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Driven classical self-sustained oscillators have been studied extensively in the context of synchronization.
Using the master equation, this work considers the classically driven generalized quantum Rayleigh–van der Pol
oscillator, which is characterized by linear dissipative gain and loss terms as well as three nonlinear dissipative
terms. Since two of the nonlinear terms break the rotational phase space symmetry, the Wigner distribution
of the quantum mechanical limit cycle state of the undriven system is, in general, not rotationally symmetric.
The impact of the symmetry-breaking dissipators on the long-time dynamics of the driven system are analyzed
as functions of the drive strength and detuning, covering the deep quantum to near-classical regimes. Phase
localization and frequency entrainment, which are required for synchronization, are discussed in detail. We
identify a large parameter space where the oscillators exhibit appreciable phase localization but only weak or no
entrainment, indicating the absence of synchronization. Several observables are found to exhibit the analog of
the celebrated classical Arnold tongue; in some cases, the Arnold tongue is found to be asymmetric with respect
to vanishing detuning between the external drive and the natural oscillator frequency.
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I. INTRODUCTION

Self-sustained classical oscillators do not only contain a
damping term but also a term that serves as an energy source.
The competition between the nonlinear damping and linear
gain (sometimes also referred to as antidamping) terms in-
troduces, in the absence of an external sinusoidal drive, a
limit cycle, i.e., a stable periodic finite-amplitude trajectory
in position-momentum phase space that is approached in the
large time limit regardless of the oscillator’s initial conditions.
The asymptotic finite-amplitude oscillations of self-sustained
oscillators underlie a range of phenomena in the social sci-
ences, economics, engineering, and the fundamental sciences,
including cardiac rhythms, cell rhythms, and the synchronous
blinking of fireflies and clapping of audience members [1,2].

In the classical Rayleigh oscillator, which was discussed in
1883 by Strutt and Rayleigh in the context of clocks, violin
strings, and clarinet reeds, the nonlinear damping is propor-
tional to ẋ3 (here, x denotes the dimensionless position and
ẋ the dimensionless velocity or momentum) [3]. In the van
der Pol oscillator, in contrast, the nonlinear damping term is
proportional to x2ẋ; van der Pol and co-workers applied the
corresponding equation of motion in 1928 to model the human
heart [4,5]. We note in passing that the van der Pol oscillator
equation can be obtained from the Rayleigh oscillator equa-
tion by substitution and subsequent differentiation [6].

This work considers the quantum version of the dimen-
sionless classical oscillator equation of motion ẍ + x = εẋ −
(γ2,vdpx2 + γ2,rayẋ2)ẋ, where ε quantifies the linear damp-
ing term. Our main interest lies in investigating the role
of the generalized non-linear damping term, characterized
by the coefficients γ2,vdp and γ2,ray, in the quantum regime.

Throughout this work, we refer to the oscillator with
equal nonlinear position- and momentum-dependent damping
(γ2,vdp = γ2,ray) as the RvdP (Rayleigh–van der Pol) oscillator
[7,8] and that with γ2,vdp �= γ2,ray (both coefficients finite) as
the generalized RvdP oscillator. While the classical Rayleigh
(γ2,vdp = 0; γ2,ray > 0; we use R for Rayleigh throughout),
classical van der Pol (γ2,vdp > 0; γ2,ray = 0; we use vdP for
van der Pol throughout), and classical RvdP (γ2,vdp = γ2,ray)
oscillators have been investigated extensively, the quantum
version of the paradigmatic rotationally invariant RvdP oscil-
lator with nonlinear damping term proportional to (x2 + ẋ2)ẋ
was first considered in 2013–2014 [9,10]. Since then, this
model has been used to study various aspects of synchroniza-
tion [7–26]; moreover, its applicability for sensing has also
been assessed [27].

Quantum versions of the R and vdP oscillators, both of
which possess limit cycles with broken rotational phase-space
symmetry, were considered by Chia et al. [7] and Arosh
et al. [8]. These works presented an analysis of the quantum
vdP, quantum R, and quantum RvdP oscillators and their
classical counterparts. The quantum mechanical systems were
found to support relaxation oscillations, a key signature of
classical nonlinear systems [7]. Phase synchronization, which
requires phase localization (e.g., nonrotationally symmetric
Wigner function) and frequency entrainment (modification
of the system’s frequency from the natural harmonic oscil-
lator to the drive frequency), in the presence of a coherent
sinusoidal classical drive has been studied extensively for
the quantum version of the RvdP oscillator [7,10,19,21,27].
The understanding of driven systems with unequal γ2,vdp and
γ2,ray, in contrast, is still in its infancy [7,8]. Moreover, the
deep quantum regime, in which the system response such
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as the susceptibility may—extrapolating based on the behav-
ior found for the RvdP oscillator with vanishing linear gain
[27]—deviate not only quantitatively but also qualitatively
from the system response in the classical regime, has not
yet been investigated systematically for the generalized RvdP
oscillator.

Our main conclusions, which are derived by analyzing
numerical and perturbative results of the quantum master
equation, are as follows: (i) In all regimes (classical to deep
quantum), the phase localization increases for fixed detun-
ing � with increasing drive strength � for all oscillator
types considered, including oscillators that may be character-
ized as being hybrid R-RvdP oscillators or hybrid RvdP-vdP
oscillators; this conclusion—consistent with the conceptual
framework of synchronization, which assumes that the drive
keeps the amplitude of � = 0 limit cycle approximately
unchanged—is restricted to the weak drive strength regime.
(ii) Systems with nonrotationally symmetric dissipators dis-
play in the deep quantum regime behaviors that distinguish
them from the RvdP oscillator, whose dissipators are ro-
tationally symmetric. The phase localization, e.g., depends
for fixed � on the sign of the detuning � and may vary
no-monotonically as � increases or decreases from 0. (iii)
The power spectrum in frequency space is determined for
several drive strengths and detunings. Phase localization is
observed over a much larger parameter space than frequency
entrainment. In the deep quantum regime, the spectral re-
sponse is very broad and frequency entrainment is either
absent or extremely weak. (iv) The modification of the limit
cycle amplitude by the external drive, relative to that of the
drive-free system, is quantified through a deformation pa-
rameter D̄. The deformation parameter displays, just as the
number of excitations N̄ and phase localization measure S̄q,
Arnold tongue-like characteristics. (v) For a large parameter
space, we observe phase localization but no frequency entrain-
ment, indicating the absence of quantum synchronization. We
note that many references (see, e.g., Ref. [21]) refer to the
measure Sq employed in our work as phase synchronization
as opposed to phase localization; we refrain from referring
to Sq as phase synchronization since—in our definition—
phase synchronization requires phase locking and frequency
entrainment.

The remainder of this paper is organized as follows. Sec-
tion II introduces the master equation, reviews the connection
between the master equation and the classical equations of
motion, and discusses the observables considered in this work.
Results as functions of the detuning and strength of the exter-
nal drive, and their interpretation, are presented in Sec. III.
Finally, Sec. IV summarizes. Technical details related to the
master equation in the rotating frame and a comparison of
different phase localization measures are relegated to two
appendices.

II. THEORETICAL FRAMEWORK

A. Quantum systems under study: Master equation

In the laboratory frame (i.e., the “non-rotating frame”),
the master equation for the density matrix ρ̂ of the

generalized quantum RvdP oscillator in scaled dimensionless
units reads [8]

˙̂ρ = −ı[Ĥ , ρ̂] + γ +
1 D̂[â†](ρ̂) + γ −

1 D̂[â](ρ̂)

+ αD̂[ââ](ρ̂) + βD̂[x̂â](ρ̂) + δD̂[ p̂â](ρ̂), (1)

where the operators â and â† are the bosonic annihilation and
creation operators, â|n〉 = √

n|n − 1〉, â†|n〉 = √
n + 1|n +

1〉, â†â|n〉 = n|n〉,

x̂ = 1√
2

(â + â†), (2)

and

p̂ = 1√
2ı

(â − â†). (3)

The Hamiltonian Ĥ ,

Ĥ = Ĥ0 + V̂drive, (4)

contains the dimensionless one-dimensional harmonic oscil-
lator Hamiltonian Ĥ0,

Ĥ0 = â†â (5)

(for convenience, the ground state energy is chosen to be equal
to 0), as well as the external drive V̂drive,

V̂drive = � sin(ωDt )
â + â†

√
2

. (6)

Here, � (which is assumed to be real) denotes the strength
of the drive. Equation (6) contains co- and counter-rotating
terms. Neglecting the counter-rotating terms, the drive within
the rotating wave approximation (RWA) simplifies to

(V̂drive)RWA = �

2ı
√

2
(eıωDt â − e−ıωDt â†). (7)

Looking ahead, we define the detuning � between the exter-
nal drive and the natural angular frequency of the harmonic
oscillator Hamiltonian Ĥ0 (in our case, this angular frequency
is equal to 1),

� = ωD − 1. (8)

The master equation, Eq. (1), contains five dissipators D̂,
which—for an arbitrary operator Ĉ—are defined through

D̂[Ĉ](ρ̂) = Ĉρ̂Ĉ† − 1
2 {Ĉ†Ĉ, ρ̂}, (9)

where {Â, B̂} denotes the anticommutator between the oper-
ators Â and B̂. The dissipators that are proportional to the
coefficients γ +

