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Swarmalators are entities that swarm through space and sync in time and are potentially considered to replicate
the complex dynamics of many real-world systems. So far, the internal dynamics of swarmalators have been
taken as a phase oscillator inspired by the Kuramoto model. Here we examine the internal dynamics utilizing
an amplitude oscillator capable of exhibiting periodic and chaotic behaviors. To incorporate the dual interplay
between spatial and internal dynamics, we propose a general model that keeps the properties of swarmalators
intact. This adaptation calls for a detailed study, which we present in this paper. We establish our study with
the Rössler oscillator by taking parameters from both chaotic and periodic regions. While the periodic oscillator
mimics most of the patterns in the previous phase oscillator model, the chaotic oscillator brings some fascinating
states.

DOI: 10.1103/PhysRevE.109.054205

I. INTRODUCTION

Synchronization [1–3] is one of nature’s most fascinating
and widespread phenomena. It refers to the coordination or
alignment of events or processes in time, without necessarily
influencing their spatial positions. This phenomenon is ob-
served in a wide range of scales, from the microscopic to
the macroscopic, and across various disciplines of science
and nature. From cardiac pacemaker cells [4], the metabolic
cycle of yeast cells [5], coherently flashing fireflies [6,7] to
power grid dynamics [8], Josephson junction [9] and even the
unexpected wobbling of London’s Millennium Bridge [10],
there are so many examples that highlight the occurrence of
spontaneous synchrony. Similarly, a complementary form of
self-organization occurs in swarming [11–14] where individ-
uals traverse through space, yet overtly modify their internal
states. As evidence, birds fly in flocks [15,16], fish swim in
schools [17], and bacteria aggregates [18,19] in space, yet
do not always synchronize the timing of an internal state or
rhythm. In a sense, both phenomena are spatiotemporal but
opposites. Research on swarming, such as the collective be-
havior of many body systems or self-propelled particles [20],
has garnered significant attention in recent decades. Studies
of synchronization and swarming jointly establish a fruitful
connection between physics and biology, delving into the
influence of both spatial and temporal dependencies of the
agents.

In recent decades, these two domains have been explored
autonomously. Ultimately, the analysis of mobile oscillators
bridged these two domains by exploring the impact of os-
cillator movement on their internal state [21–23]. However,
the reverse scenario was not investigated. Mobile oscillators
become the key element in modeling biological and robotic
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phenomena [21,24–26]. Von Brecht and Uminsky [27] pro-
posed an aggregation model where the particles undergo an
internal polarization vector comparable to the oscillator’s
phase. But in all these works, the relative distances between
the particles affected their internal phase. Nevertheless, their
relative phases did not significantly contribute to their ac-
tions. The theoretical exploration of the systems that feel the
combined effects of swarming and synchronization started
to garner interest around 2007. Tanaka [28] led the initia-
tive by proposing a model of chemotactic oscillators where
oscillators interact through a background diffusive chemical
and produce diverse rich phenomena. Following this, recently
O’Keeffe et al. [29] introduced a toy model of swarming
and synchronization, without reference to any background
medium, called swarmalators, where the bidirectional inter-
action was considered, i.e., twin activities of the swarming
oscillators can be tracked. They formulated this model by us-
ing space-dependent generalized globally coupled Kuramoto
oscillators [30] that anticipate several rich spatiotemporal pat-
terns.

Since then, there has been ongoing research to investigate
further and understand the dynamics of swarmalators in differ-
ent system-interaction configurations. The two-dimensional
(2D) model was reduced to a one-dimensional (1D) solvable
ring model [31] which captures the behavior of swarm in
quasi-1D rings such as sperms or vinegar eels [32]. Using
the Ott-Antonsen ansatz [30], an analytical description of
these states and the condition of their existence have become
possible [33]. To understand the influence of the surrounding
environment, Hong et al. [34] introduced thermal noise in
a population of swarmalators and came across several dis-
tinct collective patterns, some of which captivate the behavior
of real-world swarmalators. In another work, the impact of
the external damping force on the phase resulted in the
phase transition from a nonforced model to full synchrony
via partial synchronization [35]. Several other aspects such
as time-delayed interactions [36], distributed coupling [37],
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finite cutoff interaction distance [38], multiplexity [39], and
time-varying competitive phase interactions [40] among the
swarmalators give rise to a plethora of collective patterns.
Sar et al. took the initiative to introduce random pinning
[41–43] subjected to the 1D ring model which delivers low-
dimensional chaos and abrupt transition to a synchronous
state along with phase-wave and split phase-wave states. Re-
cently, swarmalators have been investigated under different
community structures, and in the purely repulsive coupling,
antiphase synchronization between the communities has been
observed [44]. Check out the review articles on swarmalators
in Refs. [45,46].

