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Time delays play a significant role in dynamical systems, as they affect their transient behavior and the di-
mensionality of their attractors. The number, values, and spacing of these time delays influences the eigenvalues
of a nonlinear delay-differential system at its fixed point. Here we explore a multidelay system as the core
computational element of a reservoir computer making predictions on its input in the usual regime close to fixed
point instability. Variations in the number and separation of time delays are first examined to determine the effect
of such parameters of the delay distribution on the effectiveness of time-delay reservoirs for nonlinear time series
prediction. We demonstrate computationally that an optoelectronic device with multiple different delays can im-
prove the mapping of scalar input into higher-dimensional dynamics, and thus its memory and prediction capabil-
ities for input time series generated by low- and high-dimensional dynamical systems. In particular, this enhances
the suitability of such reservoir computers for predicting input data with temporal correlations. Additionally,
we highlight the pronounced harmful resonance condition for reservoir computing when using an electro-optic
oscillator model with multiple delays. We illustrate that the resonance point may shift depending on the task at

hand, such as cross prediction or multistep ahead prediction, in both single delay and multiple delay cases.

DOI: 10.1103/PhysRevE.109.054203

I. INTRODUCTION

Predicting the time evolution of chaotic systems has been
a challenging research topic for many decades due to their
complexity and sensitive dependence on initial conditions.
Various methods have been developed to learn and predict
chaotic time series, including artificial neural networks and
phase space reconstruction methods [1-3]. One of the inno-
vative models for chaotic time series prediction is based on
the brain-inspired formalism developed by Jaeger and Haas
[4]. This reservoir computing (RC) model proposes a net-
work with fixed randomly initialized weight connections. In
this framework, an input is injected into the neurons, and
only the weights of the connections from the reservoir to the
output layer (readout weights) are trained. This system has
demonstrated its effectiveness in classifying chaotic signals,
including inputs comprising a combination of two chaotic
signals from the Lorenz system with different parameters [5].

Appeltant et al. [6] later introduced an innovative approach
for time series prediction and speech recognition that utilizes
a single nonlinear node in the form of a nonlinear delay-
differential system, which benefits from the high-dimensional
properties of delay systems. This delay-based RC method has
been extensively studied in various domains, including quan-
tum dot lasers [7], electronic [8], photonic, and optoelectronic
devices [9,10]. This architecture has been shown to achieve
the fast voice speech recognition when implemented with
an optoelectronic device [11]. Furthermore, this architecture
can be used for characterizing chaotic and hyperchaotic time
series from data [12].
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The rich dynamical properties of delay systems, such
as a relatively large Kolmogorov-Sinai entropy in chaotic
regimes, have thus opened up many possibilities for prac-
tical machine-learning applications. Certain architectures
clearly demonstrate the importance of high-dimensional,
nonlinear dynamics in RC. In the Lang-Kobayashi (LK)
system, the modulation type significantly influences the
reservoir’s capability to map inputs to higher dimensions.
It has been demonstrated that phase modulation is more
effective than intensity modulation in utilizing these high-
dimensional properties. This was further analyzed through
studying the behavior of the steady states of the LK system
[13].

Another example is the recently introduced deep time-
delay RC, which enhances the time-series prediction capabil-
ity [14]. This architecture displays characteristics analogous
to those of convolutional neural networks, with each layer
featuring a nonlinear delay system. Notably, in such multi-
layered RC systems, the conditional Lyapunov exponents are
influenced by the bifurcation point, which has implications for
memory capacity [15]. In a more recent development, a neural
network was introduced, utilizing modulated feedback loops
[16]. This system incorporates the dynamics of a nonlinear
delay differential equation where the feedback nonlinearity
is applied to the sum of delayed terms with time-modulated
strengths. By utilizing such features, gradient descent can be
used to perform more sophisticated tasks.