1 and γ −
1 represent incoherent linear or one-

excitation processes while those that are proportional to α, β,
and δ represent incoherent nonlinear or two-excitation pro-
cesses. Specifically, γ +

1 and γ −
1 are incoherent linear gain and

incoherent linear damping rates, respectively. The dissipator
proportional to the incoherent two-photon damping coeffi-
cient α appears in various contexts including phonon lasers
and lasing [23,28,29]. The terms that are proportional to β

and δ, in contrast, are studied comparatively rarely [7,8]. The
physical interpretation of these terms is relegated to Sec. II B,
which connects the quantum equations of motion to the clas-
sical equations of motion for the generalized RvdP oscillator.
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In the eigenbasis {|k〉} of Ĥ0, the master equation reads

ρ̇k,l = −ı
�√

2
sin(ωDt )(

√
kρk−1,l + √

k + 1ρk+1,l − √
l + 1ρk,l+1 −

√
lρk,l−1)

+
[
−ı(k − l ) − γ +

1

2
(k + l + 2) − γ −

1

2
(k + l ) − α

2
[k(k − 1) + l (l − 1))] +

(
β

4
+ δ

4

)
(2kl − 2k2 − 2l2 + k + l )

]
ρk,l

+ γ +
1

√
klρk−1,l−1 + γ −

1

√
(k + 1)(l + 1)ρk+1,l+1 +

(
α + β

2
+ δ

2

)√
(k + 1)(k + 2)(l + 1)(l + 2)ρk+2,l+2

+ 1

4
(β − δ)[(2l − k)

√
(k + 1)(k + 2)ρk+2,l + (2k − l )

√
(l + 1)(l + 2)ρk,l+2

+ (2 − l )
√

l (l − 1)ρk,l−2 + (2 − k)
√

k(k − 1)ρk−2,l ], (10)

where we introduced the notation ρk,l = 〈k|ρ̂|l〉 and ρ̇k,l =
〈k| ˙̂ρ|l〉. To understand the system dynamics, it is useful to
summarize the structure of the coupled differential equations.
For � = 0, Eq. (10) shows the following:

(i) β = δ [30]: The coupled differential equations for ρ̇k,l

decouple into N independent sets of equations; specifically,
the equation for ρ̇0,0 is only coupled to the equations for ρ̇n,n,
where n = 1, . . . , N − 1; the equation for ρ̇0,1 is only coupled
to the equations for ρ̇n,n+1, where n = 1, . . . , N − 2; and so
on. Since the coherences can be shown to decay to zero in
the large time limit, the stationary � = 0 limit cycle state is
characterized by ρk,l = 0 for k �= l , i.e., it is diagonal in the
energy eigenbasis of Ĥ0. Reference [28] provides analytical
expressions for the ρk,k that characterize the limit cycle. A
diagonal density matrix yields a rotationally invariant Wigner
function W (x, p, t ) (see, e.g., Refs. [8,27]), i.e., a Wigner
function that depends on r but not on ϕ; here, x = r cos ϕ and
p = r sin ϕ.

(ii) β �= δ: The coupled differential equations for the ρ̇k,l

can be divided into two sets, one set for ρ̇k,l with k − l even
and another set for ρ̇k,l with k − l odd. The stationary � = 0
limit cycle state is characterized by ρk,l = 0 for all odd k − l .
Owing to the dissipators that are proportional to β and δ, the
limit cycle state is nondiagonal in the energy eigenbasis of Ĥ0.
Correspondingly, the Wigner function depends explicitly on r
and ϕ.

The drive (i.e., a finite �) introduces coupling between ρ̇k,l

equations with k − l even and k − l odd. Specifically, in the
weak driving limit, a perturbative order-by-order treatment
(using the framework discussed in Ref. [20]) shows that the
drive introduces terms that are proportional to � in the off
diagonals ρk,k±1 when β = δ and in the elements ρk,l with
k − l odd when β �= δ.

Throughout, we are interested in parameter combina-
tions for which the density matrix at large times reaches
a state that displays regular oscillations around a quasi-
stationary state. Our simulations prepare the system at
t = 0 in the coherent state |α0〉 [31]. The time evolution
of the matrix elements ρk,l is determined by solving the
set of first-order coupled differential equations given by
Eq. (10).

We visualize the system at time t using the phase space
Wigner function W (x, p, t ),

W (x, p, t ) = 1

π

∫ ∞

−∞
〈x + y|ρ̂|x − y〉e−2ıpydy, (11)

which is a quasiprobability [31]. A key feature of the Wigner
function is that it connects naturally with the classical phase
space trajectories of the corresponding classical system.

B. Connection with classical equation of motion

Starting with the equation of motion for 〈â〉,
d〈â〉
dt

= Tr
(

˙̂ρâ
)
, (12)

our goal is to obtain an approximate differential equation for
〈x̂〉 that maps—in the limit that ε,

ε = γ +
1 − γ −

1 , (13)

is small—to the classical equations of motion for the gen-
eralized driven RvdP oscillator. Positive and negative ε

correspond to net linear gain and net linear damping, respec-
tively. Importantly, when establishing the mapping between
the quantum and classical equations of motions, only the
difference between γ +

1 and γ −
1 enters and not the actual values

[8]. In the quantum regime, the system characteristics have,
however, been shown to depend on the actual values of γ +

1
and γ −

1 [8]. Expectation values are, as usual, calculated via
the trace operation; e.g., 〈â〉 = Tr(ρ̂â). Introducing ᾱ = α/ε,
β̄ = β/ε, δ̄ = δ/ε, and �̄ = �/ε as well as replacing terms
like 〈â†ââ〉 by 〈â†〉〈â〉〈â〉, one derives—generalizing the steps
of Arosh et al. [8]—at order ε

d2〈x̂〉
dt2

+ 〈x̂〉 = −ε�̄ sin(ωDt ) + ε

[
1 − (ᾱ + 2β̄

− δ̄)〈x̂〉2 − (ᾱ + δ̄)

(
d〈x̂〉
dt

)2]d〈x̂〉
dt

. (14)

Physically, the approximations amount to assuming that
the classical limit cycle is only weakly deformed and
that quantum fluctuations are small. The quantum-classical
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FIG. 1. Stationary quantum Wigner functions W (x, p, t ) [Eq. (11)] as functions of x and p in the absence of an external drive; the
calculations are performed in the laboratory frame using Eq. (10) with � = 0. The linear gain rate γ +

1 and linear damping rate γ −
1 are equal to

1/5 and 0, respectively, yielding ε = 1/5; note, to amplify the rotational asymmetry, this value of ε is twice as large as that used in all other
figures of this paper. The nonlinear damping parameters as well as the values of 〈â†â〉 and Alc (Alc is the same for all five panels in a given row)
can be found in Table I. From top to bottom, the quantumness, as measured by 〈â†â〉, decreases; specifically, 〈â†â〉 is 5.5–5.6, 1.18–1.34, and
0.53–0.83 for the first, second, and third row, respectively. The color scales on the far right apply to all five distributions in the respective row.
Note that the scales of the axes are the same for all panels in a given row but that the x and p ranges decrease from the first to the second and
from the second to the third rows. The first, third, and fifth columns are for the R, RvdP, and vdP oscillators, respectively. The second column
is for an oscillator that is “in between” the R and Rvdp oscillators while the fourth column is for an oscillator that is “in between” the RvdP
and vdP oscillators. The light blue solid lines show the classical limit cycle trajectory.

correspondence for the strongly non-linear regime (lifting of
the former restriction) can be established by allowing for
additional terms in Ĥ0. Reference [7] carried such a program
out for the R, RvdP, and vdP oscillators.

Defining γ̄2,vdp = ᾱ + 2β̄ − δ̄ and γ̄2,ray = ᾱ + δ̄ and re-
placing the expectation value 〈x̂〉 by the classical variable x(t ),
Eq. (14) can be identified as the classical equation of motion
for a driven self-sustained oscillator:

ẍ(t ) + x(t ) = −ε�̄ sin[(1 + �)t]

+ ε[1 − γ̄2,vdp(x(t ))2 − γ̄2,ray(ẋ(t ))2]ẋ(t ).
(15)

The subscript “2” reflects that γ̄2,vdp and γ̄2,ray characterize
nonlinear damping processes; throughout, these coefficients
are assumed to be greater than or equal to zero. The subscripts
“vdp” and “ray” stand for “van der Pol” and “Rayleigh,”
respectively. The combinations (γ̄2,vdp > 0, γ̄2,ray = 0) and
(γ̄2,vdp = 0, γ̄2,ray > 0) correspond to the paradigmatic vdP
and R oscillators [7,8]. The case where the damping rates
γ̄2,vdp and γ̄2,ray are equal is referred to as the RvdP oscillator
[7,8]. In terms of ᾱ, β̄, and γ̄ , the three special cases are

vdP oscillator with ᾱ = −δ̄, RvdP oscillator with β̄ = δ̄, and
R oscillator with ᾱ + 2β̄ = δ̄. By changing γ̄2,vdp and γ̄2,ray

continuously one can tune from one oscillator type to another.
The classical equations of motion can be analyzed

using secular perturbation theory, in which ε is treated—
consistently with the discussion above—as a small parameter
[32,33]. Defining the scaled detuning �̄ as well as the slow
timescale T [�̄ = �/ε and T = εt ; since T depends on t , we
use the notation T (t )], one makes the ansatz

x(t ) = 1
2 A(T (t )) exp(ıt ) + 1

2 [A(T (t ))]∗ exp(−ıt ) + εx1(t ),
(16)

where the amplitude A is assumed to be a slowly varying func-
tion in T . In the absence of an external drive, the amplitude
|A(T (t ))| = Alc,

Alc = 2(γ̄2,vdp + 3γ̄2,ray)−1/2, (17)

corresponds to a stable limit cycle (hence the subscript “lc”).
Regardless of where the classical trajectory is started, it ap-
proaches at long times a trajectory that is, to leading order,
characterized by Alc [1,32]. The solid light blue lines in Fig. 1
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TABLE I. The first six columns provide a summary of nonlinear damping parameters α, β, and δ used in Figs. 1, 4–6; the labels
(a)–(o) refer to the panels of the figures. For reference, the last two columns report the limit cycle amplitude Alc, which depends on the
parameter ε; ε = 1/5 and 1/10 for Fig. 1 and Figs. 4–6, respectively. In each figure, the classical limit cycle amplitude Alc is the same
across each row [e.g., panels (a)–(e)]. The labels “classical,” “transition,” and “quantum” refer to the quantumness of the system; the
labels are meant to serve as a rough guide.