In most works, the internal dynamics of swarmalators have
been explored in terms of phase oscillators through the lens of
the Kuramoto model. We envision swarmalators as a common
playground of swarming and synchronization for which the
oscillatory dynamics need not be controlled by the phase and
can also be rendered by the amplitude. In this paper, we use
one such amplitude oscillator model that governs the inter-
nal dynamics of the system. We choose parameters for the
model such that the oscillations are chaotic. Synchronization
of chaotic oscillators, where two or more chaotic systems
evolve along similar chaotic trajectories despite starting from
different initial conditions, represents a highly intriguing dy-
namical phenomenon that has been extensively investigated
from various perspectives. In the context of swarmalators, this
chaotic behavior may arise from the nonlinear interactions and
feedback mechanisms among the individual components of
the swarmalator system. This scenario is an apt depiction of
challenges akin to the task coordination observed in swarm-
ing animals, which not only synchronize their movements
within a two-dimensional plane but also respond collectively
when subjected to threats or animal attacks. We study the
ramifications that arise when the internal dynamics of the
swarmalators are influenced by amplitude-mediated chaotic
oscillators. We report our findings of some of the existing
states of swarmalators for chaotic dynamics. In Sec. II, we
represent the fundamental mathematical model which serves
as the basis for our study. We depict our results in Sec. III.
Lastly, we sum up with period one case and conclusions in
Secs. IV and V, respectively.

II. MATHEMATICAL MODEL

We consider N number of swarmalators moving in a 2D
region. The internal dynamics (xi ∈ Rd ) of the swarmalators
are governed by a d-dimensional amplitude oscillator. The
bidirectional interplay between spatial and internal dynamics
of the swarmalators is given by the following set of equations:

ṙi =vi + 1

N

N∑
j �=i

(r j − ri )

[
(A + J1e−Ei j ) − (B − J2e−Ei j )

|r j − ri|2
]
,

(1)

ẋi = f (xi ) + K

N

N∑
j �=i

H (xi, x j, ri, r j ), (2)

for i = 1, 2, . . . , N , where ri = (ξi, ηi ) ∈ R2 denotes the spa-
tial position of the ith swarmalator in the 2D plane. The
attractive force among the swarmalators is represented by

the first term inside the summation in Eq. (1) as Iatt = (A +
J1e−Ei j ) and the second term defines the repulsive interaction
among the swarmalators as Irep = (B − J2e−Ei j )/|r j − ri|2.
Here, Ei j denotes the difference between internal dynamics
of the ith and the jth swarmalators and is defined as Ei j =
|x j − xi|, where | · | denotes the Euclidean norm. A and B are
the strengths of spatial attraction and repulsion, respectively.
J1 and J2 measure the influence of internal dynamics of the
swarmalators on spatial attraction and repulsion, respectively.

f : Rd → Rd in Eq. (2) denotes the uncoupled identical
internal dynamics of the swarmalators where xi ∈ Rd . H :
Rd × Rd × R2 × R2 → Rd stands for the effect of spatial
configurations on the internal dynamics. In our study, we
employ the chaotic Rössler attractor to describe the internal
dynamics of the system, i.e.,

f (xi ) =
⎛
⎝ −yi − zi

xi + ayi

b + zi(xi − c)

⎞
⎠, (3)

where xi = (xi, yi, zi ) ∈ R3. The interacting function H de-
fines the diffusive coupling between the y components of the
Rössler oscillators, which is modulated by the spatial distance
and is given by

H (xi, x j, ri, r j ) =
[

0,
y j − yi

|r j − ri|γ , 0

]T
, (4)

where T denotes the transpose of matrix and K is the cou-
pling strength. We are concerned only about the interaction
through the y components in our study. While dealing with the
diffusive coupling via x or z components in the Rössler oscil-
lator, the master stability function (�(K )) [47] concerning the
coupling strength (K ) is always positive, which indicates that
the coupled network of oscillators does not achieve any stable
synchronization state. When considering interactions among
the y components in the Rössler oscillator, �(K ) is negative,
i.e., the system concludes to achieve synchrony [48].

