is increased from 1200 to 1600, which means
that the eigenvalues can accurately represent the spectra by
the criterion of convergence. For the general case with λ =
1/16, we set h̄ = 3 × 10−3, and make calculations up to less
than 1/20 of the truncated spectra. In both cases, by Krylov
subspace method, the averaged number of states are taken
over �n = 60 consecutive levels in specific energy interval
of width �E . The quantum DOS is then in the mean defined
as ρ(E ) = �n/�E . In the typicality approach, we make the
average over 10 initial random state.

The rescaled quantum density of states from two different
methods are shown in Fig. 9 for both the α-FPUT and the
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FIG. 9. Rescaled quantum density of states 2π h̄2ρ(E ) as ob-
tained from the averaged number of state (solid circles), with ρ(E ) =
�n
�E where �n = 60 is the number of states over energy interval �E ,
and from the typicality approach (solid squares) averaged over 10
initial random states. The cutoff of n here is N = 1200, providing
N = 721 801 for the calculation of the energy spectrum: we set
h̄ = 3 × 10−4 for α-FPUT with α = 1 (a), and h̄ = 3 × 10−3 for the
general case with λ = 1/16 (b). They both agree in the mean with
the Thomas-Fermi estimation (solid line).

general case. They agree with the Thomas-Fermi result, upon
the smoothed part, and even capture the kink at saddle energy
E = Es = 1/3 for the general case, especially the ones from
the typicality approach. It is worth noting that the quantum
DOS of α-FPUT calculated in the mean exhibits prominent
regular oscillations for energies E < 0.06, referred to as quan-
tum beats, in contrast to the smoothed result. They can be
interpreted in terms of three different families of classical
(short) periodic orbits, by a calculation of their amplitudes in
the Gutzwiller trace formula (see Ref. [28]).

Our numerical results demonstrate that the semiclassical
density of states correctly describes the quantum spectra of
three-particle FPUT, and thus consequently can be used to
perform the unfolding of the quantum spectra, which is essen-
tial for the spectral statistics. Conversely, it also can be used
as a verification that the numerical quantum spectra are truly
converged with respect to the cutoff N of n.

VI. STATISTICAL PROPERTIES OF ENERGY SPECTRA

A. Transition to quantum chaos

In Sec. III C, by calculating the chaotic fraction μc over
the energy shell, we show in Fig. 5(a) transition to classical
chaos indicated by the variation of μc across the energy range.
This transition would also be manifested in the quantum
realm, arising from the quantum-classical correspondence.
To study the transition to quantum chaos, first we use the
nearest-neighbor-level spacing distribution P(s) for short-
range statistical properties of spectrum, which is the Poisson
distribution P(s) = e−s for the quantum integrable case, and
the Wigner-Dyson distribution P(s) = (π/2)s exp(−πs2/4)
from the random-matrix statistics for the quantum chaotic
case with the time-reversal symmetry, where s denotes the
spacing between two unfolded consecutive energy levels.

To acquire spectral statistics across a wide range of en-
ergy, it is essential to have statistically reasonable number of
energy levels N (E , δE ) in a narrow energy interval around
chosen energy E , as [E − δE/2, E + δE/2] where δE = ηE .
The width of the energy interval needs to be narrow enough,
η � 1, so that each energy level is associated with the same
classical dynamics. For this purpose, we introduce a variation
of the Planck constant depending on the energy as h̄(E ) =
(E/Es)h̄c, from a basic estimation

N (E , δE ) � g(E )δE = ηA
2π

(E/h̄)2, (46)

where from our analysis of smoothed DOS in Sec. V A, A =
2π h̄2g(E )/E can be approximated to be a constant in the first
order for E � Es. For quantum α-FPUT and the general case
with λ = 1/16, we set the cutoff of n as N = 1800. In the
former case h̄c = 3 × 10−4 provides ten times more energy
levels above its escape energy Es, while in the latter case
h̄c = 4 × 10−4 there are about two times more levels above
the saddle energy Es. The eigenstates below (and around)
Es are thus well converged. In both cases, η � 0.01 and the
number of consecutive energy levels is N (E , δE ) = 1200,
calculated by the Krylov subspace method.

We show in panels (a)–(d) of Figs. 10 and 11 the behavior
of P(s) of the doublets for different energies. For the unfold-
ing of partial energy spectra we have used the (ninth-order)
polynomial fitting procedure. It exhibits a transition from
Poisson distribution to Wigner-Dyson distribution as the en-
ergy increases. It should be noted that there is no time reversal
symmetry in the doublets, but due to the mirror symmetry
from the C3v symmetry, giving rise to another antiunitary sym-
metry, the doubly degenerate subspace is expected to show
Gaussian orthogonal ensemble (GOE) statistics for energies
where μc = 1 [43–45]. Clearly, in the α-FPUT case, it does
not go exactly to the Wigner-Dyson distribution when energy
increases to Es, because unlike the general case, μc � 0.94
for E � Es indicates a mixed-type system below the saddle
energy, for which we will treat the spectral statistics in more
details in Sec. VI B.