R R/RvdP RvdP RvdP/vdP vdP Alc for Fig. 1 Alc for Figs. 4–6

α (a) 0 (b) 1/100 (c) 1/50 (d) 1/100 (e) 0 “classical” “classical”
β 1/75 1/150 0 1/50 1/25 Alc = √

10 Alc = √
5

δ 2/75 1/75 0 0 0 ≈3.162 ≈2.236

α (f) 0 (g) 3/40 (h) 3/20 (i) 3/40 (j) 0 “transition” “transition”
β 1/10 1/20 0 3/20 3/10 Alc = √

4/3 Alc = √
2/3

δ 1/5 1/10 0 0 0 ≈1.155 ≈0.816

α (k) 0 (l) 2/5 (m) 4/5 (n) 2/5 (o) 0 “quantum” “quantum”
β 8/15 4/15 0 4/5 8/5 Alc = 1/2 Alc = √

1/8
δ 16/15 8/15 0 0 0 = 0.5 ≈0.354

show the numerically determined classical limit cycle tra-
jectories for � = 0 and ε = 1/5 for various oscillator types
and various nonlinear parameters, i.e., various Alc values. The
limit cycle is a prerequisite for the emergence of classical syn-
chronization in the presence of a nonvanishing drive with �

and |�| not too large [1]. One objective of the present work is
to study the quantum analog of the celebrated classical Arnold
tongues, which play a fundamental role in synchronization
studies, for the generalized RvdP oscillator with rotational
phase space asymmetry.

The mapping between the classical and quantum equa-
tions of motion motivates the functional forms of the
“nonlinear dissipators.” Specifically, the arguments of the dis-
sipators that are proportional to β and δ are chosen such that
the quantum equations of motion map, for small ε, to the clas-
sical equations of motion for the R and vdP oscillators. While
the dissipator D̂[â2](ρ̂) has a clear physical interpretation
(two-photon losses), it was suggested that an experimental
realization of the dissipators D̂[x̂â](ρ̂) and D̂[ p̂â](ρ̂) may
involve measurement and feedback processes [7].

We emphasize that the mapping between the classical
and quantum equations of motion is derived in the labora-
tory frame. This is important since the terms D̂[x̂â](ρ̂) and
D̂[ p̂â](ρ̂) are not invariant under a transformation to a rotating
frame (see Appendix A), i.e., the functional form of the master
equation changes unless β and δ are equal to each other.
The terms D̂[â†](ρ̂), D̂[â](ρ̂), and D̂[ââ](ρ̂), in contrast, are
unchanged under a transformation to a rotating frame. It fol-
lows that only the master equation for the RvdP oscillator
is invariant under a transformation to a rotating frame. In
general, a transformation to a rotating frame introduces new
terms, which can be interpreted as being due to fictitious
forces that arise in response to the rotation, in analogy to, e.g.,
the Coriolis force in classical mechanics [34].

C. Observables

As alluded to earlier, the expectation value 〈â†â〉 measures
the quantumness of the oscillator. The self-sustained oscil-
lator is, in the absence of the external drive, in the classical
regime, the crossover regime, and the quantum regime when

〈â†â〉 	 1, 〈â†â〉 ≈ 1, and 〈â†â〉 
 1, respectively. Being in
the quantum regime requires that the dissipators that lead to
a lowering of the excitations are sufficiently strong. For the
RvdP oscillator with β = δ, e.g., the effects of the α and γ −

1
terms need to dominate over the γ +

1 term. A nonvanishing
external drive tends to act as an energy source, leading to an
increase of 〈â†â〉 in the quasistationary regime compared to
the situation where the drive strength is zero. Quite generally,
the system dynamics can be divided into two regimes: initial
transient dynamics and long-time quasistationary dynamics.
Figures 2 and 3 show the time dependence of observables,
covering the transient and quasistationary regimes, while
Figs. 1, 4–6 display the system characteristics in the quasi-
stationary regime, which—for the parameters considered—is
governed, at least to leading order, by the limit cycle of the
system without external drive.

Our primary interest in this work lies in quantifying phase
localization and frequency entrainment, in the nontransient
quasistationary regime. Quantum phase localization has been
quantified through various measures, including phase distribu-
tion, “moments” such as 〈â〉, entanglement, and information
theory based observables [13,17,22,25,35,36]. Measures that
involve the quantum mechanical phase operator ϕ̂ [37,38]
are intuitively appealing as they provide an immediate link
to one of the classical phase localization metrics, namely
the mean resultant length Scl, which is defined as Scl =√

〈sin ϕ〉2 + 〈cos ϕ〉2 = |〈exp(ıϕ)〉|. In this classical context,
the 〈·〉 notation indicates an ensemble average as opposed to
the quantum mechanical trace operation. If the phases ϕ, ϕ =
atan(p/x), for the driven self-sustained classical oscillator are
distributed uniformly, Scl is equal to zero. For nonuniformly
distributed ϕ, on the other hand, Scl is finite but never larger
than 1. By analogy, quantum phase localization is quantified
through (see, e.g., Ref. [21])

Sq = |〈exp(ıϕ̂)〉|. (18)

It follows straightforwardly that Sq lies between 0 and 1, just
like the classical mean resultant length Scl. A value of Sq = 0
indicates the absence of phase localization while a value of 1
indicates maximal phase localization.
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FIG. 2. Phase localization Sq, calculated in the laboratory frame,
as a function of time for (a) the R oscillator [α = 0, β = 8/15, and
δ = 16/15; same nonlinear parameters as used in Figs. 1(k), 3(k),
5(k), and 6(k)], (b) the RvdP oscillator [α = 4/5, β = 0, and δ = 0;
same nonlinear parameters as used in Figs. 1(m), 3(m), 5(m), and
6(m)], and (c) the vdP oscillator [α = 0, β = 8/5, and δ = 0; same
nonlinear parameters as used in Figs. 1(o), 3(o), 5(o), and 6(o)]
with linear parameters γ +

1 = 1/5 and γ −
1 = 1/10 in the presence

of an external drive with � = 3/10. The black dashed, red solid,
and blue dotted lines are for � = 0, −1/5, and 1/5, respectively.
The oscillators are, at t = 0, prepared in a coherent state with x0 =
p0 = 3/(2

√
2) ≈ 1.061. The results in the main figure employ the

RWA. In the quasistationary long-time limit (t � 10–20), the phase
localization for the R and vdP oscillators display oscillations; these
oscillations are enlarged in the lower inset in each of the panels. For
comparison, the top inset in each of the panels shows the phase lo-
calization within the beyond-RWA (BWRA). Compared to the RWA,
the BRWA terms introduce larger amplitude oscillations.

It is useful to rewrite Sq, Eq. (18), in terms of the density
matrix elements (see Appendix B):

Sq =
∣∣∣∣∣

∞∑
n=1

ρn,n−1

∣∣∣∣∣. (19)

This expression highlights that Sq is governed by the coher-
ences of the density matrix. Using the properties discussed
in the context of Eq. (10), it can be shown readily that Sq

vanishes in the � = 0 and t → ∞ limits for all oscillator
types considered in this work. Correspondingly, the nonvan-
ishing values of Sq observed in this work are introduced by
the external drive. If � is too large, the external drive may
reshape the � = 0 limit cycle so strongly that the oscillator’s
amplitude changes notably. To quantify amplitude distortions,

FIG. 3. Dynamics for 0 � t � 50 (left column) and Wigner
function at t ≈ 30 (right column) in the laboratory frame, calculated
within the RWA, for (a)/(d) the R oscillator, (b)/(e) the RvdP oscilla-
tor, and (c)/(f) the vdP oscillator in the presence of an external drive
with � = 3/10 and � = 0. The linear and nonlinear parameters in
(a)/(d), (b)/(e), and (c)/(f) are the same as in Figs. 2(a), 2(b), and
2(c), respectively. The blue line and red dots show the center-of-
mass trajectory and the trajectory at which the Wigner function is
maximal, respectively; the red dots are calculated at evenly spaced
time intervals.

we compare the radius R at which the Wigner function takes
its maximum for finite and vanishing drive strengths.