In the rest of our investigation, we choose N = 200 identi-
cal swarmalators with velocities vi = 0 and fix γ = 1.

III. RESULTS FOR CHAOTIC SYSTEM

Our primary objective in this paper is to explore the swar-
malator field through the lens of chaotic oscillators. Hence,
we first focus on the chaotic region of the Rössler oscillator.
Later, in Sec. IV, we also investigate the collective patterns
in the case of period one Rössler oscillator. Here we choose
a = b = 0.2, and c = 5.7 belonging to the chaotic regime. In
our study, every agent has three internal degrees of freedom (x,
y, and z), and their internal dynamics arise from an ensemble
of globally connected Rössler oscillators. In the subsequent
study, we choose A = 1 and B = 2. The other parameters
J1, J2, and K act as the primary control parameters. The
spatial attraction term, A + J1e−Ei j increases as the relative
difference between the internal dynamics of the swarmalators
(Ei j ) decreases. In contrast, the repulsion force among the
swarmalators (B − J2e−Ei j ) diminishes when the term (Ei j )
decreases and vice versa. It can be readily comprehended in
the following manner:
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FIG. 1. Measurement of the average synchronization error 〈E〉 of the Rössler oscillator (filled red circles) and the mean velocity of the
swarmalators 〈v〉 (open blue circles) as functions of the coupling strength K . The dotted vertical lines are used to distinguish distinct emerging
states. (a) Async for K = −0.068, (b) splintered phase wave for K = 0.012, (c) phase wave for K = 0.072, (d) chimera for K = 0.132, and
(e) sync for K = 0.2. We use the logarithmic scale to visualize 〈v〉 to differentiate the states by their velocity. The color bar signifies the x
component of the Rössler oscillator. We fix J1 = 2.0 and J2 = 0.5. Heun’s method has been used to simulate N = 200 swarmalators with time
step dt = 0.01 for T = 4000 time units. Initially, the swarmalators are placed uniformly randomly inside a square box of length 2 centered
at the origin. All the resultant states are observed after a long transient. The average synchronization error 〈E〉 and the mean velocity 〈v〉 are
calculated after wiping out the first 75% data with ten realizations.

(i) When the difference of the internal dynamics among
the swarmalators decreases, the term e−Ei j increases exponen-
tially and finally attains the value unity. Hence, the attraction
strength reduces to A + J1 and that of repulsion becomes
B − J2.

(ii) The opposite scenario occurs when Ei j reaches a larger
value so the term e−Ei j → 0 and the strength of attraction and
repulsion become independent of J1 and J2.

Depending on the choice of these control parameters,
the swarmalators exhibit various long-term emerging states,
ranging from asynchronous to synchronous states. Before ex-
plaining these states, we define some order parameters that
prove to be beneficial in quantifying various properties of the
emerging states.

To measure the amount of internal disorder among the
swarmalators, we define the time average of the synchroniza-
tion error of the Rössler oscillator as

〈E〉 =
〈

N∑
i, j=1

|x j (t ) − xi(t )|
N (N − 1)

〉
t

, (5)

where 〈· · · 〉t stands for the time average, after discarding the
initial transients. The red curve (filled circles) in Fig. 1 refers
to the time average synchronization error 〈E〉 as a function
of the coupling strength K delineated through the left y axis.
Our model reveals both stationary and no-stationary states.
To distinguish them, we measure the mean velocity of the
swarmalators as

〈v〉 =
〈

1

N

N∑
i=1

√
�ξi

2 + �ηi
2

〉
t

, (6)

where (�ξi,�ηi ) is the displacement of the ith swarmalator
in the 2D plane in time interval t to t + dt . The blue curve

(open circles) in Fig. 1 represents this quantity as a function
of K plotted in the log-linear scale in the right y axis. With
the understanding of these order parameters, we delve into
examining the emerging collective states of our model.