The choice of time delay is a critical factor that signifi-
cantly impacts the performance of a time delay RC. Generally,
optimal delays cannot be determined a priori and may depend
on the particular task; unsuitable delays can, in fact, degrade
memory capacity (MC) and make time-series predictions dif-
ficult [17,18].
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FIG. 1. Schematic of the single delay RC. The time-multiplexed masked input is injected into the nonlinear node, and travels along the
loop with a clock cycle of T', here made equal to the delay t. The virtual nodes provide time series that are combined in the output layer of the

reservoir computer. These nodes are separated by a time interval of 6 =

%. The time arguments for the virtual nodes illustrate how they span

the state of the nonlinear delay system across the time interval (K — 1)T to KT, where K is a positive integer. Only the first and last virtual

nodes are shown.

In this paper, we investigate the performance of RC with
multiple delays for various tasks. We further explore the opti-
mal choice of parameters for this multidelay system and study
resonance phenomena in different scenarios, such as cross-
prediction and multistep ahead prediction. We illustrate that
employing multiple delays can have the benefit of increasing
linear MC.

II. MULTIDELAY RESERVOIR COMPUTER (MDRC)

We focus on delay RC built from the electro-optic oscil-
lator (EOO) model. In its simplest form, it is modeled as
a first-order nonlinear delay differential equation with one
delay. A schematic of the operation of the single delay reser-
voir with virtual nodes is shown in Fig. 1. The output of the
nonlinear node (i.e., the laser) is sent through a delay loop
(e.g., an optical fiber), and samples of the activity at specific
virtual nodes along this loop are versions of the output of
the nonlinear node delayed by a fraction of the whole loop
delay t. The high dimension of the phase space dynamics is
such that the different virtual nodes behave approximately as
independent variables. This is certainly the case in the chaotic
regime, but also in the fixed point regime during transients
caused by driving the system unidirectionally with inputs gen-
erated, e.g., by external chaotic systems, and more so when
such inputs are time-multiplexed with random masks, as we
will now describe.

The single delay RC model operates by injecting multi-
plexed input into a nonlinear node, which then propagates
through a series of virtual nodes equally spaced along the
delay loop with a clock-cycle of T. The RC receives a time-
varying input, such as a chaotic time series, in the form of a
sequence of constant samples of the time series (sample-and-
hold values). Each sample, lasting one clock-cycle, advances
the input-driven dynamics through the delay loop. This sam-
pling interval can be different from the time delay that
couples the virtual nodes together. Figure 1 shows via the
time arguments the states of the virtual nodes along the Kth
cycle.

The constant value of the input during a sample is fur-
ther modulated by a piecewise-constant random binary signal
known as the mask; the same mask is used for each cycle.
There are N piecewise-constant sections within each clock
cycle T, corresponding to the N virtual nodes. The jumps
between the mask values serve to excite complex transients
in the nonlinear node, whose state would otherwise converge
to a fixed point determined by the current value of the input
sample. The product of the sampled input time series (e.g.,
from a chaotic system), u(t), with this random binary mask
constitutes the input forcing signal J(z) to the RC. The am-
plitude of J(¢) is controlled by the scaling factor y, which
needs to be big enough to perturb the RC, but not too large to
overwhelm it.

A. Stability analysis of multidelay EOO model with filter

In this paper, the single delayed feedback is replaced by
multiple feedback paths, each with its own delay. For sim-
plicity, we consider the case of equally spaced delays. As we
will see, the spacing between these delays is an important
parameter. Recent work has shown that increasing the spacing
between delays can effectively suppress chaotic dynamics,
resulting in the emergence of periodic or even fixed point
behavior in first-order and higher-order nonlinear delay differ-
ential equations [19,20]. In addition to the modified version of
the model that incorporates multiple delayed feedback path-
ways, we consider a filter term. The system’s dynamics is
governed by the following equations:

M
x=—x(t)—8y(t)+ AE/I ;sinz(x(t -+ ¢)

dy

— =x(),

o ()
where B is the gain coefficient, ¢ is the phase offset, and
M represents the number of delays. Due to the presence of
multiple timescales, this system can exhibit slow-fast dynam-
ics. The filter term acts to eliminate any nonzero steady-state

e))
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FIG. 2. Linear stability analysis of Eq. (1) for a multidelay RC
for a system with (a) two delays and (b) five delays. As the number
of delays increases, the peak of the stability region shifts towards
smaller values of delay spacing At and larger feedback strengths.

solution for the variable x. Throughout this study, we
considered § =1 and ¢ = 2?” For the MDRC case, we
picked delays as

Tj = Tmin + IAT, ()

where At is the spacing between the periodically arranged
delays and i =1...M. We note here that this spacing is
part of the dynamics of the core of the RC, and determines
it eigenvalues and transients at the edge of chaos. It should
not be confused with the other use of At in the context of
nonlinear time series analysis, namely, the embedding delay
applied to a low-dimensional time series to embed it into a
higher dimension and analyze its dynamical invariants such
as correlation dimension and predictability.

