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Experimental observation of topological transition in linear
and nonlinear parametric oscillators
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Parametric oscillators are examples of externally driven systems that can exhibit two stable states with opposite
phase depending on the initial conditions. In this work, we propose to study what happens when the external
forcing is perturbed by a continuously parametrized defect. Initially in one of its stable states, the oscillator will
be perturbed by the defect and finally reach another stable state, which can be its initial one or the other one. For
some critical value of the defect parameter, the final state changes abruptly. We theoretically and experimentally
investigate such transition both in the linear and nonlinear cases, and the effect of nonlinearities is discussed. A
topological interpretation in terms of winding number is proposed, and we show that winding changes correspond
to singularities in the temporal dynamics. An experimental observation of such transition is performed using
parametric Faraday instability at the surface of a vibrated fluid.

DOI: 10.1103/PhysRevE.109.054204

I. INTRODUCTION

The parametric oscillator is one of the simplest externally
driven systems, a paradigmatic example being a pendulum
shaken vertically at twice its resonance frequency. Paramet-
ric oscillators are encountered in many different fields of
physics, including quantum mechanics [1–3], optics [4,5],
(micro)mechanics [6–9], electronics [10], and hydrodynamics
[11,12], making their study of prime interest. The rich physics
of this system results from complex interactions between
damping, forcing, and nonlinearity. The response amplitude
of the system strongly depends on the exact parameters of
the system and can exhibit (among others) linear stability
around zero, subcritical or supercritical Hopf bifurcation to-
ward a finite amplitude oscillation, subharmonic oscillation,
bistability, and hysteresis [12,13]. For a given configuration,
the amplitude response when the external forcing is perturbed
has also been investigated recently in the context of time
crystals [14,15].

In parallel to the amplitude behavior, the phase response
of the system has also been investigated in several regimes.
In the linearly stable regime, it can, for instance, be used
to perform squeezing of noise in thermal [8] and quantum
[2,3] regimes. In the subharmonic finite amplitude oscillation
regime, the oscillation phase is fixed by the forcing and can
only take two discrete values separated by π . This phase
degeneracy has, for instance, been used as an analog bit to
store information [16,17] or to simulate the two states of a
1/2-spin in coherent Ising machines to compute the ground
state of the Hamiltonians [18–22]. In this context, several
strategies to perform bit flipping (or phase switch) have been
implemented by perturbing the excitation signal in a specific
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manner [23,24]. Possible bifurcation between several stable
states in the presence of noise has also been investigated in
the context of chaos control [25–27].

The purpose of the present work is to study the condition
for a phase switch to occur by considering a continuously
parametrized family of perturbations (or time defects), rather
than random noise or specific perturbations. The continuous
parameter will generate a family of trajectories which will
display strong discontinuities at specific values of the param-
eter. The paper is organized as follows. We first introduce
some useful formalism to study linear parametric oscillators
and define our family of time defects. We then show that
their exists some critical values of the parameter that separate
no phase-switch to phase-switch behavior, giving rise to a
transition with respect to the defect parameter. Interestingly,
we show that this transition exhibits topological properties
and provide experimental observation of such transition. We
then introduce some nonlinearity and discuss its impact the-
oretically, numerically, and experimentally on the transition
process.

II. PARAMETRIC OSCILLATOR
AND TEMPORAL DEFECT

A. Parametric oscillation and averaging equation

Here, we first describe the key features of parametric os-
cillation and phase selection. We consider, as in Fig. 1(a), a
pendulum with natural pulsation ω and vibrated at 2ω. For
now, we will not consider nonlinear effects and the evolution
equation for the angular coordinate ψ is then

d2ψ

dt2
+ 2

τ

dψ

dt
+ ω2[1 + ε cos (2ωt )]ψ = 0, (1)

where τ is the damping time and ε is the adimensional forcing
amplitude. We assume that the forcing, the damping, and the
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FIG. 1. Parametric oscillator and phase state. (a) An example
of a parametric oscillator: a pendulum with natural pulsation of
ω vibrated at 2ω. (b) Angular position of the pendulum evolving
according to Eq. (1) for ω = π , ε = 0.03, ωτ = 200 and opposite
initial conditions. Depending on the latter, two phases of the oscil-
lation can be observed. (c) Diagram showing, for different initial
conditions on the unit circle, which phase state is reached by the
system at long time. The two regions are defined by �A0 · �e− > 0 (red)
and �A0 · �e− < 0 (blue). (d) Normalized complex amplitude along
time computed from (b). The oscillation phase converges toward one
of the two fixed points as time flows.