To further illustrate the transition from regularity to chaos,
we consider the spacing ratios, defined as [46]

rn = min

(
sn

sn−1
,

sn−1

sn

)
, (47)
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FIG. 10. (a–d) The histogram of neighbor-level spacing distri-
bution P(s) of doublets in quantum α-FPUT (α = 1), for several
energies with N = 1800, the irreducible Hilbert space of size is
ND = 540 900. The Planck constant is set as h̄(E ) = (E/Es)h̄c

where h̄c = 3 × 10−4 and Es=1/6, to effectively calculate 1200 lev-
els within the energy interval whose width is approximately 1% of
each energy. The red and blue solid curves in each panel show the
Wigner-Dyson and Poisson distributions. (e) Mean spacing ratio 〈r〉
(left axis) and rc (right axis), where the solid line denotes the power
function of classical fraction f (μc ) = μκ

c with κ = 2.3, as a function
of E , with two horizontal (dashed) lines denoting 〈r〉W = 4 − 2

√
3 ≈

0.5359 (upper) and 〈r〉P = 2 ln 2 − 1 ≈ 0.3863 (lower).

with sn = En − En−1 the consecutive level spacing, from {En}
an ordered set of energy levels. This quantity is now con-
sidered an effective tool to distinguish regular from chaotic
quantum spectra, especially for quantum many-body systems,
mostly due to its avoiding of numerical spectral unfolding,
since ratios are independent of the local density of states.
The approximate formulas for the distribution of P(r) can
be derived from random matrix statistics, the resulting mean
spacing ratio 〈r〉 for the Poisson level spacing is 〈r〉p =
2 ln 2 − 1, while for GOE statistics 〈r〉W = 4 − 2

√
3. We can

FIG. 11. Analogous data as in Fig. 10, but now for the general
case with λ = 1/16, and the variational Planck constant is set as
h̄(E ) = (E/Es)h̄c, where Es = 1/3 is saddle energy and h̄c = 4 ×
10−4. In panel (e) the inset is the mean spacing ratio of the singlets
as a function of E , where the dashed line denotes 〈r〉2GOE ≈ 0.4234.

then define a quantity rc the normalized mean spacing ratio as
an indicator of quantum chaos, namely

rc = 〈r〉 − 〈r〉P

〈r〉W − 〈r〉P
, (48)

obviously, for the integrable rc = 0 while rc = 1 is for the
fully chaotic.

In panel (e) of Figs. 10 and 11, we plot (on the left) 〈r〉 as
a function of E , for both the doublets and subspace A1 from
the singlets. Of either subspace, 〈r〉 shows a transition from
nearly Poisson value 〈r〉P to a value near 〈r〉W with increasing
energy, up to Es for α-FPUT, while for the general case it
shows a transition to the GOE value 〈r〉W at energies where
the classical chaotic fraction μc = 1. The route to quantum
chaos is in general following the same transition to classical
chaos as shown in Fig. 5, but there exists a slight discrepancy
with regard to the energy of the transition point of integrability
breaking, where the energy in the quantum scenario exhibits a
lag. One explanation is that this regime is not deep enough
in the semiclassical limit and consequently the number of
energy levels in the energy interval is just 1200. The inset of
Fig. 11(e) shows the mean spacing ratio of the singlets, as a
function of energy. For chaotic spectra with parity, as it has
been pointed out [47], the value for 〈r〉 obtained from random
matrices is 〈r〉2GOE ≈ 0.4234, which is clearly illustrated in
our plot.

Additionally, on the right in panel (e) of Figs. 10 and 11, we
depict a power function f (μc) = μκ

c as a function of energy,
with the power exponent κ set to 2.3. From both plots, we see
approximately there is rc = f (μc). It should be noted that this
is not an exact relation between the classical chaotic fraction
μc and the indicator of quantum chaos rc, but it reveals that
there may exist a simple connection between the classical and
quantum indicator, for which we will derive the analytical
expression in the upcoming paper [48].