We note that while Ref. [20] states that a rotationally invari-
ant limit cycle is a prerequisite for finite phase localization,
we quantify phase localization also for � = 0 limit cycles
that possess broken rotational symmetry, i.e., for limit cycles
that are characterized by nonzero ρk,l elements for |k − l| =
2, 4, . . . . Specifically, the next section investigates whether
self-sustained oscillators with nonrotationally symmetric limit
cycles (those with β �= δ or, equivalently, γ2,vpd �= γ2,ray) en-
hance or hinder quantum phase localization.

To quantify frequency entrainment, we calculate the power
spectrum Sp(ω, τ ) [10],

Sp(ω, τ ) =
∫ ∞

−∞
C(t, τ ) exp(−ıωt )dt, (20)

which is defined as the Fourier transform of the correlation
function C(t, τ ),

C(t, τ ) = 〈â†(t + τ )â(τ )〉. (21)

The correlation function C(t, τ ) is obtained by averaging over
the full quantum mechanical density matrix (system and en-
vironment), making use of the regression theorem [39]. Since
our main focus lies in characterizing the system behavior in
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FIG. 4. Time-averaged phase localization S̄q as functions of the detuning � and the drive strength �; the calculations are performed in the
laboratory frame within the RWA. The linear gain coefficient γ +

1 and linear damping coefficient γ −
1 are equal to 1/5 and 1/10, respectively,

yielding ε = 1/10 (this value is smaller than that used in Fig. 1). The nonlinear damping parameters as well as the values of Alc (Alc is the
same for the five panels in a given row) can be found in Table I. As a guide to the eye, the white lines show lines of constant S̄q.

the nontransient quasistationary regime, we restrict ourselves
to sufficiently large τ . To calculate Sp(ω, τ ), we work in the
frame that rotates with the drive. As mentioned earlier and dis-
cussed formally in Appendix A, the transformation from the
laboratory to the rotating frame changes the functional form of
the dissipators that are proportional to β and γ . In particular,
the dissipators in the rotating frame are, in general, time de-
pendent. Correspondingly, Sp(ω, τ ) depends explicitly on τ .
The power spectrum, calculated in the frame rotating at ωD, is
expected to exhibit a delta-function-like spike at ω = 0 as well
as a broader response, possibly with pronounced side peaks
[10,24,40,41]. If the center of a broad, non-delta-function-like
peak lies at ω = 0 as opposed to at ω = �, the system is
said to be entrained: the broad response that is associated
with the dissipative terms is linked to the drive frequency as
opposed to the natural harmonic oscillator frequency. Recall,
since the frame is rotating with ωD, a response at ω = 0
and ω = � corresponds to being locked to the drive fre-
quency and to being locked to the natural oscillator frequency,
respectively.

III. RESULTS

This section discusses our results. After presenting Wigner
functions for the undriven reference system (Fig. 1), we
consider the driven system. Figures 2–6 discuss the phase

localization measure Sq and related observables while Figs. 7–
9 present power spectra and their analysis with a view
toward determining the presence or absence of frequency
entrainment. Since the system is, according to the definition
employed in this work, synchronized if the phase localization
measure Sq is finite and if frequency entrainment is present,
Figs. 2–4 and Figs. 7–9 are needed to fully characterize and
understand synchronization, or absence thereof, in the sys-
tems under study.

Figure 1 shows snapshots of quasistationary Wigner func-
tions for the undriven generalized RvdP oscillator in the
laboratory frame. Three regimes are covered: the quantum
regime characterized by 〈â†â〉 < 1 (third row), the interme-
diate regime characterized by 〈â†â〉 ≈ 1 (second row), and
the classical regime characterized by 〈â†â〉 > 1 (first row).
In the classical regime, the Wigner function takes on its
(local) maxima at (x, p) values that closely follow the cor-
responding classical limit cycle trajectory (light blue solid
line). The close resemblance between the (local) maxima of
the quantum mechanical Wigner function W (x, p, t ) and the
classical limit cycle trajectory in the classical regime confirms
the quantum-classical correspondence derived in Sec. II B for
the generalized RvdP oscillator in the small ε regime (Fig. 1
employs ε = 1/5), thereby extending the work by Arosh et al.
[8] for the R, RvdP, and vdP oscillators to include oscillators
that lie between the R and RvdP oscillators (column 2 of
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FIG. 5. Time-averaged number N̄ of excitations as functions of the detuning � and the drive strength �; the calculations are performed in
the laboratory frame within the RWA. The parameters are the same as those used in Fig. 4.

FIG. 6. Time-averaged deformation D̄ as functions of the detuning � and the drive strength �; the calculations are performed in the
laboratory frame within the RWA. The parameters are the same as those used in Figs. 4 and 5.
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FIG. 7. The left, middle, and right columns show power spectra Sp(ω, τ ) for the R, RvdP, and vdP oscillators, respectively, for � = 3/10,
γ +

1 = 1/5, γ −
1 = 1/10, and τ = 200; the calculations are performed within the RWA in the frame that rotates at the drive frequency. Top row:

Power spectra in the quantum regime as functions of ω and �. The non-linear damping parameters for panels (a), (b), and (c) are given in
Table I(k), I(m), and I(o), respectively. For each �, the power spectrum is normalized to the maximum of the broad peak that is located at
ω ≈ �. The color bar on the right applies to all three spectra. Bottom row: Power spectra for � = 0 as a function of ω. The red spectra (bottom
curves) are � = 0 cuts through the data shown in the top row. For comparison, the green (middle) and blue (top) curves show power spectra for
the transition and classical regimes, respectively. The sharp δ-function-like data point at ω = 0 is not shown and the data are not normalized.
Note the logarithmic scale of the y axis. For panels (d)/(e)/(f), the nonlinear parameters for the spectra plotted in red (bottom curve), green
(middle curve), and blue (top curve) are given in Table I(k)/I(m)/I(o), I(f)/I(h)/I(j), and I(a)/I(c)/I(e), respectively.

FIG. 8. The left, middle, and right columns show power spectra Sp(ω, τ ) for the R, RvdP, and vdP oscillators, respectively, for � = 1/20,
γ +

1 = 1/5, γ −
1 = 1/10, and τ = 200; the calculations are performed within the RWA in the frame that rotates at the drive frequency. Top

row: Power spectra for � = 3
√

2/5. Bottom row: Power spectra for � = √
2/5. For panels (a)&(d)/(b)&(e)/(c)&(f), the non-linear parameters

for the spectra plotted in red (bottom curve), green (middle curve), and blue (top curve) are given in Table I(k)/I(m)/I(o), I(f)/I(h)/I(j), and
I(a)/I(c)/I(e), respectively. The insets show blow-ups of the region around ω = 0; in these plots, the normalization is chosen such that the
maximum of the broad peak is equal to 1 and the δ-function-like spike is removed.
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Fig. 1) or between the RvdP and vdP oscillators (column 4 of
Fig. 1). We also checked that classical finite-temperature en-
semble calculations, in which the temperature mimics the role
of the quantum fluctuations, reproduces the Wigner functions
semi-quantitatively for all oscillator types considered. This
observation further confirms the limiting classical behavior
derived in Sec. II B.

The quasistationary Wigner functions for the RvdP os-
cillator without external drive (column 3 of Fig. 1) are, as
discussed in Sec. II B, rotationally symmetric in all regimes
(quantum to classical). For the corresponding classical sys-
tem, the nonlinear damping term (i.e., the term that is
proportional to x2 + ẋ2) is directly proportional to the energy
and thus constant along the circular trajectory (solid light blue
lines). As α increases from Fig. 1(c) to Fig. 1(h) to Fig. 1(m),
the nonlinear damping becomes stronger, 〈â†â〉 decreases, and
the ring-shaped Wigner function “shrinks.”

The classical limit cycle trajectories for the other oscillator
types (columns 1, 2, 4, and 5 of Fig. 1) are not circular
but slightly deformed, reflecting the fact that the nonlinear
damping terms x2ẋ and ẋ3 contribute with unequal strengths.
For the vdP oscillator, e.g., the classical trajectory reaches
its most positive and most negative p values at finite positive
and finite negative x values, respectively (column 5 of Fig. 1).
Since the magnitude of the velocity is largest at these points,
the system spends less time in these phase space regions
than in other phase space regions. Interestingly, these classical
features are inherited by the quasistationary Wigner function,
which displays two global maxima that are, roughly, located at
p ≈ −x ≈ ±3 for the largest 〈â†â〉 considered. In the quantum
regime, the Wigner function of the vdP oscillator is charac-
terized by two “tilted lobes.” While the classical limit cycle
trajectory does not capture the detailed structure of the Wigner
function, it can be used to estimate the “tilt angle” and location
of the lobe maxima. The R oscillator (column 1 of Fig. 1)
possesses, like the vdP oscillator, a rotational phase-space
asymmetry, with the roles of x and p being reversed in the
nonlinear damping term. As a consequence, the tilt angle of
the R oscillator differs in the quantum regime by about π/2
from that of the vdP oscillator [see Fig. 1(k)].