initial condition are small: ε � 1, 1/ωτ = εγ � 1, ψ � 1,
ψ̇ = 0. For γ < 1/2, the angular position ψ (t ) exponentially
grows with a slow timescale while oscillating at ω, as shown
in the direct numerical simulation of Eq. (1) in Fig. 1(a). In
order to discard the oscillation, we introduce the complex
envelope A(t ) as

ψ (t ) = Re[A(t )eiωt ], ψ̇ (t ) = −ωIm[A(t )eiωt ]. (2)

This envelope will evolve with a slow timescale, ∼ε/ω (see
the Supplemental Material [28] or Ref. [29]), and carry infor-
mation on the oscillation phase. If one identifies the complex
amplitude A(t ) with its corresponding vector �A in R2, it
evolves according to

∂t �A = ∂

∂t

[
Re(A)

Im(A)

]
= −ε

[
γ /2 −1/4

−1/4 γ /2

][
Re(A)

Im(A)

]
. (3)

The matrix admits two eigenvalues, λ± = −ε(γ /2 ± 1/4),
with corresponding orthogonal eigenvectors, �e± = [1; ∓1]t .
If the damping is small enough (γ < 1/2), one has λ+ <

1 < λ−. For the angular coordinate ψ (t ), three behaviors can
therefore be observed when t → ∞ depending on the initial
condition �A0:

(i) if �A0 · �e− > 0, ψ (t ) exponentially grows while oscillat-
ing at ω with phase π/4,

(ii) if �A0 · �e− < 0, ψ (t ) exponentially grows while oscillat-
ing at ω with phase π/4 + π , and

(iii) if �A0 · �e− = 0, ψ (t ) goes exponentially to zero.
Unless specific initial conditions are chosen and the system

is completely free of noise, the last behavior is not seen and
the generic behavior therefore exponentially grows combined
with an oscillation which can only have two different phases.
This twofold phase degeneracy is directly related to the 2:1
resonance between the forcing and the pendulum response
combined with the invariance of the evolution equation under
the discrete symmetry t → t + π/ω. One can also understand
it geometrically: as the projection of �A0 on �e+ will be expo-
nentially killed, �A will tend to align or anti-align with �e−. The
choice of one phase or the other is therefore determined by
the sign of the projection between the initial condition and
the growing eigenvector, �A0 · �e−, as shown in Fig. 1(c). The
degeneracy is illustrated in Fig. 1(b), where we perform a di-
rect simulation of Eq. (1) with the same forcing, but opposite
initial conditions. As everything is linear, it is enough to con-
sider the normalized amplitude Ã = A(t )/|A(t )|. Its evolution
is shown in Fig. 1(d) and its convergence toward one of the
two “phase states” is visible.

B. Introducing a continuously parameterized perturbation
and qualitative analysis of its impact

Let us now assume that the forcing amplitude is fixed and
that the parametric oscillator has reached one of its phase
states. We now perturb the forcing of the system by detuning
between t = 0 and t = Tλ = π/ω|λ| the excitation frequency
from 2ω to 2ω(1 + λ), with all other parameters left un-
changed. Doing so, the perturbed excitation takes an overall
phase of ±2π (depending on the sign of the detuning λ)
compared to the unperturbed signal, as shown in Fig. 2(a).
After Tλ, the perturbed excitation is back in phase with the
unperturbed one and the excitation frequency is set back to
2ω. This particular choice of Tλ ensures (1) the continuity of
the excitation signal as shown in Fig. 2(a) and (2) that the
possible phase states of the oscillator are the same before and
after the defect, since they are completely determined by the
phase of the forcing. Equivalently, this condition ensures that
the eigenvectors for the envelope equation are the same before
and after the defect.