B. Berry-Robnik-Brody distribution

From the transition to quantum chaos, we see that for
intermediate energies in both the α-FPUT and the general
case, the level spacing distribution is between the Poisson
and GOE statistics, since the classical fraction μc < 1 in the
intermediate case, means classically a mixed-type system with
structured phase space which has both regular and chaotic
regions. Spectral statistics of this type was first theoreti-
cally treated by Berry and Robnik [49], where the classical
chaotic fraction μc plays a crucial role, assuming that the
chaotic states are uniformly extended over the classical in-
variant chaotic component. Further studies have shown that
uniformity condition is not satisfied in a generic system if
the dynamical (or quantum) phase space localization phe-
nomenon occurs if tH < tT , where the Heisenberg time is
tH = 2π h̄ρ(E ) with ρ(E ) being the quantum DOS, tT is
the transport time controlling the rate of classical diffusion
[50–52].

To extend the Berry-Robnik distribution such that the lo-
calization effects are included, Prosen and Robnik [53,54]
have introduced the well-known (empirical) Brody distribu-
tion to describe the statistics of the energy spectra of the
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FIG. 12. The histograms of level spacing distribution P(s) (up panels) and cumulative level spacing distribution WBRB(s) (down panels)
for three energy intervals [E − δE/2, E + δE/2] with δE/E � 0.02 at E = 0.14 (a), (d), 0.15 (b), (e), 0.16 (c), (f), comprising about 7800
levels from the doublets of quantum α-FPUT with α = 1. The best fitting BRB curves are (red) solid lines, and the inset magnifications display
deviation of the numerical data from the best fitting BRB distribution. The fitting parameters (β, ρc ) from left to right are: (0.820, 0.673),
(0.840, 0.757), (0.882, 0.853), while the classical fraction μc obtained from SALI is 0.630, 0.753 and 0.850, respectively. In both panels, we
set the cutoff of n as N = 2000 and h̄ = 1.5 × 10−4, the resulting ND ∼ 1.3 × 106.

localized chaotic eigenstates

PB(s) = csβ exp(−dsβ+1), (49)

where from the normalization conditions
∫ ∞

0 PB(s)ds = 1 and∫ ∞
0 sPB(s)ds = 1 we obtain

c = (β + 1)d, d = γ β+1, (50)

with γ = �( β+2
β+1 ), �(x) being the γ function and β ∈ [0, 1]:

β = 0 indicates the maximal localization in chaotic eigen-
states and Poisson statistics, while β = 1 corresponds to the
uniformity and the GOE statistics. The degree of localization
can be characterized by β, directly related to the ratio tH/tT
between two typical timescales. For tH/tT � 1, the value of β

is expected to be close to 1, while if tH/tT � 1, β → 0. The
corresponding gap probability is

EB(s) = 1

γ (β + 1)
Q

(
1

β + 1
, (γ s)β+1

)
, (51)

where Q(a, x) is the incomplete γ function

Q(a, x) =
∫ ∞

x
t a−1e−t dt . (52)

Consider a mixed-type system with only one dominating
chaotic region with fraction ρc, which is the relative density
of the chaotic levels. In the sense of the Rosenzweig-Porter
approach to obtain the Berry-Robnik distribution, in which the
regular and chaotic eigenstates are assumed to be uncorrelated

(no tunneling), the gap probability which includes the local-
ization effects is then written as

E (s) = Ep(ρrs)EB(ρcs), ρr + ρc = 1, (53)

where ρr denotes the relative density of the regular levels,
the gap probability for regular spectrum Ep(s) = exp(−s). In
the semiclassical limit, we expect ρc = μc which indeed is
confirmed below. The Berry-Robnik-Brody distribution given
as the second derivative of the gap probability,

P(s) = d2E (s)

ds2
, (54)

captures both the relative size of divided quantum phase
space, and the localization of the chaotic eigenstates.

The BRB distribution is perfectly confirmed in our numer-
ical calculations, as shown in Figs. 12 and 13 both the levels
spacing distributions and the cumulative level spacing dis-
tributions, for three energy intervals [E − δE/2, E + δE/2],
each comprising about 7800 consecutive levels from the dou-
blets: of α-FPUT with α = 1, E = 0.14, 0.15, 0.16, while for
the general case E = 0.2, 1/3, 0.4. In both cases, we have
set the cutoff of n and h̄ accordingly, to make sure that the
number of energy levels below Es is less than 1/3 of the
available levels for calculation, to achieve good convergence
of the numerical spectra. The width of every interval fulfills
δE/E � 1, so that all eigenstates from the same interval
correspond to almost the same classical dynamics.
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FIG. 13. Analogous data as in Fig. 12, but now for the general case with λ = 1/16, from left to right at three energies E = 0.2, 1/3, 0.4, the
width of energy intervals are δE/E � 0.08, 0.03, 0.02, comprising about 7800 levels each from the doublets. The fitting parameters (β, ρc )
from left to right are: (0.681, 0.818), (0.926, 0.992), (0.940, 0.995), while the classical fraction μc obtained from SALI is 0.825, 1 and 1,
respectively. In both panels, we set the cutoff of n as N = 2200 and h̄ = 4 × 10−4, the resulting ND ∼ 1.6 × 106.