A. Emerging collective states

We explore the synchronization and spatial properties of
the swarmalator model. Based on numerical analysis, we
find that the parameter K plays a pivotal role in our case
study, as the interaction strength among the Rössler oscil-
lators controls the synchronization phenomena, eventually
determining the spatial pattern formation of the swarmalators.
Consequently, we systematically adjust K across a defined
range, leading to the identification of five distinct long-term
collective states: sync, async, splintered phase wave, phase
wave, and chimera. As the swarmalators diverge due to strong
repulsion for K < −0.13 and remain synchronized for K >

0.3, we meticulously focus on the region K ∈ [−0.13, 0.3]
where we can objectify all the emerging states. Figures 1(a)–
1(e) best illustrate these states where each of the swarmalators
is represented by the scatter plots in the (ξ, η) plane and their
colors indicate the x component of the Rössler oscillator. We
also scrutinize the pattern formation by coloring the swar-
malators according to the other two components y and z and
find similar outcomes (see Fig. 1 in the Supplemental Material
[49]).

1. Async

We start from the left panel in Fig. 1, where K is negative.
In the range [−0.12, 0.0], the swarmalators are moving (no-
tice the velocity profile in Fig. 1 depicted by the blue curve)
and they arrange themselves within a circular disk. Given that
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FIG. 2. Splintered phase-wave and phase-wave states for swarmalators with chaotic Rössler oscillator. Snapshots of the splintered phase
wave state are shown at (a) t = 3000, (b) t = 4000, and (c) t = 5000 time units for K = 0.012. (d)–(f) Snapshots of the phase wave state at
t = 3000, 4000, and 5000 time units, respectively, where K = 0.072. In the entire simulation, we fix J1 = 2.0, and J2 = 0.5. We integrate
Eqs. (1) and (2) by Heun’s method using T = 5000 time units with step size dt = 0.01 for N = 200 swarmalators.

the interaction strength K is negative, it hinders their ability
to exhibit coherent behavior within the internal oscillations.
The corresponding internal dynamics remain desynchronized,
exhibiting a wide range of x values seen in Fig. 1(a). 〈E〉 is
notably elevated in this region, suggesting a highly desynchro-
nized behavior. We embellish this as the async. Look at Movie
1 of the Supplemental Material [49] for the time evolution of
the state.

2. Splintered phase wave

Moving to the right of Fig. 1, as we increase the value of
K from 0, we note a discernible trend where the swarmala-
tors form multiple clusters, each exhibiting motion confined
within its respective cluster, and their activity never dies
off. The region between the black and pink dotted vertical
lines (0.0 < K < 0.032) illustrates the state specifically. If
we recall the splintered phase wave of the phase-influenced
swarmalator model [29], this state is the closest realization of
that. For this, we refer to this state as splintered phase wave
[see Fig. 1(b)]. Figures 2(a)–2(c) display the snapshots of
this state at different times which demonstrates the evolution
over time. We further plot the x components of the Rössler
oscillator as a function of the indices for this state in Fig. 3(a).
The clusters display distinct internal behaviors in this state,
each isolated from the others. Find Supplemental Material
[49] Movie 2 for a better visualization of this state.

3. Phase wave

When we gradually increase K from the splintered phase
wave state, swarmalators change their positions in a very rapid
manner. They are spatially attracted towards the ones having
minimal synchronization error Ei j and the disjoint cluster for-
mation like the splintered phase wave, disappears. Compared

to the other states, we observe that swarmalators move with
a higher velocity in this state, which we will discuss in detail
in the subsequent sections. We refer to this state as the phase
wave [see Fig. 1(c)]. They form a deformed disklike structure,
where the positions are distributed inside the disk and they are
attracted to the ones having nearby internal dynamics (in the
phase wave state reported with phase oscillators, they were
distributed uniformly inside an annular ring). In Figs. 2(d)–
2(f), we capture the snapshots at different times to analyze
their movement. Also see Movie 3 in the Supplemental Ma-
terial [49] for the time evolution of the phase wave state. We
specify this region between the pink and the yellow dotted

FIG. 3. Scatter plots of the Rössler x components against their
corresponding indices at T = 4000 time units for N = 200 swar-
malators. (a) Splintered phase wave for K = 0.012 where distinct
clusters are observed. (b) Chimera for K = 0.072 where two clusters
are visible among which one is synchronized, and in the other one
swarmalators show asynchronous behavior. Heun’s method has been
used to integrate Eqs. (1) and (2) with step size dt = 0.01 to generate
both panels.
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vertical lines (0.032 < K < 0.116) shown in Fig. 1 where the
phase wave is realized.