Here, we briefly describe qualitatively what one would
expect by introducing such perturbation. The latter can be
seen as a continuous phase sweep of the external forcing from
0 to ±2π at speed 2ω|λ|. If the sweep is very fast (λ � 1),
one expects the oscillator not to be significantly perturbed by
the phase sweep. In particular, the oscillator’s phase should
remain close to the one of an unperturbed oscillator. On the
other hand, if the sweep is very slow (λ � 1), one expects the
phase of the oscillator to be locked with the forcing’s phase at
each time. Due to period doubling of the oscillator compared
to the forcing, the sweep of ±2π of the latter will lead to a
phase switch of ±π in the former. From here, we see that
depending on the value of λ, the oscillator will or will not
experience a phase switch. The next sections aim to derive a
condition on λ for such switch to occur and understand what
happens at the particular values of λ at which the dynamic of
the system suddenly changes from no phase switch to a phase
switch.
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FIG. 2. Temporal defect, phase state switch, and topological aspect of transition in the linear case. (a) Two examples of defects (blue
curves) for λ = 30% (top) and λ = 30% (bottom), the unperturbed excitation being plotted for comparison in red. The duration of the detuning
is chosen so that the two excitation signals collapse back together after Tλ. (b) Simulated evolution of the parametric oscillator for ε = 0.03,
λ = 1.5% and (c) λ = 0.75%, with the gray area corresponding to the defect duration. The phase of the corresponding complex amplitude is
also shown and the phase switch only occurs for the second case. (d) Half-winding Q of the normalized amplitude Ã(t ) for different values
of (ε, λ). The red dashed line corresponds to the analytical prediction λ/ε = 0.37. (e) Analytical computation of �A(Tλ) · �e− = f (λ/ε), which
cancels for ε/λ = 0.37. (f) Normalized complex amplitude Ã(Tλ) when λ varies from 0 to infinity, with the initial amplitude �A(0) = �e−. The
transition from positive to negative (pink arrow) occurs for λ/ε = 0.37. (g) Minimum amplitude of the field, mint>0|A(t )|, for different values
of (λ, ε). The field cancels exactly when the winding changes.

III. TRANSITION IN LINEAR
PARAMETRIC OSCILLATOR

A. Discrete phase states vs continuous parameter

Adding this defect will perturb the parametric oscillator
initially in one of its phase states (aligned or anti-aligned with
�e−). As everything is linear, let us assume, without loss of gen-
erality, that A(t = 0) = �e−. During the defect, the evolution
equation is modified so that �e± are no more eigenvectors for
the evolution operator [28]. The exponential growth will be
perturbed and �A will start to move away from �e−, as shown in
Figs. 2(b) and 2(c). After the defect, the system is in the state
�A(Tλ) and will, after some time, align or anti-align again with
�e−. As discussed before, knowing which of the two occurs
is fully determined by the sign of the geometrical projection,
�A(Tλ) · �e−. The introduction of the defect can therefore be
seen as a change in the initial condition, and varying the defect
parameter λ as a continuous change of the initial conditions.

In agreement with the previous qualitative analysis, both
phase switch and no phase switch can occur depending on
the value of λ. This is shown in Figs. 2(b) and 2(c), where
for the same forcing ε = 0.03, a phase switch occurs for
λ = 0.75% but not for λ = 1.5%. In order to characterize the
phase difference between the initial and the final states, we
define the number

Q(λ, ε) = 1

π
Im

(
ln

A(∞)

A(0)

)
(4)

that counts the number of half winds around the origin,
which must be an integer. The resulting transition diagram
in the (λ, ε) plane shows whether or not a phase switch oc-
curs depending on the system parameters. Direct numerical

computation of the half-winding number Q(λ, ε) is displayed
in Fig. 2(d). It is constant on large domains that are separated
by a curve of critical values of λ that can be fitted as λc = αε

with α ≈ 0.37 (red line).
As discussed above, the transition is entirely driven by the

sign of �A(Tλ) · �e−. An explicit computation using perturbative
methods shows that if �A(t = 0) = �e−, one has �A(Tλ) · �e− =
f (λ/ε), where f is plotted in Fig. 2(d) and explicitly given in
the Supplemental Material [28]. In particular, it only cancels
once for λ/ε ≈ 0.37, which exactly matches direct numerical
simulation [see Fig. 2(e)]. Such analysis, moreover, provides
a straightforward geometrical interpretation of the transition.
For a given forcing ε, the vector state �A(Tλ) performs half
a turn between �e− and −�e− when λ goes from 0 to ∞, as
illustrated in Fig. 2(f). The transition between no phase shift
and phase shift occurs at the critical value λc when the vector
state becomes exactly orthogonal to �e−.