The goodness of the BRB statistics is clearly shown in
Figs. 12 and 13. In the inset, magnifications of cumulative
level spacing distributions are shown, which display minor
deviations of the numerical data from the best fitting BRB
distributions. Our calculation shows that difference between
the fitting parameter ρc from BRB statistics and the classical
fraction μc we have obtained from SALI in Sec. III C is less
than 1%, except for energy E = 0.14 in α-FPUT, where the
difference is about 6%. This discrepancy would be diminished
if we go further deeper into the semiclassical limit.

Another observation is that the value of β increases mono-
tonically with the energy, for both cases: it increases to 0.882
at E = 0.16 in α-FPUT, while it increases to 0.940 in the
general case, a value close to 1. This monotonically increasing
behavior is predicable, from the estimation of the ratio tH/tT .
The Heisenberg time tH can be approximated as

tH = 2π h̄ρ(E ) � 2π h̄g(E ), (55)

where g(E ) is the smoothed quantum DOS, of which we have
derived the analytical expression in Sec. V A and shown that
the scaled available volume of phase space 2π h̄2g(E ) is a
monotonically increasing function of E . It follows that tH is
also a monotonically increasing function of E . Moreover, the
classical fraction μc as an indicator of classical chaos shown
in Fig. 5 is monotonically increasing with three energies in
α-FPUT, and not decreasing for three energies in the general
case, while the classical transport time tT is expected to de-
crease with higher degree of chaos, thus in both cases tT is at
least not decreasing with larger E . From the above estimation

of tH and tT , we can conclude that the ratio tH/tT increases
with larger energy. Due to the relation between tH/tT and β,
that is, larger value of this ratio results in greater degree of
delocalization, i.e., larger value of β.

VII. CONCLUSIONS AND DISCUSSION

We have presented an integral view on the transition to
chaos of the three-particle FPUT model, for both the α-type
and the general case, by a study of emergence of chaos and
ergodicity across the energy, classically and quantally. On
the classical side, after the introduction of normal modes, we
have obtained the relation between μc—the relative Liouville
volume measure of the chaotic part of the phase space—and
the energy E , by the SALI method. It shows all classical
regimes of interest: the almost entirely regular, the mixed-type
regimes, and the entirely chaotic. In the quantum picture,
we introduced the rotated bosonic operators, then used the
quantum DOS from the numerical quantum spectra obtained
by the Krylov subspace method, and the one from quantum
typicality, to compare with the analytical results of smoothed
DOS from the Thomas-Fermi rule.

The derivatives of the semiclassical DOS show two types
of singularity, also referred to as the ESQPT. While the log-
arithmic divergence results from the saddles (unstable fixed
points) of the classical Hamiltonian, the step discontinuity
corresponds directly to the stable fixed point, and both can be
clearly understood from the geometric change of the available
phase space.
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Based on the nice agreement between the numerical DOS
and the semiclassical results, the nearest-level spacing distri-
bution (of the doublets from C3v symmetry) after unfolding,
as well as the mean spacing ratio, show a transition from
the Poisson to the Wigner-Dyson across the energy spectrum.
Moreover, the normalized mean spacing ratio demonstrates a
functional dependency on the classical fraction μc. Further in
deeper semiclassical limit, for the first time, we have verified
the BRB statistics in a continuous Hamiltonian system, where
the extracted quantum Berry-Robnik parameter is found to
agree with the classical value within better than one percent.
The Brody parameter in all cases, especially in the α-type, is
not exactly close to 1, as a consequence of dynamical phase
space localization, which we will study in more detail by
using different types of Husimi function representations in
paper II.

This work in a way has provided the energy-resolved
correlation between the classical route to chaos and the spec-
tral statistics of quantum spectra. We noticed that a recent
study on Bose-Hubbard Hamiltonian [55] has provided the
energy-resolved correlation between the spectral features and
structural changes of the associated eigenstates measured by
generalized fractal dimensions (GFD) defined in Fock space.
It is an interesting topic for the future work to explore the
difference between structural changes measured by GFD de-
fined in two-mode circular (Fock) basis and by localization
measures defined in phase space, which have a clear corre-
spondence with the classical dynamics.