We first consider the intrinsic dynamics of the nonlinear
node, independently of the time-multiplexed input and of
the output weight matrix applied to its virtual nodes. The
nonlinear core of a RC typically operates in a stable fixed
point regime, but close to the destabilization point where a
bifurcation to a limit cycle occurs. This avoids the divergence
of the information about the input that would be caused by
the sensitivity to initial conditions in a chaotic regime or the
imposition of regularity in a limit cycle regime.

The stability diagram of Eq. (1) around its unique fixed
point is plotted in Fig. 2 for different 8 and At, for two
as well as five delays. Increasing the number of delays, the
peak of the stability region moves towards the lower spac-
ing between delays and higher feedback coefficient 8. For
example, for M = 2, the peak is located at At = 2.66 and
B = 3.6, while for M = 5 the peak located at At = 1.6 and
B = 6.1. Note, however, that for both numbers of delays, the
smallest spacings lead to loss of stability at smaller rather than
larger S. For larger At, the boundary of the stabilized regime
tends towards that for the single delay case. Here we refer
to this latter regime as the large spacing regime. The regime
where fixed point destabilization requires a stronger gain will
be referred to as the short spacing regime.

B. Role of time delays in architecture

The multidelay configurations that we tested are robust
to adding small random values to the delays, as this had
little effect on the destabilization boundary. The following

sections will show that the regime needed for time series
prediction can depend on the specifics of that task, such as
the nature of the time series to be predicted.

The dynamical equations for the EOO with filter can be
expressed as follows when masked input is injected into the
nonlinear node:

M
f= )~ 0+ T3 sin (1) + 94 1T 0)

i=1

dy

i x(1), 3)
where y is the input scaling and J(¢) denotes the multiplexed
and masked version of the discrete input data u(k). Here we
considered a binary mask, consisting of a series of randomly
chosen —1 or 1 values. More sophisticated mask functions,
such as a chaotic mask or a multilevel mask, could be used to
improve the performance of the RC [21]. We considered 200
virtual nodes that are evenly distributed with the temporal dis-
tance summing up to 7 = 40 (in other words, 8 = 0.2). The
states of the nodes are stored in a matrix X. Ideally, we aim
to find a weight matrix that linearly combines the node states
in a way that minimizes the difference between the predicted
output and the target output. In our paper, we employ ridge
regression to calculate this weight matrix, thereby mitigating
the risks of overfitting:

min (|| XW — ol|3 + A[W]]3). (4)

Here o represents the target output, A is the Tikhonov regu-
larization parameter, and ||.||, is the Euclidean norm. We set
the Tikhonov regularization parameter A to 10~8 to mitigate
overfitting. The minimization in the preceding equation leads
to the desired output weight matrix for the RC:

W=X"X+1)"'X"T0). (5)

While linear regression is a well-established method for this
minimization in RC, it has been shown that using an adaptive
training weight matrix can offer significant improvements in
reducing prediction errors [22].

Previous works have demonstrated that whenever the time
delay t and the clock cycle T are very close or equal, there
is a resonance that is detrimental to the performance of RC
as it leads to memory degradation [15,17,18]. This resonance
effect was investigated analytically using the characteristic
equation in Ref. [23]. The long delay approximation of the
characteristic roots was used, which implies that the real part
of the characteristic equation scales with the inverse of the
time delay. Solving for the imaginary parts of the characteris-
tic equation then yields [23]

o A %(2k ), (6)