At this critical value, the projection cancels out and �A(Tλ)
is aligned with �e+. Accordingly, the parametric oscillator is
expected to go exponentially fast to zero. This is confirmed by
the diagram in Fig. 2(g) that shows the (normalized) minimum
amplitude reached by the oscillator, mint>0 |A(t )|. The ampli-
tude therefore exactly cancels out when the winding change
occurs.

B. Topological aspect of the transition

Such cancellation near the winding number change is rem-
iniscent of what typically occurs in condensed matter during
a topological phase transition. In this context, topological
invariants are written as an integral over the reciprocal space
[30–32]. If one writes A(t ) = eiφ(t ), one can also write Q as an
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integral, but it will rather run over the time dimension,

Q(λ) = 1

π

∫ ∞

0
φ̇dt . (5)

In terms of topology, the winding number Q characterizes the
homotopy class of the path followed by the complex ampli-
tude. The variation of λ can therefore be seen as the generation
of a family of continuously parameterized trajectories in the
complex plane. For particular values of λ, the homotopy class
of the trajectory suddenly changes, corresponding to a discon-
tinuity of path parametrization with respect to λ. This occurs
when the field reaches the origin and cancels out. Topological
transitions are usually associated with singularities. In the
present case, it is the singular behavior of the dynamics at
this specific value of λ that plays this role. Indeed, the origin
is an unstable equilibrium point, and it can therefore only
be reached for very specific values of λ, while the generic
behavior is to reach one of the two stable states (aligned. or
anti-aligned with �e−).

One can push the analogy with topological transitions a
bit further. A phase transition in condensed matter is typically
associated with the divergence of some correlation length at
the transition. In our case, such length is replaced by the typi-
cal convergence time Tc taken by �A(t ) to approximately align
again with �e−. Close from the critical value |λ − λc| � 1,
one expects Tc ∼ ln|λ − λc|. This scaling has been verified
numerically [see Sec. IV A and Fig. 4(c)], and one therefore
finds an exponential scaling law rather than a power law with
some critical exponents in condensed matter.

C. Experimental observation

We now propose an experimental observation of such tran-
sition between different homotopy classes. As a parametric
oscillator, we chose the Faraday waves that occur at the
surface of a vibrated fluid [12]. For small deformation of
the interface, the governing equation for the height field hk

associated to wave vector k at the surface of a vibrated fluid
with acceleration a cos (2ωt ) is [12]

∂tt hk + 1

τ
∂t hk + [gk + γ k3/ρ + ak cos (2ωt )]hk = 0, (6)

where τ accounts for viscous dissipation and is measured
experimentally to be τ = 0.9 ± 0.03 s, g = 9.8 m/s2 is local
gravity, γ = 60 mJ/m2 is the surface tension of water, and
ρ = 1000 kg/m3 is water density. From this, we can therefore
estimate the adimensional forcing as

ε = ak

gk + γ k3/ρ
. (7)

The experimental setup consists of a tank of water vibrated
at 2ω using a shaker. In order to avoid friction of the paramet-
rically excited waves on the walls, a plastic frame pierced in
its center by a square hole of 2 × 2 cm is placed at the surface,
as shown in Fig. 3(a). The frame is floating on the water so that
evaporation of water does not change the boundary condition
of the meniscus, which could impact the experiments [12,14].
The first mode of the square hole is measured to occur at
7.92 ± 0.02 Hz (see the Supplemental Material [28]) and we
therefore fix the excitation frequency to 15.84 Hz, which
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FIG. 3. Experimental measurement of phase state switch in the
linear regime. (a) Sketch of the experimental setup: A tank filled with
water is placed on a shaker vibrating at 15.92 Hz. A floating frame
at the surface ensures a good definition of the first parametrically
unstable mode at 7.92 Hz. A camera on the top recovers the wave
amplitude through demodulation of a periodic pattern placed below
the surface (not shown here). (b),(c) Typical experimental signal for
the wave amplitude (in arbitrary units) and the slowly varying phase
for (b) λ = −6.92% and (c) λ = −3.15%. In both cases, the forcing
is ε = 0.10 and the defect occurs at t ≈ 4s. Half-negative winding
occurs in the second case, but not in the first one. (d) Half-winding
number Q(λ) and (e) minimum amplitude for different values of λ

plotted as a function of λ/ε. The vertical lines show the theoretical
prediction for the transition λc/ε = 0.37.