One technical issue needs to be addressed. In the calcu-
lation of quantum spectra in narrow energy intervals across
the energy spectrum, we have employed the Krylov subspace
method for large sparse matrices, a shift-invert method of
exact diagonalization, for which there would be a significant
drawback (larger memory requirements) at larger cutoff N .
The polynomially filtered exact diagonalization approach [56]
is proved to scale better with system size. It is an interesting
task to employ this approach, for the study of spectral statistics
and entanglement entropy in the deeper semiclassical limit.
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APPENDIX A: CIRCULAR TWO-MODE BASIS

It can be verified that there are commutation relations

[�̂, a+] = −h̄a+, [�̂, a−] = h̄a−,

[n̂, a+] = −h̄a+, [n̂, a−] = −h̄a−. (A1)

With [n̂, �̂] = 0, n̂ and �̂ possess simultaneous eigenfunctions
|n, l〉 with real eigenvalues

n̂|n, l〉 = nh̄|n, l〉, �̂|n, l〉 = l h̄|n, l〉, (A2)

and for rotated bosonic operators

�̂a+|n, l〉 = h̄(l − 1)a+|n, l〉,
n̂a+|n, l〉 = h̄(n − 1)a+|n, l〉. (A3)

Consequently,

a+|n, l〉 = Anl |n − 1, l − 1〉, a−|n, l〉 = Bnl |n − 1, l + 1〉,
a†

+|n, l〉 = Cnl |n + 1, l + 1〉, a†
−|n, l〉 = Dnl |n + 1, l − 1〉,

where Anl and Bnl are normalizing factors depending on n and
l , and it can be easily verified Anl = C∗

n−1,l−1, Bnl = D∗
n−1,l+1,

with (a−a†
+)k|n, l〉 and (a+a†

−)k|n, l〉 (k � 1) being the eigen-
functions of n̂ and �̂, belonging to the same energy n, but to
different �̂ eigenvalues (l + 2)h̄, (l + 4)h̄, . . . , (l − 2)h̄, (l −
4)h̄, . . . Further analysis of the upper and lower bound of l
and n shows that [57]

n̂|n, l〉 = (n + 1)h̄|n, l〉, �̂|n, l〉 = l h̄|n, l〉, (A4)

with l = n, n − 2, . . . ,−n (n ∈ N0) and

Anl = eiδ
√

(n + l )/2, Bnl = eiγ
√

(n − l )/2, (A5)

where we choose eiδ = eiγ = 1 (δ and γ are arbitrary, choos-
ing different δ and γ does not change the quantum spectra),
with this choice of phase factors,

a+|n, l〉 =
√

(n + l )/2|n − 1, l − 1〉, a−|n, l〉 =
√

(n − l )/2|n − 1, l + 1〉,

a†
+|n, l〉 =

√
(n + l + 2)/2|n + 1, l + 1〉, a†

−|n, l〉 =
√

(n − l + 2)/2|n + 1, l − 1〉. (A6)

Using these expressions of (rotated) annihilation and creation operator, according to Eq. (26), we get

q̂+|n, l〉 =
√

h̄(a+
+ + a−)|n, l〉 =

√
h̄[

√
(n + l + 2)/2|n + 1, l + 1〉 +

√
(n − l )/2|n − 1, l + 1〉],

q̂−|n, l〉 =
√

h̄(a+ + a†
−)|n, l〉 =

√
h̄[

√
(n + l )/2|n − 1, l − 1〉 +

√
(n − l + 2)/2|n + 1, l − 1〉]. (A7)

Consequently, the matrix elements of the cubic coupling terms are given as

〈n′, l ′|q̂3
±|n, l〉 = h̄3/2δl ′,l±3

∑
m∈M1

k±
m (n, l )δn′,n+m, (A8)
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where M1 = {±1,±3}, k+
m (n, l ) = k−

m (n,−l ) with

k+
−1 = 3

√
(n − l )(n − l − 2)(n + l + 2)/8,

k+
1 = 3

√
(n − l )(n + l + 2)(n + l + 4)/8,

k+
−3 =

√
(n − l )(n − l − 2)(n − l − 4)/8,

k+
3 =

√
(n + l + 2)(n + l + 4)(n + l + 6)/8. (A9)

For the quartic coupling term, we have

〈n′, l ′|(q̂+q̂−)2|n, l〉 = h̄2δl ′l

∑
m∈M2

km(n, l )δn′,n+m, (A10)

with M2 = {0,±2,±4}, and the coefficients

k0 = 3

2
n2 − 1

2
l2 + 3n + 2,

k−2 = n
√

n2 − l2, k2 = (n + 2)
√

(n + 2)2 − l2,

k−4 = 1

4

√
n2 − l2

√
(n − 2)2 − l2,

k4 = 1

4

√
(n + 2)2 − l2

√
(n + 4)2 − l2. (A11)

APPENDIX B: REPRESENTATION OF STATES
AND SYMMETRIES

Classical Hamiltonian system of the three-particle FPUT is
of C3v symmetry and is time-reversal invariant. In the quantum
Hamiltonian, the time-reversal operator in the circular-mode
basis acts as