The quasistationary Wigner functions, i.e., the quantum
mechanical limit cycles, are critical for observing phase syn-
chronization in the presence of an external drive. Working
within the RWA, we consider the regime where the drive
is perturbative in the sense that the drive does not destroy
the limit cycle that is supported by the system with van-
ishing drive; this aspect is discussed in more detail below
in the context of Fig. 6. Figures 2(a), 2(b), and 2(c) show
the phase localization Sq, calculated in the laboratory frame,
as a function of time for the R, RvdP, and vdP oscillators
for damping and gain parameters that, in the absence of the
external drive, fall into the quantum regime. Since the initial
state is a coherent state with relatively well defined phase,
the phase localization decreases approximately monotonically
during the transient dynamics (t � 10 in Fig. 2) during which
the Wigner function moves toward the limit cycle. For t � 10
or 20, the phase localization is essentially constant [Fig. 2(b)]
or displays regular oscillatory behavior [Figs. 2(a) and 2(c)].
Figure 4 includes the transient dynamics to show the or-
der of magnitude of the time that is needed to reach the

quasistationary regime. Throughout, we are interested in
physics that is independent of the initial state. Because of
this we should, strictly speaking, refer to the quantity Sq as
phase localization only in the quasistationary regime (t �
10–20) and not in the transient regime (recall phase local-
ization is a necessary but not sufficient condition for phase
synchronization).

The black dashed, red solid, and blue dotted lines in Fig. 2
are for � = 0, −1/5, and 1/5, respectively. For the RvdP
oscillator [see Fig. 2(b)], Sq is, in the large time limit, constant
[this can be seen in the lower inset of Fig. 2(b), which shows
a blow-up at large times]. For the same drive strength, Sq is
larger for zero detuning than for finite detuning. This might
be expected naively, as a finite detuning decreases the “simi-
larity” of the system and the external drive, thereby hindering
phase localization. In the transient regime, in contrast, Sq for
the RvdP oscillator depends on the sign of the detuning �.
The inclusion of the counter-rotating terms in the external
coherent drive leads, as shown in the upper inset of Fig. 2(b),
to oscillatory behavior of Sq in the long-time regime. It can
be seen that the counter-rotating terms break the symmetry,
i.e., the red solid and blue dotted lines (same |�| but opposite
signs) are characterized by different oscillation periods (the
oscillation frequency is equal to 2ωD) as well as slightly
different amplitudes. As expected for the relatively weak drive
strength and small, in magnitude, detuning considered, the
counter-rotating terms introduce relatively small corrections.
Correspondingly, the results presented in Figs. 2–8 of this
paper are obtained within the RWA.

Figure 3(e) shows a snapshot of the Wigner function at
t ≈ 30 for � = 0 [the other parameters are the same as in
Fig. 2(b)]. Since � is finite, the Wigner function is not ro-
tationally symmetric but instead displays a half-moon shape.
While the shape of W (x, p, t ) does not change appreciably for
t � 10, the entire distribution rotates with time. This can be
seen from the blue line in Fig. 3(b), which shows the quantum
mechanical (〈x̂〉, 〈p̂〉)-trajectory as a function of time. In the
quasi-stationary regime (i.e., the regime where the shape of
the Wigner function does not change), the oscillation fre-
quencies of 〈x̂〉 and 〈p̂〉 are regular and equal to ωD (which
is identical to that of the harmonic oscillator). For finite �

(not shown), the oscillation frequencies of 〈x̂〉 and 〈p̂〉 for the
RvdP oscillator are also equal to ωD. The red dots in Fig. 3(b)
show the (〈x̂〉, 〈p̂〉)-values at which the Wigner function is
maximal; to make the figure, the Wigner function is analyzed
at about 300 equidistantly spaced times between 0 and 50. In
the quasi-stationary regime, the red dots trace out a circle.

The phase localization for the R and vdP oscillators
[Figs. 2(a) and 2(c)] decreases—similarly to that for the RvdP
oscillator [Fig. 2(b)]—in the transient short-time regime. Key
differences between the rotationally phase-space asymmet-
ric and rotationally phase-space symmetric oscillators exist,
however, in the quasi-stationary regime. For the R and vdP
oscillators, Sq—calculated within the RWA—is oscillatory
with oscillation period T = π/ωD [see the main panels and
lower insets of Figs. 2(a) and 2(c)]. As expected, inclusion of
the counter-rotating terms enhances the oscillation amplitude
[see the upper insets in Figs. 2(a) and 2(c)]. The main panels
of Figs. 2(a) and 2(c) show that the phase localization for
oscillator types that have rotationally asymmetric dissipators
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depends in the quasi-stationary regime on the sign of the
detuning, i.e., the phase localization displays an asymmetry
with respect to � = 0.

Figure 3 compares the dynamics for the R oscillator (top
row) and the vdP oscillator (bottom row) for � = 0 (same
parameters as used in Fig. 2). While the (〈x̂〉, 〈p̂〉)-trajectories
(blue lines) follow a smooth path, the maximum of the Wigner
function (red dots) changes rapidly over a short time interval,
leading to a “bimodal” behavior that is not observed for the
RvdP oscillator (see middle row of Fig. 3). A related bimodal-
ity was noted for an oscillator that contains squeezing-like
operators [7]; more specifically, Ref. [7] included—to repro-
duce the classical R oscillator dynamics to higher order in
ε—terms up to fourth-order in â and â† in the Hamiltonian
and dissipators that are similar in form to our R oscillator.
The fact that bi-modality is observed also in our case indicates
that the rotational asymmetry of the dissipators, combined
with a rotationally symmetric Hamiltonian, is sufficient for
observing bimodality.

Since the radius R, R =
√

〈x̂〉2 + 〈p̂〉2, at which the
Wigner function is maximal is approximately constant for
the undriven system in the quasi-stationary long-time regime,
we use it to quantify the robustness of the limit cycle
to the external drive. Specifically, we define the average
deformation D̄,

D̄ = lim
tref→∞

1

T

∫ tref+T

tref

|Rdriven(t ) − Rundriven|
Rundriven

dt, (22)

where tref is chosen such that the system dynamics is in the
quasi-stationary regime, T denotes the oscillation period, and
Rundriven and Rdriven(t ) refer to the radii at which the Wigner
distribution of the undriven (� = 0) and driven (� �= 0) sys-
tems is maximal for identical parameters (except for �).
While the radius Rdriven(t ) of the driven system depends on
time, the radius Rundriven of the undriven system is independent
of time, provided tref is sufficiently large. A value of D̄ close
to zero signals that the drive has a perturbative effect on the
amplitude of the limit cycle. The larger the value of D̄ is, the
more the amplitude of the limit cycle is modified by the ex-
ternal drive (the limit cycle might even get destroyed). Recall,
the concept of phase synchronization assumes that the exter-
nal drive localizes the phase while leaving the amplitude of
the limit cycle approximately unchanged. For the parameters
considered in Fig. 3, D̄ is equal to 0.24 (top row), 0.52 (middle
row), and 0.20 (bottom row). Interestingly, for the same drive
strength �, the deformation D̄ of the RvdP oscillator is larger
than the deformation of the R and vdP oscillators (see also
Fig. 6).

Figure 4 reports the time average S̄q,

S̄q = lim
tref→∞

1

T

∫ tref+T

tref

Sq(t )dt (23)

[Sq(t ) is calculated within the RWA], as functions of � and
� for 15 parameter combinations (the non-linear parameters
are provided in Table I). Since Sq(t ) does not oscillate for the
RvdP oscillator [see Fig. 2(b)], we set S̄q = Sq in this case.
The first, third, and fifth columns of Fig. 4 are for the R,
RvdP, and vdP oscillators. The second and fourth columns
are for oscillators that lie “in between” those featured in the

neighboring columns. The top, middle, and bottom rows are
for parameters that fall, roughly, into the classical, transition,
and quantum regimes.

Figure 4 shows that, for the drive strengths and detun-
ings considered, the maximum of the phase localization S̄q

for each of the five oscillator types is larger in the classical
regime than in the quantum regime. It is attributed to the
fact that the extent or size of the Wigner functions decreases
with decreasing 〈â†â〉 while the fluctuations (or “fuzziness”)
increases [10,17,42]. The average phase localization S̄q for the
RvdP oscillator (third column of Fig. 4) displays, in agreement
with what was found previously [21], the celebrated Arnold
tongue behavior. Specifically, the average phase localization
S̄q is symmetric with respect to � = 0, increases (for the
parameter combinations considered) with increasing � for
fixed �, and generally decreases with increasing |�| for fixed
�. Comparing Figs. 4(c), 4(h), and 4(m), it can be seen that
the tongue becomes broader in the deep quantum regime, i.e.,
the relative change with |�| for fixed � is smaller in the deep
quantum regime than in the classical regime.

Comparing the values of the time-averaged phase local-
ization S̄q for the different oscillator types with comparable
〈â†â〉, i.e., across rows, it can be seen that the maximum of
the phase localization decreases as the dissipators that are
not rotationally phase-space symmetric are turned on and
play an increasingly important role. While the average phase
localization S̄q for the oscillators with rotationally phase-
space asymmetric dissipators (first, second, fourth, and fifth
columns in Fig. 4) behaves—in the classical and transition
regime—rather similarly to that for the RvdP oscillator, clear
differences are apparent in the deep quantum regime. Specif-
ically, Figs. 4(k), 4(l), 4(n), and 4(o) reveal the following:
(i) The average phase localization S̄q is not symmetric with
respect to � = 0; (ii) starting at the � value for which S̄q

is minimal for a given �, S̄q does not necessarily increase
monotonically as one moves along the � axis; and (iii) for
the parameters considered, S̄q depends less strongly on � in
Figs. 4(k), 4(l), 4(n), and 4(o) than in Fig. 4(m).