with k the index of the eigenvalue and v equal to either O
or 1. The relative distance between two successive sample
inputs in the drive J(¢) is the traversed angle wT. Whenever
T is a multiple of 7, the traversed angle is a multiple of &
[17,23]. This results in overlapping responses and thus in the
reduction of the available dimension for the RC to map inputs
into higher dimensions [23].
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FIG. 3. Visualizing time-delay couplings between virtual nodes in the loop depicted in Fig. 1, showcasing various combinations of single
and two delays with different time delay values and spacing between delays. Each vertical block (i.e., cycle of duration T') corresponds to a
distinct input data point, which is a sample of the driving (input) time series. Within each block, there are N virtual nodes with a spacing of
0= % A single time delay is assumed in the first column. In (a), the time delay is set to the clock cycle (v = T'). The dynamics can then be
seen as mapping (i.e., affecting the dynamics of) each virtual node in one block to itself in the next block. In (c), the time delayis7 =T — 6,
resulting in inner couplings where each virtual node maps backwards by 6. In this case, the dynamics of a given node in one block affects the
dynamics of the previous node in the next block. Furthermore, the first node of each block also affects the dynamics of the last node in the
same block. The second column depicts cases where each node’s dynamics are affected by two delayed states. Here solid lines are associated
with the smaller delay, and dashed lines with the larger delay. In (b), 7, = T and 1, = 2T (At = T), corresponding to the resonance case
for single-step ahead prediction in multidelay reservoir computing; this case is more susceptible to poor performance. In (d), 7y = T — 6 and

T, =2T,soAt=1—1=T+6.In(f),1; =T +0and 1, =2T,s0o At =T — 6.

The temporal dependence of virtual nodes on the states of III. EFFECT OF INPUT SIGNAL ON PREDICTION
previous nodes, considering different values of time delays
and a fixed clock cycle, can be visualized in Fig. 3. The
scheme is more subtle compared to the single delay RC. The
first column depicts the single delay cases, while the second
column shows the more intricate two delay case. The reso-
nance condition is depicted in Fig. 3(a) for a single delay,
while Figs. 3(c) and 3(e) illustrate the single delay case but
in the desynchronized regime where 7 and 7' are mismatched;
this could serve as an alternative to avoid resonance. Fig-
ures 3(b), 3(d), and 3(f) illustrate the simplest scheme of
MDRC, a system with two delays. In Fig. 3(b), the time delays
are multiples of the clock cycle, which may result in poor pre-
diction performance, as we will discuss in the next sections.
In Figs. 3(d) and 3(f), where At =T 4+ 6 and At =T — 0,
respectively, represent alternatives for the multidelay case. B y AT B y ATt B y AT
Adjusting the spacing between delays could enhance forecast-
ing accuracy, even when one of the delays is a multiple of
the clock cycle. Howevc?r, as we will see, these results highly M—2 13 02 41 15 022 39 16 024 40
depend on the complexity of the data, the autocorrelation of M=5 41 024 16 35 012 16 55 016 16
the input data, and the objectives of the reservoir, such as M=5 14 02 38 15 02 39 16 03 40
cross-prediction or multistep ahead prediction.

In this section, we examine this multidelay RC for signals
originating from various sources with distinct properties. We
show that in some cases, choosing short spacing between
delays outperforms large spacing and vice versa. Given that
many parameters affect the performance of the RC, we limit
our study to parameters near the resonance regimes. The pa-
rameters are presented in Table I. We used 10 000 data inputs
for the training process, followed by testing on 5000 data
inputs for each input. The metric that we used to analyze the

TABLE I. Parameter values used for the simulation of Figs. 7-9.

Lorenz x Lorenz z MG

M=1 12 02 1.35 0.16 1.6 0.28
M=2 23 024 266 22 016 266 3 02 266

054203-4



BOOSTING RESERVOIR COMPUTER PERFORMANCE WITH ...

PHYSICAL REVIEW E 109, 054203 (2024)

AT=38

( o (b)
1.6 1.6
14 10292 1.4
1.2 1.2

02 04 06 08
v

AT=39

02 04 06 038

AT=39.8

107" ‘ 107!
1.6

1102 14 102
12

- 1073

103
02 04 06 0.8
Y

FIG. 4. Results of Lorenz x task prediction errors for three distinct cases of (a) A7=38, (b) At=39, and (c) At=39.8, all with M =5
when 7, = 39.8 and T = 40. Each panel displays the input scaling (y) on the x axis against the feedback strength (8) on the y axis.

error is the normalized root mean square error:

NRMSE = \/l K (0G) — 8(i)? .
K VAR (0)

Here the sum is over the number of target data points. The
variable 0(i) represents the predicted values, while o(i) corre-
sponds to the target output values. Additionally, we compared
the linear MC of the RC, i.e., the ability to recall the past
inputs, for the single and multiple delay cases.