T |n, l〉 = |n,−l〉. (B1)

It is easy to verify that Ta†
±T −1 = a†

∓, Ta±T −1 = a∓,
from basis physical quantities: T qT −1 = q, T pT −1 = −p,
TiT −1 = −i. One can define the basis states

|n, l, s〉 = al,s(|n, l〉 + s|n,−l〉)/
√

2, s = ±1, (B2)

where al,s = smod(l,3). Two properties of this basis should be
noted: (i) there are no states with l = 0 and s = −1. (ii)
The states |n, l, s〉 and |n,−l, s〉 are linearly dependent, with
the relation |n,−l, s〉 = al+1,s|n, l, s〉 (proved by the equality
al+1,s = sa−l,s/al,s), thus the basis {|n, l, s〉, l � 0} can be
used as a complete set, and 〈n′, l ′, s′|n, l.s〉 = 2δl,0δn,n′δl,l ′δs,s′ .
To establish this basis as orthonormal, we make the rescaling
al,s = 2−δl,0/2smod(l,3). These basis states are also the eigen-
states of T ,

T |n, l, s〉 = al,s√
2

(T |n, l〉 + sT |n,−l〉) = s|n, l, s〉. (B3)

The operator Ps = 1
2 (1 + sT ) is a projection operator to the

subspace spanned by the states {|n, l, s〉}, and |n, l, s〉 =√
2al,sPs|n, l〉. From the relation T q̂+T −1 = q̂−, it is straight-

forward to verify that

q̂3
+|n, l〉 = T q̂3

−T −1|n, l〉 = T q̂3
−|n,−l〉, (B4)

which has also been proven in Eq. (30). It is then evident that

[T, i(q̂3
− − q̂3

+)] = 0, [Ps, i(q̂3
− − q̂3

+)] = 0. (B5)

For simplicity, here we set the phase in Eq. (A5) as
δ = π/2, γ = −π/2, then

(iq̂+)3|n, l〉 = h̄3/2
∑

m=±1,±3

k+
m (n, l )|n + m, l + 3〉, (B6)

so finally, using the equality al,s = al±3,s and two properties
of the basis, for l � 0 we get

i(q̂3
− − q̂3

+)|n, l, s〉 =
√

2al,s
[
(iq̂+)3 + (−iq̂−)3

]
Ps|n, l〉

=
√

2al,sPs
[
(iq̂+)3 + (−iq̂−)3

]|n, l〉
= h̄3/2

∑
m=±1,±3

k±
m (n, l )|n + m, l ± 3, s〉

= h̄3/2
∑

m=±1,±3

k±
m (n, l )|n + m, |l ± 3|, s〉.

(B7)

It reveals that the basis states |n, l, s〉 with different s are
decoupled. The circular basis states are coupled if and only
if �l = ±3: the states with mod(l, 3) = 0 are decoupled from
the states with mod(l, 3) �= 0. Therefore, the Hilbert space can
be divided further into four decoupled subspaces:

(1) subspace 1: spanned by the basis set {|n, l, 1〉,
mod (l, 3) = 0},

(2) subspace 2: spanned by the basis set {|n, l,−1〉,
mod (l, 3) = 0},

(3) subspace 3: spanned by the basis set {|n, l, 1〉,
mod (l, 3) �= 0},

(4) subspace 4: spanned by the basis set {|n, l,−1〉,
mod (l, 3) �= 0}.

From this classification of subspaces, it is clear that the
basis set of subspace 1 and 2 combined is the singlet we
have defined, while the set of subspace 3 and 4 is the set
of two doublets. The symmetry of these subspaces can be
also classified by the irreducible representation of the point
symmetry group C3v . Subspace 1 is of A1 symmetry, subspace
2 is of A2 symmetry, these two subspaces are distinct, because
states with l = 0 do not exist in subspace 2. Subspace 3
and 4 are of E symmetry, and have the same eigenspectra
since the Hamiltonian are identical, apparently, this is also the
eigenspectra of the doublet.