corresponds to k ≈ 200 m−1. The instability threshold is
found for a critical acceleration of ac ≈ 1.4 m/s2 correspond-
ing to ε ≈ 0.11. In this case, we observe waves at half the
excitation frequency that exponentially grows for typically
15 s before saturating at finite amplitude due to nonlinearity.
As we aim to probe the linear regime, each experiment con-
sists of 7 s of unperturbed excitation, a defect parametrized
by λ, and, finally, 8 s of unperturbed excitation again, before
stopping the vibration and letting the system come back to
rest for the next measurement. Such procedure ensures that
the wave amplitude remains far from its nonlinear saturation.
The wave amplitude is recovered by a camera placed above
the water and a periodic pattern placed below the surface.
Using a demodulation algorithm, one can retrieve the surface
deformation through the pattern distortion recorded by the
camera [33].

Some typical wave amplitude measurements along time
are shown in Figs. 3(b) and 3(c) with λ = −6.92% and λ =
−3.15%, respectively. From these curves, one can compute
the phase and the corresponding winding in the complex
plane, as shown in the same panels. Depending on the value of
λ, the trajectory either performs half-negative, half-positive,
or no winding around the origin of the complex plane. Fig-
ure 3(d) shows the value of the winding index Q for different
values of λ, the forcing fixed to ε = 0.10. In order to compare
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FIG. 4. Impact of nonlinearity on the transition process. (a) Upper panel: angular position along time simulated from nonlinear evolution
with ω = π, ε = 0.03, ωτ = 200 for opposite initial conditions. Depending on the initial condition, two phases for the oscillation can be
observed. Lower panel: associated complex amplitude that reaches a fixed point corresponding to one of the two limit cycles. (b) Trajectories
in the complex plane for ε = 0.03 and defect parameters λ = 0.45, 0.540, 0.543, 0.6% when the system is initially in one of its limit cycles.
The two convergence points of the trajectories are the two possible limit cycles with opposite phase. (c) Half-winding index Q (top), minimum
amplitude along time, mint>0|A(t )| (middle), and time of convergence, Tc (bottom), as a function of λ. Inset: Same plot with logarithmic
horizontal axis to test Tc ∼ ln|λ − λc|. (d) Transition diagram Q(ε, λ) for the nonlinear case. The red-dashed line corresponds to the prediction
from the linear case.

our results with the theory, we normalize the horizontal axis
by ε. The resulting curve is antisymmetric with respect to λ/ε,
as expected from theory and numerical simulations. More-
over, the transition occurs for a specific value of λ/ε that is
consistent with the theoretical prediction, λc/ε = ±0.37. We
also compute the minimum amplitude of the waves normal-
ized by the maximal amplitude before the defect and the result
is shown in Fig. 3(e). The transition between different winding
numbers indeed corresponds to an (almost) cancellation of the
wave amplitude, which is again consistent with the prediction.
Our experimental results also exhibit a clear increase of the
transition time near the transition, but the exponential predic-
tion could not be observed experimentally. We attribute this
to the presence of noise at the water surface that prevents the
observation of a very small amplitude of parametric waves for
a very long time.

It is tempting to vary ε in order to establish complete tran-
sition diagrams. However, as the latter increases, the system
hits nonlinearities within a few seconds, preventing it from
performing a measurement in the purely linear case. The next
sections are dedicated to discuss the role of nonlinearities,
theoretically and experimentally, in the transition process.