Our strategy to choose delay parameters and focus our
exploration of the large parameter space is as follows. Our
initial stability analysis guided our selection for short delay
spacings. We aimed to investigate the differences between
short delay spacings—where feedback destabilization bound-
ary is notably higher than in the single delay case—and large
delay spacings, where the feedback strength’s destabilization
threshold is close to that of a single-delay system.

(7

A. Input from Lorenz model

We begin our study with the Lorenz model, a chaotic dy-
namical system, characterized by the following equations:

X =o(y@)—x()), (®)
y = —x(0)z(t) + px(1) — (), €))
z=x@)y() — bz(t). (10)

We used the standard parameters o = 10, p = 28, b = 8/3,
and sampled the data every 0.05 seconds. Initially, we focus
on predicting the x component of the Lorenz system with a
one-step ahead prediction. The x component of the Lorenz
system has the highest complexity and its autocorrelation
function reveals little correlation between data points.
Finding the optimal parameters for the implementation of
a multidelay system in the RC framework poses a significant
challenge, as it requires precise determination of values for y,
B, At, and t,i,. To address this, we categorize the problem
based on the spacing between delays, which is depicted in
Fig. 2, illustrating the impact of different spacings on system
behavior. For short delay spacings, we set At to a value that
ensures the largest feedback strength maintains the system in
a stable fixed point at steady state. As a case in point, we
chose At = 2.66 for systems with two delays and At = 1.6
for systems with five delays, based on observed peaks of

destabilization with the highest feedback strength for each
case.

For large delay spacings, we followed a more empirical
approach. We first analyzed the prediction errors by vary-
ing the feedback strengths (8) and input scalings (y) across
different delay spacings (A7), In these cases, The minimum
time delay, i, is set to T — 6, i.e., close to the clock cycle,
which is set to 40 in all of our studies. This particular setting
of Tmin is based on previous findings that indicate improved
performance in single delay cases under similar conditions.
Figure 4 displays the prediction errors for three different cases
of At =38, At =39,and At =39.8forM = 5.

It is evident from Fig. 4 that the optimum parameters for
feedback strength and input scaling change with different
spacing between delays. For At = 38 [Fig. 4(a)], the optimal
parameters are identified as § = 1.4 and y = 0.2. As At in-
creases to At = 39 [Fig. 4(b)], the optimum parameters shift
to B = 1.15 and y = 0.28, and for At = 39.8 [Fig. 4(c)], the
ideal settings found to be 8 = 1.05 and y = 0.28. Based on
these findings, Fig. 5 plots the prediction error using these
parameters across varying spacings between delays and dif-
ferent minimum time delays to identify the optimum spacing
between delays near clock cycle T = 40.

It can be inferred from Fig. 5 that harmful resonance occurs
when At =T, evidenced by the increased error across all
panels. The minimum error is observed with the parameters
used in Fig. 5(a). We applied these parameters to four different
samples, each characterized by unique initial conditions for
Lorenz x cases. These cases are illustrated in Fig. 6, demon-
strating their behavior with increasing minimum time delays.
This figure reveals a consistent trend in prediction errors
across these parameters, leading to the conclusion that the
fluctuations are intrinsic to the variations of t,;, and not due
to lack of averaging. After finding the approximated optimum
feedback strength (8), input scaling (y ), and spacing between
delays (A7) through this process, we investigated the impact
of different minimum time delays on the performance of RC,
and the results are presented in Fig. 7.

It can be seen in Fig. 7(a) that when tn;, < 15 or
so, the performance of the RC is superior for both large
and small spacing between delays compared to the single
delay case. However, as the minimum time delay value
increases and approaches the clock cycle T = 40, the per-
formance of the RC with single delay surpasses that of the
RC with multiple delays with large spacing. Notably, the
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FIG. 5. Prediction error plots over a range of delay intervals (A7) and minimum delays (t.;,) centered on the values used in Fig. 4 for
Lorenz x task after fixing 8 and y to their respective optimal values found for each of the equivalent panels in Fig. 4 (that resulted in the lowest

error for each case).