APPENDIX C: AVAILABLE PHASE SPACE FOR THE
THREE-PARTICLE FPUT

The Thomas-Fermi expression for DOS of the three-
particle generic FPUT is given as

g(E ) = 1

(2π h̄)2

∫
dqdpδ(E − H (q, p))

= 1

(2π h̄)2

∫
dqdp

[
δ(p1 − p+

1 )

|∂H/∂ p1|p+
1

+ δ(p1 − p−
1 )

|∂H/∂ p1|p−
1

]
,

where p±
1 are two roots of the equation H (q, p) = E ,

p±
1 = ±

√
2E − 2V (q, p) − p2

2

)
, (C1)
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and |∂Hα/∂ p1|p±
1

= |p±
1 |, then the p1 integration yields

g(E ) = 2

(2π h̄)2

∫
dq1dq2

∫ p+
2

p−
2

d p2
1√

(p+
2 − p2)(p2 − p−

2 )

= 2π

(2π h̄)2

∫
dq1dq2 = 1

2π h̄2

∫
rdrdφ, (C2)

with p±
2 = ±√

2E − 2V (q, p), and the constraint of the inte-
gral is given as V (r, φ) � E . A further simplification of the
integral rests upon the derivation of the real roots r(φ) for
V (r, φ) = E .

For α-FPUT of cubic potential, the condition for the exis-
tence of real roots (0 � r < ∞) for the cubic equation

α sin 3φ

3
r3 + 1

2
r2 − E = 0 (C3)

is that the discriminant

Dα = 9E

(2α sin 3φ)2

(
E − 1

6α2 sin2 3φ

)
� 0, (C4)

that is, the energy E is bounded by E � 1/6α2. The positive
real root is

r+(φ) = 1

α sin 3φ

(
cos

θ

3
− 1

2

)
, if sin 3φ � 0,

r−(φ) = −1

α sin 3φ

(
cos

θ + π

3
+ 1

2

)
, if sin 3φ � 0, (C5)

where

cos θ = 12Eα2 sin2 3φ − 1, θ ∈ [0, π ]. (C6)

Inserting this result into the simplified Thomas-Fermi expres-
sion in Eq. (C2), we get

g(E ) = 3

4π h̄2

(∫ π/3

0
r2
+(φ)dφ +

∫ 2π/3

π/3
r2
−(φ)dφ

)
. (C7)

From the evaluation of g(E ) we can calculate the derivative
g′(E ) and obtain

g′(E ) = 3
∫ π

3

0

sin 2θ
3 − sin θ

3 + sin 2θ+2π
3 + sin θ+π

3

π h̄2
√

1 − cos2 θ
dφ.

(C8)

When E → 1/6α2, the integral would diverge, because of the
singular point (φ, θ ) = (π/6, 0). For energy E = 1/6α2 − δ

with small δ

g′
(

1

6α2
− δ

)
=

√
2

π h̄2

∫ π

θδ

sin
(

θ
6 + π

3

)
√

2μ − 1 − cos θ
dθ

=
√

2c

π h̄2

∫ π

θδ

dθ√
2μ − 1 − cos θ

, (C9)

where c is a constant that fulfills
√

3/2 < c < 1, obtained by
referring to the mean value theorem in calculating this inte-
gral, and we denote μ = 1 − 6δα2, cos θ = 2μ sin2 3φ − 1,
and cos θδ = 2μ − 1. The integral∫ π

θδ

dθ√
2μ − 1 − cos θ

=
∫ 1

0

√
μdt√

1 − μt2
√

1 − t2
(C10)

is Legendre’s incomplete elliptic integral of the first kind, with
δ → 0, μ → 1 the asymptotic approximation gives∫ π

θδ

dθ√
2μ − 1 − cos θ

≈
√

μ

2
ln

16

1 − μ
. (C11)

From exact expression for g′(E ) we therefore explicitly ex-
tract the logarithmic divergence

g′
(

1

6α2
− δ

)
≈ − c√

2π h̄2
ln

3δα2

8
. (C12)

For the general case of quartic potential where

V (r, φ) = 1

2
r2 + 1

3
r3 sin 3φ + λr4 = E , (C13)

a quartic equation can be solved in general, thanks to the ge-
nius of Abel and Galois. We see from the potential landscape
that for λ � 1/16, there is one positive root r > 0. It can also
be verified from the discriminant

D = − 256E3λ3 − 32E2λ2 + 8E2λ sin2 3φ − Eλ

− 1
3 E2 sin4 3φ + 1

18 E sin2 3φ < 0, (C14)

and Eq. (C13) in a depressed cubic form

t3
0 + pt0 + q = 0,

p = 4E

λ
− 1

12λ2
,

q = E sin2 3φ

9λ3
− 1

108λ3
− 4E

3λ2
, (C15)

where the discriminant scaled as

D3 = 4p3 + 27q2 = −D/λ6 > 0. (C16)

The only real root of the depressed cubic equation then could
be expressed by hyperbolic functions as

t0 =−2|q|
q

√−p

3
cosh

⎡
⎣1

3
arccosh

⎛
⎝−3|q|

2p

√
−3

p

⎞
⎠

⎤
⎦, p < 0,

t0 = −2

√
p

3
sinh

⎡
⎣1

3
arcsinh

⎛
⎝3q

2p

√
3

p

⎞
⎠

⎤
⎦, if p > 0. (C17)