Figure 5 shows the time-averaged number N̄ of excitations
for the same 15 parameter combinations as those used in
Fig. 4. Similar to S̄q, N̄ is calculated by averaging 〈â†â〉 in
the quasistationary regime over one time period. A visual
comparison of N̄ and S̄q reveals a striking similarity of the
two observables. While the black color represents different
background values (zero in the case of S̄q and a nonzero
value in the case of N̄), S̄q and N̄ appear to be changing
in a correlated manner. Specifically, the time-averaged num-
ber N̄ of excitations, plotted as functions of the detuning
and drive strength, exhibits—in the classical and transition
regimes—Arnold tongue-type characteristics. The fact that
the observables S̄q and N̄ display similar characteristics, when
visualized in terms of color plots as functions of � and �,
may—at first sight—seem surprising as these two observables
depend on different density matrix elements. As shown in
Eq. (19), Sq is governed by the off-diagonal density matrix
elements ρn,n−1; 〈â†â〉, in contrast, is governed by the diagonal
density matrix elements ρn,n. Since the off-diagonal elements
of the density matrix, which determine the phase localization,
are within first-order perturbation theory proportional to �

(see Appendix B), with a proportionality factor that depends
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on the ρn,n and ρn,n+2 (n = 1, 2, . . . ) elements, it should,
however, not be a surprise that S̄q (Fig. 4) and N̄ (Fig. 5)
display similar overall characteristics.

To quantify the deformation of the limit cycle due to the
external drive, Fig. 6 shows the time-averaged deformation D̄
for the same parameters as those employed in Figs. 4–6. Not
surprisingly, the overall behavior of D̄—just like that of S̄q

and N̄—resembles an Arnold tongue. While the deformation
is quite large for “large” drive strengths and “small” detun-
ings, inspection of the Wigner functions shows that the limit
cycle is not broken, i.e., the maximum of the Wigner function
still follows the shape of the zero-drive limit cycle, though
with increased amplitude. Even though the deformation D̄ is
appreciable, we are operating in a regime where the phase
localization is intimately connected to the zero-drive limit
cycle.

Next, we discuss the spectral response. The spectra shown
in Figs. 7 and 8 are calculated within the RWA in the frame
that rotates at the drive frequency. We use Eq. (20) with
τ = 200 and simulation parameters that yield ω ∈ [−3, 3]
with a frequency resolution of 1/500. Consistent with the
� = 0 limit cycle discussion presented earlier, Sp(ω, τ ) is
independent of τ for the RvdP oscillator (middle column of
Figs. 7 and 8) but displays, in general, a dependence on τ for
the R and vdP oscillators (left and right columns of Figs. 7
and 8). The τ dependence tends to be weak (similar behavior
was observed in Ref. [7]; see also discussion below).

The top row of Fig. 7 shows the power spectrum for the R,
RvdP, and vdP oscillators in the quantum regime as functions
of ω and � [the linear and nonlinear parameters are the same
as those employed in Figs. 4(k), 4(m), and 4(o)]. We note that
beyond-RWA terms, which are not included in the calcula-
tions, might play a non-negligible role for the larger |�|. The
spectra are, for each �, normalized such that the maximum
of the broad peak that is centered at ω ≈ � is equal to 1.
For all � considered, the height of the δ-function-like peak
is larger than 1, i.e., the value of this sharp spike is capped for
visualization purposes. The red (lowest) curves in Figs. 7(d)–
7(f) correspond to horizontal � = 0 cuts through the data
shown in Figs. 4(k), 4(m), and 4(o). For comparison, the green
(middle) curves and blue (top) curves show � = 0 spectra for
the intermediate and classical regimes, respectively, using the
same nonlinear parameters as in Figs. 4(f), 4(h), 4(j), 4(a),
4(c), and 4(e). Unlike in the top row, the maximum of the
broad peak is not scaled to 1 in the bottom row of Fig. 7.
Moreover, the δ-function-like spike (a single data point at
ω = 0) is taken out by hand. For comparison, Fig. 8 shows
the power spectra Sp(ω, τ ) for a finite detuning, namely � =
1/20, and two different drive strengths (� = 3

√
2/5 ≈ 0.849

and
√

2/5 ≈ 0.283 for the top and bottom rows, respectively)
using the same linear and nonlinear parameters as well as
the same color coding as Fig. 7. The insets of Fig. 8 omit
the δ-function-like spike and normalize, as in the top row of
Fig. 7, the spectra such that the broad peak has a height of 1.
The insets allow one to read off at which ω the maximum of
the broad peak is located.

The key characteristics of the power spectra are the follow-
ing: (i) The very sharp peak centered at ω = 0 (top row of
Fig. 7 and main panels of Fig. 8) exists for all three oscillator

types; since we are working in the frame that rotates with
the drive frequency, this peak reflects a strong response at
the frequency corresponding to the drive. (ii) The broad peak
centered at ω ≈ � (see, e.g., the bright red feature in the
top row of Fig. 7) exists for all three oscillator types; this
broad peak can be interpreted as a strong response, broad-
ened by the dissipative processes, around the natural harmonic
oscillator frequency. As discussed in more detail below, the
maximum of this broad peak is, in general, not located at
ω = 0; thus, true entrainment is, in general, absent. (iii) The
broad peak is narrower for the RvdP oscillator than for the
R and vdP oscillators. Moreover, the broadness of the peak
depends rather weakly on �. (iv) The broad peak centered at
ω ≈ � is broader in the quantum regime than in the classical
regime for all oscillator types. This is attributed to the increase
of the zero-point motion in the quantum regime [8,10]. (v)
The R and vdP oscillators feature sharp peaks, correspond-
ing to higher harmonics, that are centered at ω = 2� + 2,
ω = 2� − 4, and ω = 2� − 2 [in the quantum regime, this
peak is hardly visible on the scale shown in Figs. 7(d)
and 7(f)].

To gain insights into the existence or lack of entrainment
for small |�|, we investigate the difference between the fre-
quency ωobs, at which the broad peak that is centered around
ω ≈ � takes its maximum, and the detuning �. This dif-
ference can be read off the spectra, such as those shown in
Figs. 7(d)–7(f) for zero detuning and the insets of Fig. 8 for
finite detuning. The main panel of Fig. 9 shows ωobs as a
function of the drive strength � for the RvdP oscillator in
the quantum, transition, and classical regimes [curves from
bottom (blue) to top (red)] for the same linear and non‘linear
parameters as used in the middle columns of Figs. 7 and
8. For all three regimes, ωobs is equal to � for � = 0 (in
the absence of the drive, the spectral response is maximal
at the natural harmonic oscillator frequency) and decreases
monotonically with increasing �. Even though ωobs tends
toward zero, especially in the classical regime (a value of
ωobs = 0 would indicate entrainment), true entrainment is ab-
sent for the oscillator strengths considered. The drive strength
was not increased further since we wish to remain in the
weakly perturbed regime, where the driven system inherits
key characteristics of the limit-cycle state of the undriven
system.

To further explore the presence or absence of entrainment,
the inset of Fig. 9 shows ωobs − � as a function of the de-
tuning for the RvdP oscillator. Using ωobs, as was done in
Ref. [10], as a proxy for the frequency at which the system
responds, entrainment would correspond to ωobs − � follow-
ing the dashed line. It can be seen that entrainment exists,
for sufficiently small �, in the classical regime but not in the
quantum regime (of course, we cannot rule out the existence
of entrainment in this regime for |�| values that are below our
resolution scale). The observation of entrainment in the clas-
sical regime is consistent with results presented in Ref. [10].
The “oscillatory” behavior of ωobs − � in the quantum regime
is interpreted as reflecting an appreciable “hybridization” of
the spectral function with regards to the drive and oscillator
frequencies. This deep quantum regime has not, to the best of
our knowledge, been investigated previously.
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FIG. 9. Analysis of the maximum of the broad peak for the RvdP
oscillator for τ = 200. Main panel: Blue (bottom), green (middle),
and red (top) curves show the location ωobs of the maximum of the
broad peak for the classical regime, transition regime, and quantum
regime, respectively, as a function of the drive strength � for � =
1/20. The linear parameters are γ +

1 = 1/5 and γ −
1 = 1/10 while

the nonlinear parameters for the red (bottom) curve, green (middle)
curve, and blue (top) curve are given in Table I(m), I(h), and I(c),
respectively. The calculations are performed within the RWA in the
frame that rotates at the drive frequency. Inset: Blue (bottom), green
(middle), and red (top) curves show the shifted location ωobs − �

of the maximum of the broad peak for the classical regime, tran-
sition regime, and quantum regime, respectively, as a function of
the detuning � for � = 3/10 (the other parameters are the same
as those in the main panel). If ωobs − � followed the black dotted
line, the system would exhibit true entrainment. On the other hand, if
ωobs − � followed the black dashed line, the system response would
be governed by the natural harmonic oscillator frequency.