4. Chimera

On further increment of K , we observe a bunch of swar-
malators organize themselves within a cluster having similar
internal dynamics (coherent x values), and the rest of the
swarmalators form another cluster with a wide range of x val-
ues. All of them show feeble spatial movements within their
specific clusters. (See Movie 4 of the Supplemental Material
[49]). The nature of this state is similar to the chimera state
where coherent and incoherent behaviors coexist [50–52]. We
represent this state as chimera state. Figure 1(d) illustrates this
state by showing the snapshot in the (ξ, η) plane. We observe
this state when 0.116 < K < 0.176. The region is highlighted
by the yellow and the violet dotted vertical lines in Fig. 1.
For a clear picture, we plot the x components of the Rössler
oscillators against their respective indices in Fig. 3(b). The
presence of one coherent group where the x values are the
same is observed along with an incoherent group where the x
values are distributed.

5. Sync

When K is positively large (K > 0.176), the Rössler os-
cillators get synchronized and 〈E〉 goes to zero. The spatial
movement of the swarmalators also diminishes, i.e., 〈v〉 = 0.
On top of that, we observe all the swarmalators organize
themselves inside a circular disk. They are synchronized at
every instant, indicating that the collective internal dynam-
ics become identical for all the swarmalators (see Movie 5
in Supplemental [49]). We mark this state as sync which is
represented by the scatter plots in Fig. 1(e).

Therefore, with increasing coupling strength K the entire
route from the async to the sync state can be depicted as async
→ splintered phase wave → phase wave → chimera →
sync.

B. Radii of the sync and async states

1. Sync

Here, the agents do not exhibit any spatial movements.
Moreover, each of them embarks on identical internal dynam-
ics at every instant of time. One can capture the information
regarding this state in terms of the velocity field, which con-
tains all necessary details, i.e., their spatial positions and
relative internal errors. The corresponding field can be il-
lustrated with the following form: v = v(r, Ẽ (r)). Since the
spatial movement of the agents is absent, we can conclude the
velocity field v = 0.

When examining the specifications of steady-state patterns,
an insightful approach is involved in investigating the con-
tinuity equation. In this state, where the density ρ(r, Ẽ (r))
represents the stationary distribution of swarmalators with
positions r in the (ξ, η) plane and internal relative error Ẽ (r),
the divergence of the velocity field must be zero. This re-
quirement is underscored by the normalizing property, stating
that

∫
ρ(r, Ẽ (r))dr = 1. Finally, we end up with a pair of

simultaneous equations:

v ≡ 0, (7)

∇ · v ≡ 0. (8)

In Cartesian coordinates, the velocity field reads

v(r, Ẽ (r)) =
∫ (

(r̃ − r)(A + J1e−Ẽ (r̃) )

− r̃ − r
|r̃ − r|2 (B − J2e−Ẽ (r̃) )

)
ρ(r̃, Ẽ (r̃)) d r̃. (9)

In the sync state, the internal dynamics of the swarmalators
become identical at every instant of time. When the relative in-
ternal error boils down, i.e., Ẽ → 0, the integral part of Eq. (9)
no longer depends on the relative error, rather it depends only
on the spatial profile, which allows us to treat Eq. (9) by
excluding Ẽ . Remembering this fact, Eq. (9) can be rewritten
as

v(r) =
∫ (

(r̃ − r)(A + J1) − r̃ − r
|r̃ − r|2 (B − J2)

)
ρ(r̃) d r̃.

(10)

Recalling Eq. (8), by taking the divergence of Eq. (10) we get
the following equality:

∇ · v(r) =
∫

(2(A + J1) − 2πδ(r̃ − r)(B − J2))ρ(r̃)d r̃ = 0.

(11)

Simplifying Eq. (11), we obtain∫
2πδ(r − r̃)ρ(r̃)d r̃ = 2(A + J1)

B − J2
,

which gives

ρ(r) = 1

π

A + J1

B − J2
. (12)

In this state, the swarmalators form a disk in the (ξ, η)
plane. The center of position is conserved by the symmetric
pairs of changes of Eq. (1). So, due to the rotational symmetry,
the density of steady state can be written as ρs(r) = 1/(πR2

s )
for |r| � Rs. Comparing Eq. (12) with this, we get the expres-
sion of the radius in the sync state as

Rs =
√

B − J2

A + J1
. (13)

In Fig. 4(a), we explore the dependence of the radius of the
sync state on J1. Furthermore, we collocate our analytical
finding, as expressed in Eq. (13), with the numerical outcome,
revealing a strong concurrence between them.