We denote

p0 = 1

2λ
− sin2 3φ

24λ2
, q0 = sin3 3φ

216λ3
− sin 3φ

12λ2
, (C18)

and t = t0 − 2p0/3, the root reads

r+(φ) =
√

t +
√

t − 2(p0 + t + q0/
√

t )

2

− sin 3φ

12λ
, sin 3φ � 0,

r−(φ) = −√
t +

√
t − 2(p0 + t − q0/

√
t )

2

− sin 3φ

12λ
, sin 3φ � 0. (C19)
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The Thomas-Fermi expression is then given as

g(E ) = 3

4π h̄2

∫ π
3

0

(
sin2 3φ

18λ2
− 1

2λ
− sin 3φ

6λ

√
t − q0√

t

)
dφ,

(C20)

with the derivative

g′(E ) = − 3π

(2π h̄)2

∫ π/3

0
∂E

(
sin 3φ

6λ

√
t + q0√

t

)
dφ. (C21)

For λ < 1/16, there would exist multiple roots below the
saddle energy. From an algebraic perspective, in this scenario,
there are sets of φ for which the discriminant of the quartic
equation D > 0, for specific value of E . Upon deeper exam-
ination of the potential landscapes, it becomes evident that
the parameter space of λ can be partitioned into two distinct
regions: 0 < λ < 1/18 and 1/18 < λ < 1/16. In the first re-
gion, as the energy increases, a notable transformation occurs
in the geometry of the available phase space: it evolves from
three disconnected parts to four disconnected parts, ultimately
culminating in an interconnected configuration. In the sub-
sequent region, there is a transition from a single connected
part to four disconnected parts, before eventually returning
to the interconnected. The global minimum of energy in this
scenario is the minimum energy among all stable fixed points
Emin = min{V (λ+, φm), 0}. The nature of roots of Eq. (C13)
varies across energies defined as follows:

El = max{V (λ+, φm), 0}, Es = V (λ−, φm),

E1 = V (1/
√

4λ, φ)|sin 3φ=−√
16λ, (C22)

where El > 0 is the (local minimum) energy at the stable fixed
points, Es denotes energy of saddles, and the discriminant D <

0 when E � E1.
In the first region λ < 1/18, there are two roots for the clas-

sical available phase space composed of three disconnected
parts for Emin < E < El ,

ru,d =
√

t ±
√

t − 2(p0 + t + q0/
√

t )

2
− sin 3φ

12λ
, (C23)

where −1 � sin 3φ < μ, the sign + is for ru and the minus
for rd , μ is the solution of the following equation

V

(
− sin 3φ +

√
sin2 3φ − 16λ

8λ

)∣∣∣∣∣
sin 3φ=μ

= E . (C24)

So finally, one has the density of states as an integral

g(E ) = 3π

2π h̄2

∫ π/2

1
3 (arcsin μ−π )

(
r2

u − r2
d

)
dφ. (C25)

For El < E < Es, there are three real positive roots: ru,d (φ)
for the outer three disconnected parts with

t0 = 2

√−p

3
cos

⎡
⎣1

3
arccos

⎛
⎝3q

2p

√
−3

p

⎞
⎠

⎤
⎦, (C26)

and ri(φ) for the inner connected part with

t0 = 2

√−p

3
cos

⎡
⎣1

3
arccos

⎛
⎝3q

2p

√
−3

p

⎞
⎠ + 2π

3

⎤
⎦, (C27)

of the same form as Eq. (C19), depending on the sign of
sin 3φ. The density of states is

g(E ) = 1

4π h̄2

(
6
∫ π/2

1
3 (arcsin μ−π )

(
r2

u − r2
d

)
dφ +

∫ 2π

0
r2

i dφ

)
.

(C28)

For Es < E < E1, the available phase space is a connected one
piece, yielding

g(E ) = 3

2π h̄2

∫ 1
3 (arcsin ν−π )

1
3 (arcsin μ−π )

(
r2

u − r2
d

)
dφ

+ 1

4π h̄2

(
3
∫ 1

3 (arcsin ν+2π )

1
3 (arcsin ν−π )

r2
udφ +

∫ 2π

0
r2

i dφ

)
,

(C29)

where ν is the solution of the following equation:

V

(
− sin 3φ −

√
sin2 3φ − 16λ

8λ
, φ

)∣∣∣∣∣
sin 3φ=ν

= E . (C30)

As energy goes beyond E1, the roots are given again as
Eq. (C19) where the discriminant D < 0. By applying a sim-
ilar approach, we can have an analytical expression for the
region in the interval 1/18 < λ < 1/16.
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