We finish this section by highlighting a few key aspects
of driven generalized RvdP oscillators in the deep quantum
regime, for which the number of excitations of the undriven
limit cycle state is notably smaller than 1. In this “extreme”
quantum regime, none of the oscillators exhibits entrainment
for the parameter combinations considered. While the power
spectra of the driven RvdP oscillator show fairly symmet-
ric broadened peaks, the spectra of the driven R and vdP
oscillators, which are characterized by phase-space asymmet-
ric dissipators, show more structure, suggesting a stronger
dissipation-induced hybridization of the drive and natural os-
cillator frequencies. It is suggested that these phase-space
asymmetric oscillators are most meaningfully characterized
by the entire power spectrum: extracting a single number, such
as ωobs, tends to provide a rather incomplete characterization
of the system. In the limit where the broad peak is compar-
atively narrow (i.e., where the peak width is smaller than or
of the same order of magnitude as |�|), in contrast, ωobs is a
reliable indicator of entrainment.

IV. CONCLUSIONS

This paper presented a detailed analysis of the driven
generalized Rayleigh-van der Pol oscillators—including the
driven Rayleigh (R), driven Rayleigh-van der Pol (RvdP),
and driven van der Pol (vdP) oscillators—within a master

equation framework. While the drive was treated classi-
cally, the motional degrees of freedom of the oscillator were
quantized, with linear and nonlinear loss/gain accounted for
through dissipators. In the weak ε limit (i.e., for small effec-
tive linear loss or gain), a mapping to the classical equations of
motion was established. The mapping allows for a transparent
interpretation of the dissipative terms. An important aspect
of the generalized RvdP oscillator is that the dissipators are
not, in general, rotationally symmetric in phase space. As a
consequence, the drive-free Wigner functions exhibit a phase-
space asymmetry that increases with decreasing number N̄ of
excitations. Our main focus throughout was to characterize
the quasistationary long-time regime, where the dynamics is
linked to the limit cycle of the undriven system; this limit
cycle emerges due to the competition between linear and
nonlinear dissipative processes.

In classical settings, phase localization and frequency en-
trainment are critical elements for harnessing characteristics
associated with limit cycles; correspondingly, classical syn-
chronization is defined as requiring phase localization and
frequency entrainment. By analogy, we defined quantum syn-
chronization as requiring phase localization and frequency
entrainment. Our analysis shows that the driven generalized
RvdP oscillators exhibit Arnold-like synchronization tongues.
This work employed a phase operator-based definition for
the phase localization measure Sq. Observables such as the
excitation number and the deformation of the limit cycle were
found to exhibit analogous Arnold-tongue shaped characteris-
tics, if plotted as functions of the detuning and drive strength.
Phase localization was found to decrease for all oscillator
types considered as the system changed from the classical to
the quantum regime. The phase space asymmetry of the non-
RvdP oscillators was found to reduce phase localization. In
the quantum regime, where the number of excitations N̄ is low,
the spectral response of the systems was found to be extremely
broad, suggesting that the frequency at which the non-delta-
function response of the spectrum is maximal provides only
limited information about the system’s response. While ap-
preciable phase space localization was observed in the deep
quantum regime, weak frequency entrainment was only found
for the RvdP oscillator in the deep quantum regime, and only
for a narrow range of small, in absolute value, detunings. We
were not able to identify a parameter combination in the deep
quantum regime where the driven generalized RvdP oscillator
exhibits true nontrivial synchronization, i.e., phase localiza-
tion and frequency locking to the drive.

Our analysis and findings suggest a number of follow-up
studies. It would be interesting to investigate whether specif-
ically designed driving protocols could be used to identify
parameter regimes where the driven generalized RvdP os-
cillators exhibit synchronization. Such protocols could, e.g.,
be developed by allowing for a time-dependent drive fre-
quency that may be constructed from trajectories such as those
presented in Figs. 3(a) and 3(c). Since phase-space asym-
metries may be encountered in a range of realistic systems,
the targeted design of driving protocols may have practical
applications. Another interesting direction is to explore the
characteristics of a network of generalized RvdP oscillators
without an external drive. It would, e.g., be interesting to
explore if dissipation-driven synchronization exists in this
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network either for linear or nonlinear nondissipative coupling
between the oscillators.
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APPENDIX A: MASTER EQUATION
IN THE ROTATING FRAME

To get started, we introduce the rotation operator Û (t ),

Û (t ) = e−ıωRâ†ât , (A1)

where the angular frequency ωR could be equal to the angular
frequency of the harmonic oscillator (which is equal to 1 in
the dimensionless units employed throughout), the angular
frequency ωD of the drive, or some other angular frequency.
The operator Ĉ in the rotating frame is denoted by ĈR,

ĈR = Û †(t )ĈÛ (t ). (A2)

For the driving term, one finds

(V̂drive)R = �

2ı
√

2
(eı(ωD−ωR )t â − e−ı(ωD−ωR )t â†)

+ �

2ı
√

2
(eı(ωD+ωR )t â† − e−ı(ωD+ωR )t â), (A3)

where the terms on the right-hand side correspond to terms
within the RWA (first line) and terms beyond the RWA (sec-
ond line), respectively.

The master equation in the frame rotating with angular
frequency ωR reads

˙̂ρR = −ı[(1 − ωR)Ĥ0 + (V̂drive)R, ρ̂R]

+ γ +
1 D̂[â†

R](ρ̂R) + γ −
1 D̂[âR](ρ̂R) + αD̂[âRâR](ρ̂R)

+ βD̂[x̂RâR](ρ̂R) + δD̂[ p̂RâR](ρ̂R), (A4)

where

D̂[ĈR](ρ̂R) = Û †(t )D̂[Ĉ](ρ̂)Û (t ). (A5)

It is readily shown that the form of the dissipators that are
proportional to γ +

1 , γ −
1 , and γ2 is the same in the rotating

frame as in the laboratory frame:

D̂[âR](ρ̂R) = D̂[â](ρ̂R), (A6)

D̂[â†
R](ρ̂R) = D̂[â†](ρ̂R), (A7)

and

D̂[âRâR](ρ̂R) = D̂[ââ](ρ̂R). (A8)

By “same form” (“different form”) we mean that the argument
of D̂ takes the same form (a different form) in the rotating
frame as that in the laboratory frame. The dissipators that are
proportional to β and δ, in contrast, take a different form in
the rotating frame than in the laboratory frame:

D̂[x̂RâR](ρ̂R) = D̂[(x̂ + ŷ + ŷ†)â](ρ̂R) (A9)

and

D̂[ p̂RâR](ρ̂R) = D̂[( p̂ − ı(ŷ − ŷ†))â](ρ̂R), (A10)

where the time-dependent operator ŷ is defined as

ŷ(t ) = 1√
2

[exp(−ıωRt ) − 1]â. (A11)

The appearance of the operators ŷ and ŷ† may be interpreted
as being due to a fictitious force in the rotating frame. For in-
depth discussions of the connection between the laboratory-
and rotating-frame master equations, the reader is referred to
Refs. [43–45].

APPENDIX B: PHASE LOCALIZATION MEASURES

Several quantum phase localization measures have been
proposed (see, e.g., Refs. [13,17,22,25,35,36,46–49]), includ-
ing measures based on the phase operator and quantum
information theory frameworks, not only in the context of
different oscillator types—as considered in this work—but
also in the context of spin systems [16,17,20,50–56]. This
Appendix provides more context for the phase localization
measure Sq, Eq. (18), employed in this work and relates it to
other phase operator based measures.

The phase operator ϕ̂ is defined through ϕ̂|ϕ〉 = ϕ|ϕ〉,
where the phase state |ϕ〉 is a superposition of the harmonic
oscillator eigenstates |n〉 [37],

|ϕ〉 = 1√
2π

∞∑
n=0

exp(ınϕ)|n〉. (B1)

Using the properties of the phase states, Eq. (19) follows
readily from Eq. (18).

An alternative phase localization measure reads Sq,alter1 =
Re(〈â〉)/|〈â〉| [40], where Re(C) denotes the real part of C.
Writing 〈â〉 in terms of the amplitude |a| and phase ϕ [namely,
〈â〉 = |a| exp(−ıϕ)] highlights that 〈â〉 contains phase infor-
mation. Evaluating Sq,alter1 in the harmonic oscillator basis,
one finds

Sq,alter1 = Re
(∑∞

n=1

√
nρn,n−1

)
∣∣ ∑∞

n=1

√
nρn,n−1

∣∣ . (B2)

Equation (B2) shows that the density matrix elements that
contribute to Sq,alter1 are the same as those that contribute to
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Sq; the density matrix elements are, however, weighted differ-
ently. Use of the imaginary part of 〈â〉 yields complementary
insights [40].

We note that Sq,alter1 can, in the small � limit, be related to
the susceptibility χ [27],

χ = ∂〈â〉
∂�

. (B3)

To see the connection between Sq,alter1 and χ , we employ the
perturbation theory framework detailed in Ref. [20]. When
the � = 0 steady state density matrix is used as zeroth-order
solution and the external drive in the RWA is treated as
a perturbation, 〈â〉 is directly proportional to �. It follows
that Sq,alter1 is equal to Re(�χ )/|〈â〉| in the weakly driven
regime, where first-order perturbation theory provides a faith-
ful description. This indicates that the susceptibility results
for the driven RvdP oscillator for small � [27] can be in-
terpreted within the framework of phase localization. Note,
however, that since phase localization requires the presence
of a nonlinearity, only the results from Ref. [27] for non-
vanishing nonlinearity can be meaningfully reinterpreted in
this way.