2. Async

In this segment, we analyze the async state, where the
relative error between the oscillators (Ẽ ) takes a tremendous
nonzero positive value. As a result, the influence of J1 and
J2 becomes insignificant and, therefore, their effects can be
disregarded in this scenario. Hence, the term e−Ẽ → 0 and
the Eq. (9) can be rewritten in the following form:

v(r) =
∫ (

(r̃ − r)A − r̃ − r
|r̃ − r|2 B

)
ρ(r̃) d r̃. (14)
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FIG. 4. (a) Radius of the sync state as a function of J1 for K =
0.25. (b) The radius of the async state against J1, where K = −0.05.
The red dots correspond to the simulation results and the black curve
represents the analytical measurement. Data were generated for T =
4000 time units by integrating Eqs. (1) and (2) with Heun’s method
for (dt, N ) = (0.01, 200).

Performing a comparable calculation with the sync state
yields the form of the probability density function for the
async state as follows:

ρ(r) = 1

π

A

B
. (15)

Therefore, the radius for the async state takes the form

Ra =
√

B

A
. (16)

We validate our analytical finding given by Eq. (16) with the
numerical simulation in Fig. 4(b). This emphasizes that the
radius of the async state is independent of J1 [also J2, from
the expression in Eq. (16)].

C. Dependence on system parameters

We explore the impact of J1 and J2 on the dynamics of
the swarmalators. For this, we choose to vary one of J1 and
J2 with the coupling strength K , keeping the other fixed. In
Fig. 5(a), simultaneously varying J1 with K , while fixing J2 at
0.5, we observe the system’s dynamical behavior. In Fig. 5(b),
we vary J2 over a range of K by keeping J1 = 2.0. The color
bar signifies the time average synchronization error 〈E〉 of the

FIG. 5. (a) Variation of 〈E〉 in the J1-K parameter space for
J2 = 0.5, and in (b) J2 − K parameter space for J1 = 2.0. The model
is integrated with N = 200 swarmalators using Heun’s method for
step size dt = 0.01 and T = 4000 time units. After discarding the
transients, the average synchronization error 〈E〉 is calculated with
the last 25% of data.

Rössler oscillator. From the J1 − K parameter space, it is evi-
dent that the collective behavior of the system is independent
of J1 and primarily depends on K . From Fig. 5(b), we observe
a similar scenario except in the upper right corner, where the
system becomes highly unstable and collapses for a high J2

value. It is worth reminding ourselves again that the spatial
attraction and repulsion terms are given by (A + J1e−Ei j ) and
(B − J2e−Ei j )/|r j − ri|2, respectively. When the value of K is
large enough to attain synchrony among the Rössler oscilla-
tors, the repulsion term eventually becomes B − J2. We should
have J2 < B, or else the repulsive term acts like an attraction
term. In that case, some swarmalators might collide with each
other, which is not feasible for a swarmalator system. Since
we have fixed B = 2 in our work, we see that when K is
sufficiently large and J2 → 2, there is an unbounded region
[the white region in Fig. 5(b)].

D. Velocity profiles of the states

In the preceding sections, we studied several emerging
patterns exhibited by our model and thoroughly examined
their dynamics. The most remarkable outcome is the discov-
ery of numerous states that have already been reported in
the phase-influenced swarmalator model. In addition to the
amplitude dynamics of the underlying Rössler oscillator, we
notice the swarmalators exhibiting various spatial movements
in the emerging states. One can explore and distinguish these
profiles in terms of the velocity of the center of positions
(v) for each state. Previously, in Fig. 1 we have captured the
essence of nonzero time-averaged velocity over a range of
coupling strength K . We showcase the corresponding tempo-
ral evolution of the ensemble displacement for each state in
Fig. 6. The swarmalators show very small displacement over
time in the async state as observed in Fig. 6(a), whereas, in
the sync state, swarmalators attain steady positional configu-
ration, i.e., v = 0. See Fig. 6(b) for the steady behavior of v in
the sync state for K = 0.2. In the remaining states, the overall
structure pulsates over time. Notice the spiking behavior in the
velocity profiles for these states [Figs. 6(c)–6(e)]. When the
swarmalators form the phase wave, they frequently undergo
large compression and expansion. Swarmalators try to min-
imize the difference between their internal states when K is
positive. They get spatially attracted towards each other when
this difference decreases. On the other hand, when they come
too close to each other, the spatial repulsion function disperses
them away which gives a sudden jump in the velocity and
the loop continues. This gives rise to some kind of positional
instability in the system. We observe the spiking tails are
significantly higher in the phase wave [Fig. 6(d)] compared to
both the splintered phase wave [Fig. 6(c)] and chimera state
[Fig. 6(e)].