IV. IMPACT OF NONLINEARITY
ON TRANSITION PROCESS

A. Nonlinear parametric oscillator

Realistically, all parametric oscillators will not grow ex-
ponentially forever, but will eventually saturate in amplitude
due to nonlinearity. Here, we therefore propose to study how
the latter can impact the previous analysis. For this, we take a
simple model and introduce a cubic term in Eq. (1) such that
the evolution equation is now

d2ψ

dt2
+ 2

τ

dψ

dt
+ ω2[1 + ε cos (2ωt )](ψ − αψ3) = 0. (8)

The nonlinearity tends to saturate the oscillation amplitude
and Eq. (8) admits two subharmonic oscillating limit cycles
with phase difference of π , as shown in Fig. 4(a). Depending
on the initial conditions, one or the other will be chosen in
a similar fashion as in the linear case. The limit cycles are
associated with constant complex amplitude A(t ) and can take
two values ±Ac that correspond to the two possible phase
states of the system. Convergence toward those fixed points
in the complex plane replaces alignment of �A with ±e− in
the linear case. As the problem is no longer linear, we will
moreover consider the trajectories of A(t ) in the complex
plane, rather than only its phase as in Fig. 4(a).

We assume that the system ran for a long time before t = 0
and that it reached a limit cycle. Adding a defect parameter-
ized by λ will perturb the cycle, and the complex amplitude
will start to move in the complex plane. After the perturbation,
the system reaches one of its two limit cycles. Numerical sim-
ulations for different values of λ are shown in Fig. 4(b), with
the forcing fixed to ε = 0.03. Depending on the value of λ, a
phase switch occurs or does not occur, which is associated,
respectively, with nonzero or zero half winding around the
origin. When λ spans different values, a family of trajectories
is generated in the same manner as in the linear case.

The half-winding index Q is shown in Fig. 4(c) (upper
panel) for different values of λ and goes abruptly from one
value to the other for the specific value λc ≈ 0.54%. In terms
of path, it is shown in Fig. 4(b) that close values of λ =
0.540% and λ = 0.543% can correspond to very different
trajectories. As in the linear case, the transition is associated
with a zero amplitude (middle panel). One can also compute
the time for the system to converge back to its new limit cycle,
and this time diverges at the transition (lower panel). More-
over, the scaling law Tc ∼ ln|λ − λc| predicted in the linear
case still holds, as shown in the inset with a semilogarithmic
plot. For λ ∼ λc, the amplitude is very small during most of
the transition between the limit cycles. The nonlinearity can
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therefore be neglected during most of the dynamics, leaving
the scaling law for the transition time insensitive to it.

Many works have investigated the switching between the
stable states’ bifurcation in the presence of noise [27,34]. It
has been shown in particular that the system tends to escape
through saddle points, which is exactly what we observe here.
The critical trajectory associated to λc is tangent to �e+ when
it goes toward the saddle point and tangent to �e− when it
escapes from it, generating an angular point at the saddle
point, as shown in Fig. 4(b). The critical curve separates a
different homotopy class for the trajectories. We would also
like to mention that changing the type of defect would change
the continuous family of trajectories that is generated, but
not the physical features of the transitions (cancellation of
field, divergence of the convergence time, etc.). The frame-
work presented here can therefore be transposed to any other
continuously parameterized family of defects.

B. Impact of nonlinearity on transition diagrams

For now, it seems that apart from replacing eigenvectors
by limit cycles to take into account amplitude saturation,
nonlinearity may not significantly impact the physics of tran-
sition. This is actually not the case. Surprising consequences
of nonlinearity are observed when one computes the transition
diagram Q(ε, λ), shown in Fig. 4(d), that is completely differ-
ent from the one shown in Fig. 2(d). First, it clearly breaks the
symmetry between positive and negative values of detuning λ.
Second, larger winding number is observed in those diagrams
for negative detuning, but not for positive ones. Such large
winding numbers were not observed in the linear regime and
are therefore a striking signature of nonlinearities. It has also
been verified that each transition of winding number is associ-
ated with field cancellation and convergence time divergence
as in the linear case. Nevertheless, the values of (λ, ε) at which
the transition occurs are completely different from the linear
case, as shown in Fig. 4(d).