Phase localization can also be defined in terms of the nor-
malized phase probability P(ϕ) [16],

P(ϕ) =
∫ 2π

0
δ(ϕ − ϕ′)〈ϕ′|ρ̂|ϕ′〉dϕ′. (B4)

Using the maximum of the normalized phase probability, the
phase localization measure Sq,alter2, which is frequently used
in the context of spin systems, reads [16]

Sq,alter2 = 2π max
ϕ

P(ϕ) − 1. (B5)

Since 〈ρ̂〉 is equal to 1, Sq,alter2 reduces to

Sq,alter2 = max
ϕ

∑
k �=l

exp[−ı(k − l )ϕ]ρk,l . (B6)

Using that ρk,l is equal to (ρl,k )∗, it can be shown readily
that Sq,alter2 is real. Physically, Sq,alter2 can be thought of as
extracting the maximal height of P(ϕ). Note that Sq,alter2 is
sensitive to all off-diagonal density matrix elements. Specifi-
cally, the operation maxϕ “optimizes” the multiplicative factor
of the sum of the density matrix elements with |k − l| = 1
[multiplicative factor is exp(ıϕ)], |k − l| = 2 [multiplicative
factor is exp(2ıϕ)], and so on.

We now discuss the β = δ oscillator, treating the drive
in the RWA [see Eq. (7)], in more detail. For the arguments
that follow, it is convenient to work in the frame that is
rotating with the external drive. For β = δ, the � = 0
steady state density matrix ρ (0) is diagonal, as already
mentioned in Sec. II. It is determined by L̂0ρ̂

(0) = 0, where
L̂0 denotes the superoperator that corresponds to the � = 0
master equation [20]. The first-order density matrix ρ̂ (1)

is obtained by solving L̂driveρ̂
(0) = −L̂0ρ̂

(1), where the
superoperator L̂drive is fully determined by the external
drive [20]. It can be readily shown that the only nonzero
elements of ρ̂ (1) are those with |k − l| = 1. Consequently,
Sq,alter2 reduces to 2 maxϕ[Re(cos ϕ

∑∞
n=1 ρn,n−1) +

Im(sin ϕ
∑∞

n=1 ρn,n−1)]. This shows that Sq, Sq,alter1,
and Sq,alter2 are all governed by the same matrix
elements.

Releasing the restriction that � is small while continuing
to focus on the RvdP oscillator (β = δ), another interesting
limit is the deep quantum regime (characterized by small
〈â†â〉), where the full steady state density matrix elements
are well approximated by a three-state model [21]. Within the
three-state model, the only nonzero off-diagonal elements are
ρ1,0 = (ρ0,1)∗. Correspondingly, Sq, Sq,alter1, and Sq,alter2 are
related to each other in a straightforward manner.
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the differential equation for the van der Pol oscillator.

[7] A. Chia, L. C. Kwek, and C. Noh, Relaxation oscillations and
frequency entrainment in quantum mechanics, Phys. Rev. E
102, 042213 (2020).

[8] L. Ben Arosh, M. C. Cross, and R. Lifshitz, Quantum limit
cycles and the Rayleigh and van der Pol oscillators, Phys. Rev.
Res. 3, 013130 (2021).

[9] T. E. Lee and H. R. Sadeghpour, Quantum synchronization of
quantum van der Pol oscillators with trapped ions, Phys. Rev.
Lett. 111, 234101 (2013).

[10] S. Walter, A. Nunnenkamp, and C. Bruder, Quantum synchro-
nization of a driven self-sustained oscillator, Phys. Rev. Lett.
112, 094102 (2014).

[11] N. Lörch, S. E. Nigg, A. Nunnenkamp, R. P. Tiwari,
and C. Bruder, Quantum synchronization blockade: Energy

054207-15

https://doi.org/10.1080/14786448308627342
https://doi.org/10.1080/14786440108564176
https://doi.org/10.1080/14786441108564652
https://doi.org/10.1103/PhysRevE.102.042213
https://doi.org/10.1103/PhysRevResearch.3.013130
https://doi.org/10.1103/PhysRevLett.111.234101
https://doi.org/10.1103/PhysRevLett.112.094102


A. J. SUDLER, J. TALUKDAR, AND D. BLUME PHYSICAL REVIEW E 109, 054207 (2024)

quantization hinders synchronization of identical oscillators,
Phys. Rev. Lett. 118, 243602 (2017).

[12] L. Morgan and H. Hinrichsen, Oscillation and synchroniza-
tion of two quantum self-sustained oscillators, J. Stat. Mech.:
Theory Exp. (2015) P09009.

[13] T. E. Lee, C.-K. Chan, and S. Wang, Entanglement tongue and
quantum synchronization of disordered oscillators, Phys. Rev.
E 89, 022913 (2014).

[14] E. Amitai, N. Lørch, A. Nunnenkamp, S. Walter, and C. Bruder,
Synchronization of an optomechanical system to an external
drive, Phys. Rev. A 95, 053858 (2017).

[15] E. Amitai, M. Koppenhøfer, N. Lørch, and C. Bruder,
Quantum effects in amplitude death of coupled anharmonic
self-oscillators, Phys. Rev. E 97, 052203 (2018).

[16] M. R. Hush, W. Li, S. Genway, I. Lesanovsky, and A. D.
Armour, Spin correlations as a probe of quantum synchroniza-
tion in trapped-ion phonon lasers, Phys. Rev. A 91, 061401(R)
(2015).

[17] V. Ameri, M. Eghbali-Arani, A. Mari, A. Farace, F.
Kheirandish, V. Giovannetti, and R. Fazio, Mutual information
as an order parameter for quantum synchronization, Phys. Rev.
A 91, 012301 (2015).

[18] T. Weiss, S. Walter, and F. Marquardt, Quantum-coherent phase
oscillations in synchronization, Phys. Rev. A 95, 041802(R)
(2017).

[19] S. Sonar, M. Hajdušek, M. Mukherjee, R. Fazio, V. Vedral, S.
Vinjanampathy, and L.-C. Kwek, Squeezing enhances quantum
synchronization, Phys. Rev. Lett. 120, 163601 (2018).

[20] M. Koppenhöfer and A. Roulet, Optimal synchronization deep
in the quantum regime: Resource and fundamental limit, Phys.
Rev. A 99, 043804 (2019).

[21] W.-K. Mok, L.-C. Kwek, and H. Heimonen, Synchroniza-
tion boost with single-photon dissipation in the deep quantum
regime, Phys. Rev. Res. 2, 033422 (2020).

[22] N. Jaseem, and M. Hajdušek, P. Solanki, L.-C. Kwek, R. Fazio,
and S. Vinjanampathy, Generalized measure of quantum syn-
chronization, Phys. Rev. Res. 2, 043287 (2020).

[23] J. Li, C. Ding, and Y. Wu, Highly nonclassical phonon emission
statistics through two-photon loss of van der Pol oscillator,
J. Appl. Phys. 128, 234302 (2020).

[24] A. Cabot, G. C. Giorgi, and R. Zambrini, Metastable quantum
entrainment, New J. Phys. 23, 103017 (2021).

[25] N. Thomas and M. Senthilvelan, Quantum synchronization in
quadratically coupled quantum van der Pol oscillators, Phys.
Rev. A 106, 012422 (2022).

[26] N. Es’haqi-Sani, G. Manzano, R. Zambrini, and R. Fazio, Syn-
chronization along quantum trajectories, Phys. Rev. Res. 2,
023101 (2020).

[27] S. Dutta and N. R. Cooper, Critical response of a quantum van
der Pol oscillator, Phys. Rev. Lett. 123, 250401 (2019).

[28] H. D. Simaan and R. Loudon, Quantum statistics of single-beam
two-photon absorption, J. Phys. A: Math. Gen. 8, 539 (1975).

[29] V. V. Dodonov and S. S. Mizrahi, Exact stationary photon
distributions due to competition between one- and two-photon
absorption and emission, J. Phys. A: Math. Gen. 30, 5657
(1997).

[30] The master equation for β = δ �= 0 is equivalent to that for β =
δ = 0 and modified α: α → α + β/2 + δ/2 = α + β.

[31] M. O. Scully and M. S. Zubairy, Quantum Optics, 1st ed.
(Cambridge University Press, Cambridge, 1997).

[32] C. M. Bender and S. A. Orszag, Advanced Mathematical Meth-
ods for Scientists and Engineers: Asymptotic Methods and
Perturbation Theory (Springer, Berlin, 1999).

[33] T. D. Burton, A perturbation method for certain non-linear
oscillators, Int. J. Non Linear Mech. 19, 397 (1984).

[34] H. Goldstein, C. Poole, and J. Safko, Classical Mechanics, 3rd
ed. (Addison-Wesley, Reading, MA, 2005).

[35] A. Mari, A. Farace, N. Didier, V. Giovannetti, and R. Fazio,
Measures of quantum synchronization in continuous variable
systems, Phys. Rev. Lett. 111, 103605 (2013).

[36] J. Tindall, C. Sánchez Muñoz, B. Buča, and D. Jaksch, Quantum
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