RC with five delays and small spacing exhibits the best
performance.

In Fig. 7(b), we present the cross-prediction error for the
z component of the Lorenz signal, with the x component as
the input. Cross prediction is feasible for the Lorenz system
when using the x component as the input [24], but the errors
are significantly larger, as seen here. The sharp drop in error
is observed at T, = T — 6 and tpp;, = 27 — 6.

When considering the z component of the Lorenz system
as the input, the trends observed are similar to those observed
when the input was the x component, as depicted in Fig. 8.
As the minimum time delay approaches the clock cycle, the
error increases across all cases. When the spacing between
the delays is set to be equal to the clock cycle, i.e., at the
resonance condition, the error increases.

B. Input from Mackey-Glass model

The Mackey-Glass (MG) equation is a nonlinear delay
differential equation that exhibits high-dimensional chaotic
behavior whenever the time delay is large compared to its

-2

10

NRMSE

10”5 JENETY

20 40 60 80
Tmin
FIG. 6. Impact of minimum time delay (tn;,) on the Lorenz x
time series prediction, illustrated for four different samples, each

obtained from unique initial conditions. The black line depicts the
average of the samples’ errors.

response time. Here, we consider the standard parameters for
the MG model of a = 0.1 and b = 0.2 and the time delay of
17 in the following equation:

@ — —ax() + bx(t — 1)

dt 1+x10¢—1)° (n

For these parameters, the MG solution exhibits a much longer
autocorrelation time than the Lorenz system used above. The
differences in the prediction properties likely relate to the
differing correlation times between these two systems. We
illustrate in Fig. 9 the performance of the RC for the MG
model input, where we try to predict 34 steps ahead for this
equation [o(i) = u(i + 34), where u represents the input and
o(i) represents the target output data point, which is equivalent
to the input data point 34 steps ahead].

In contrast to the Lorenz time series, the use of large
spacing between delays yields superior results for the MG
input. As shown in Fig. 9, the prediction error for the MG
time-series with five delays and a large delay spacing can be
up to two orders of magnitude better than the error for the
single delay case or for short delay spacing. However, it is
worth noting that there is a specific case where the error drops
drastically for both short delay spacing and the single delay
case. This occurs when 7, = 79.8 (equivalent to 27 — @),
similar to the Lorenz z when the input was Lorenz x. The
results for predicting the MG time series exhibit significant
fluctuations when altering the minimum value of the time
delay. This behavior was also evident in Fig. 6, and does not
reflect poor averaging of the error due to limited data. These
fluctuations, however, diminish in amplitude as more delays
are incorporated into the equations. We have compared the
prediction errors for scenarios with five and ten delays, with
large spacing between delays, as illustrated in Fig. 10. It can
be observed that increasing the number of delays from five to
ten results in a higher minimum error for the ten-delay sce-
nario compared to that observed for five delays even though
the error fluctuates less with ;.

C. Narmal0 task

The NarmalO task is a standard task used to evaluate RC
performance. It involves generating a discrete target output
based on an input sequence u;, which is randomly drawn from
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FIG. 7. MDRC can improve prediction and cross-prediction compared to single delay RC. (a) One-step ahead time series prediction error
of the Lorenz x component as a function of 7., for 1, 2, and 5 time delay RC. (b) Same as in (a) but for one-step ahead cross-prediction of the
Lorenz z component with the input being the Lorenz x component. The vertical red dashed lines indicate the value of the cycle time 7" = 40.