Here, we briefly discuss the reasons for such differences
between linear and nonlinear regimes. One can show that the
evolution equation for the amplitude is of the form

Ȧ + 1

ωτ
A = −3iαε

2
|A|2A + iε

4
A∗e2iλ(t )t , (9)

where λ(t ) = λ for 0 � t � Tλ, and zero otherwise. In the
linear limit α = 0, one can map this equation on another one
that only depends on λ/ε [28]. This indicates that the results
in the linear case can only depend on this ratio, which is
consistent with the results from the previous section. A similar
argument predicts the antisymmetry λ → −λ in the linear
case. However, both of these symmetries break down in the
presence of nonlinearity (α �= 0). This is reminiscent of the
different behaviors of parametric oscillators (subcritical or su-
percritical bifurcation) depending on the sign of the detuning
[12,13]. Such analysis explains why the phase diagrams are
different and nonsymmetric in the nonlinear case, but do not
predict when the transition occurs. Such prediction requires a
full treatment of the nonlinear problem, which appears very
difficult to perform.
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FIG. 5. Experimental measurement of transition diagram in the
nonlinear case. (a) Pictures from the side of the parametrically
excited water wave limit cycles with opposite phases. (b) Typical ex-
perimental measurement of wave amplitude (in arbitrary units) along
time and its associated complex phase. The gray area materializes
the time defect. (c)–(e) Complex amplitudes showing different half-
winding values for fixed ε = 0.29: Q = 0 (right, λ = 7.9%), Q = 1
(middle, λ = 0.79%), Q = −2 (left, λ = −7.9%). (d) Experimental
transition diagram of Q and (e) associated minimum amplitude of the
wave field.

C. Experimental observation

Last, we propose an experimental observation of a nonlin-
ear transition diagram. We use the same experimental setup
as before, for which the instability occurs for a ∼ 1.4 m/s2,
which corresponds to εc ∼ 0.12 (see the Supplemental Ma-
terial [28]). On the other hand, taking a typically greater
than 3.5 m/s2 leads to unwanted phenomena such as wa-
ter droplet ejection or water leaking on the floating sheet,
limiting the maximal reachable forcing to ε ∼ 0.3. We per-
form wave amplitude measurement for various values of ε

and λ in order to obtain the complete transition diagram.
Contrary to the linear case, we let the system reach its
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saturated oscillation amplitude before introducing the tem-
poral defect. This occurs within a few seconds for ε >

0.13. Due to the high amplitude of the nonlinear waves,
the previous demodulation method used to recover the wave
amplitude could not be used. We therefore place a camera
on the side and recover the wave amplitude using contrast
analysis from raw pictures, as in Fig. 5(a). The typical mea-
surement of the wave amplitude along time as well as the
corresponding phase are shown in Fig. 5(b) [28]. Several ex-
amples of complex amplitude A(t ) with different half-winding
numbers associated to different values of λ are also shown
in Fig. 5(c).

We performed systematic measurement of half-winding Q
for different values of forcing ε and detuning λ. The obtained
transition diagram is shown in Fig. 5(d). It clearly exhibits
distinct domains with different values of the winding index
Q. We see, once again, the existence of large domains sepa-
rated by critical curves. At those critical curves, the minimum
amplitude of the field vanishes, as shown in Fig. 5(e), which
is consistent with the previous analysis. However, a strong
asymmetry exists between the positive and negative values of
λ, which was not seen in the linear regime. Moreover, a larger
winding index of −2 has also been observed experimentally,
as shown in Figs. 5(c) and 5(d). Although quite simple, the
nonlinear model discussed above exhibits similar features.
The domains in Figs. 4(d) and 5(d), moreover, look similar
qualitatively, but could not be matched quantitatively. This

suggests that the full dynamic of Faraday waves is not entirely
captured by Eq. (9), which was derived for small forcing.

V. CONCLUSION

In this article, we have theoretically and experimentally
studied how a system that exhibits a discrete number of limit
cycles can (or cannot) switch from one to another by introduc-
ing continuously parameterized defects in the excitation. Both
the linear and nonlinear cases have been discussed, and the
difference between the two has been emphasized. Our results
provide an example of a topological transition in a nonlin-
ear time-varying system, and the topological index can be
interpreted as a half-winding number of trajectories in phase
space. All the predicted features of the transition have been
observed experimentally using Faraday instability. The results
presented in this article may find applications in the control of
parametric oscillators or for robust bit flip in coherent Ising
machines. It also paves the way toward the definition of new
topological features in nonlinear or active systems that exhibit
a finite number of limit cycles.
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