IV. ANALYSIS ON PERIODIC OSCILLATION

After investigating the swarmalators embedded with
chaotic dynamics of the Rössler oscillator, we explore them
with the period one behavior. For this, we fix the parameters
as a = 0.1, b = 0.1, and c = 4.0, where the Rössler oscillator
shows one periodic behavior.
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FIG. 6. The temporal evolution of the velocity of the center of positions (v) regarding the emerging states. (a) Async (K = −0.068),
(b) sync (K = 0.2), (c) splintered phase wave (K = 0.012), (d) phase wave (K = 0.072), and (e) chimera (K = 0.132). The model is integrated
with N = 200 swarmalators using Heun’s method with step size dt = 0.01 for T = 4000 time units. We show the velocity time series for the
last 10% data for clarity.

Similar to the chaotic region, here also we consistently
adjust the oscillators’ interaction strength K over a finite range
and observe the variation of average synchronization error 〈E〉
and the mean velocity 〈v〉 of the swarmalators to distinguish
different emerging collective behaviors. In Fig. 7, we demon-
strate the variation of 〈E〉 and 〈v〉 by filled red circles and open
blue circles, respectively. We again observe the async and
sync states for extreme values of K . Both the async and sync
states [see Figs. 7(a) and 7(e)] resonate similarly to the case of

the chaotic oscillator. The async state is found when −0.12 <

K < −0.096. What is unique about the periodic region is the
discovery of three types of phase wave states, akin to those
observed in the phase-influenced swarmalator model. Inside
the region highlighted by the black and pink dotted vertical
lines in Fig. 7 (where −0.096 < K < −0.038), we observe
the swarmalators coordinating themselves within a disk and
each one of them tries to form clusters with another having
coherent internal dynamics, characterized by the nearest x

FIG. 7. Variation of average synchronization error 〈E〉 (filled red circle) of period one Rössler oscillator and the mean positional velocity
of the swarmalators 〈v〉 (open blue circle) with the coupling strength K . We choose the parameter values as a = b = 0.1, c = 4.0 and fix
J1 = 2.0, J2 = 0.5, A = 1.0, and B = 2.0. Dotted vertical lines separate the regimes between different emerging states. Snapshots are shown
in (a) async for K = −0.12, (b) active phase wave for K = −0.05, (c) splintered phase wave for K = −0.02, (d) static phase wave for K = 0.0,
and (e) sync for K = 0.04. The color bar signifies the x component of the Rössler oscillator. We integrate Eq. (1) and Eq. (2) by Heun’s method
for (dt, T, N ) = (0.01, 4000, 200). In all cases, swarmalators are initially placed inside a box with dimension [−1, 1] × [−1, 1] uniformly at
random. All the resultant states are observed after a long transient. 〈E〉 and 〈v〉 have been calculated with the last 25% data after discarding the
transients with ten realizations of initial conditions.
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FIG. 8. (a) Time series of S for K = −0.1 (black), K = 0.0 (red),
and K = 0.1 (blue). (b)–(d) are the normalized power spectrum for
K = −0.1, 0, and 0.1, respectively. We take N = 200 swarmalators
and run simulations for T = 4000 time units with step size dt = 0.01
using Heun’s method.

values. As a whole, they follow a circularlike movement in
the (ξ, η) plane. Figure 7(b) depicts this state. We denote this
state the active phase wave due to the continuous movements
of swarmalators from one portion to another inside the disk.
When we increase K further from −0.038, we capture the
swarmalators to form disjoint clusters and move in the (ξ, η)
plane inside their respective groups. We identify this state as
the splintered phase wave [see Fig. 7(c)] as before. The extent
of this state is delineated by pink and yellow dotted vertical
lines (−0.038 < K < 0.0). The difference between the active
and splintered phase wave is best understood through Movie
6 of the Supplemental Material [49]. The first stationary state
(〈v〉 ≈ 0) occurs for the case when K = 0. The swarmalators
become static by their position within the regions highlighted
by the yellow and violet dotted vertical lines where 0.0 < K <

0.012. They arrange themselves into small groups where they
are situated near the ones having minimal relative error. We
refer to this state as a static phase wave, which is depicted
by Fig. 7(d). Finally, we achieve synchrony at K = 0.012,
after which all the swarmalators become completely static by
their positions (〈v〉 = 0) and resonate with similar internal dy-
namics at an instant of time. Therefore the overall dynamical
route in this case becomes async → active phase wave →
splintered phase wave → static phase wave → sync.

To measure the correlation between swarmalators’ spa-
tial angle φ j = tan−1(η j/ξ j ) and the oscillators’ phase θ j =
tan−1(y j/x j ), we define the following order parameters as

S±eiψ± = 1

N

N∑
j=1

ei(θ j±φ j ), (17)

which quantifies the correlation between the spatial and inter-
nal dynamics of the swarmalators. We take the maximum of
S± and define S = max{S+, S−}. A nonzero value of S signi-
fies the presence of a correlation between the swarmalators’
spatial position to the oscillators’ internal dynamics. First, we
observe the time evolution of S at different values of K . For
the K < 0 region, we notice the chaotic nature of S depicted
by the black curve in Fig. 8(a). In the positive K region, the
oscillation of S completely dies and does not vary with time

[see the blue line in Fig. 8(a)]. For K = 0, when the dynamics
of the Rössler oscillators do not affect the spatial positions,
we observe the periodic nature of S with time [look at the red
curve in Fig. 8(a)]. We have also looked at the power spectrum
to validate the chaotic [Fig. 8(b)], periodic [Fig. 8(c)], and
constant [Fig. 8(d)] behaviors of S for K = −0.1, 0, and 0.1,
respectively.

V. DISCUSSIONS

It is worth mentioning that, till now, swarmalators have
been studied through the vision of phase oscillators. The
combined effect of phase-dependent spatial aggregation and
position-dependent phase synchronization defines a unique
phenomenon and leads to various rich spatiotemporal pat-
terns. Some of these stationary and nonstationary patterns can
be found in many real-world systems like Japanese tree frogs
[53], magnetic domain walls [54], Janus matchsticks [55],
robotic swarms [56,57], etc. Nowadays, researchers investi-
gate this system by applying suitable interacting functions,
coupling schemes, network structures, etc. Our work lies in
exploring the system from the perspective of the amplitude
oscillators.

In this paper, we have studied the trade-off between the
spatial dynamics over the chaotic (and periodic) internal dy-
namics of the swarmalators and vice versa. We have modeled
swarmalators so their interactions are all-to-all, and their in-
ternal dynamics are governed by the Rössler system. We here
claim that we can visualize not only the phase oscillator but
also the swarmalator field from the perspective of the ampli-
tude oscillator. We have encountered the presence of most of
the states akin to those observed in the phase-inspired swar-
malator model [29]. Our model comprises three parameters
K , J1, and J2 which mainly regulate the long-term behavior
of the swarmalator system. We analytically derived the radius
of the sync and async states, which confirms our numerical
findings, and emphasize the originality of our work. We are
unable to solve the radius of the other states as their structure
continuously changes with time. Subsequently, we explore the
system within the nonchaotic domain (period one), leading to
the emergence of five distinct long-term collective states.

In summary, our model aims to provide a fresh outlook on
swarmalator dynamics. One can think about how these inter-
nal dynamics can be further modified using the higher-order
coupling scheme for various parameter values. We expect
there might be other possible emerging states. Also, we an-
ticipate that using a hyperchaotic system (characterized by
more than one positive Lyapunov exponent) as swarmalators’
internal dynamics or complex switching mechanisms between
multistable states, our system might exhibit a rich variety of
complex behaviors and diverse emerging states, surpassing
the limitations associated with a basic chaotic system. Im-
plementing the vision range of each entity will open another
avenue for study on the swarmalator. On top of that, we can
implement the angular dynamics under the influence of inertia
on the bare swarmalator system [29]. A pertinent future goal
to explore would involve examining alternative physically
feasible structures for both spatial and internal interactions.
The analytical feasibility of our research offers a platform for
investigating these avenues in the coming times.
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