Parameters are in Table I and 6 = 0.2.

a uniform distribution in the interval [0,0.5]. The equation for
the NarmalO task is

9

Ont1 = 0.30, + 0.050, <Z on_i) + 1.5u,_ou, +0.1. (12)
i=0

The above equation illustrates the dependency of target output
values on past target output data. As noted earlier, a larger
spacing between delays is observed to enhance prediction
accuracy for correlated inputs, such as those in the MG model.
To identify optimal time delays and spacing, we plotted the
prediction error for the NarmalO task in Fig. 11. We con-
sidered minimum time delays ranging from 36 to 44 and At
values ranging from 76 to 84. The most accurate forecasting
was achieved when At = 2T £ 6 and 1, was equal to or

20 40 60 80
Tmin

FIG. 8. One-step ahead time series prediction of the Lorenz z
component when the input is the Lorenz z component for different
Tmin- The parameters used are in Table I.

close to T'. A significant increase in forecasting error was ob-
served at At = 2T regardless of the value of t.,;,. This error
increase occurs periodically when At is an integer multiple
of the clock cycle, which corresponds to the resonance case
for the multidelay system [Fig. 3(b)].

To evaluate the performance of the multidelay system, we
compare its MC with that of the single delay case in Fig. 12.
To analyze the MC, the target is set equal to the ith input in the
past [o(k) = u(k — i), where u is the input] and the correlation
between the target output and the recalled input is numerically
computed:

m(i) = corr[o;(k), 6;(k)]. (13)

Results indicate that the MDRC can recall up to 20 steps with
a correlation between the recalled value and the target close

o 107 y |
n ]
2 i iAA & ‘“\}ﬁ
z. (eI *)%J[l’
102! 'Q\J ,‘v‘ ‘f ,M%,‘; J\
10-3 2‘0 40 60 80
Tmin

FIG. 9. The normalized root mean square (NRMSE) for a 34-
step ahead prediction of the Mackey-Glass time series. The spacing
between delays, denoted as At, is given in the inset.
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FIG. 10. A comparison of prediction errors in systems with five

delays (black) and ten delays (blue) is depicted for the Mackey-Glass
task.

to or equal to 1, while the single delay RC can only recall up
to 11 steps before. The total MC can be determined by cal-
culating the area under the graph, which is clearly greater for
the MDRC. Overall, the results demonstrate that the MDRC
outperforms the single delay RC in terms of MC.

We further compared the performance of the RCs in the
y — B parameter space in Fig. 13. We considered three cases:
single delay (i, = 68.4), five delays with short spacing be-
tween them (At = 1.6 and 1, = 68.4), and five delays with
large spacing between them (At = 79.8 and 7, = 40). The
values of t for the single delay case, and tn;, for the five
delays case with short spacing, are chosen to minimize the
error. However, it remains unclear why these specific delay
values yield the lowest errors for both the single delay and
multiple delay cases with short spacing. Like in the case of
the MG input, we observe that the prediction for multiple
delays with large spacing outperformed the other two cases.

min error 0.12582

441 i 0.55
43 05
)
0 0.45
41 04
kS 40 * 035
g
& 103
39
025
38 02
37 0.15
36 . - ®o
76 78 80 82 84
AT

FIG. 11. Prediction error of a RC system with five delays, as a
function of the parameters t,,;,, and At, where the EOO parameters
are f = 1.35and y =0.5.

Memory Capacity

1
—M=1,7=0684
— M =5, Tonin = 40, AT = 79.8
0.8
06
g
0.4+
0.2
O L
0 50 100 150 200

Delayed input steps

FIG. 12. Memory capacity of a RC system for the Narma10 task,
comparing single delay (black) and five delays (blue) schemes. For
the single delay case, parameters were set to § = 1.5,y = 0.25,
and T, = 68.4. For the five delays case, parameters were set to
B =135y =0.5, thn =40, and At = 79.8. These parameters
were chosen because they provide the lowest error on the respective
NarmalO prediction tasks.

The system maintains a higher linear MC in this scenario,
resulting in higher prediction accuracy. The use of multiple
delays with large spacing necessitates higher input scaling
compared to the other cases, indicating the need for incorpo-
rating higher nonlinearity. Furthermore, employing multiple
delays with large spacing offers the advantage of a broader
range of parameter choices in the y — 8 space.

IV. DISCUSSION

The practical application of multidelay architectures in
real-world systems has been demonstrated through various
studies. A particularly notable example is observed in
semiconductor lasers with optical feedback, where fiber
random gratings are utilized as an alternative to traditional
single reflective devices, such as mirrors [25]. Additionally,
the EOO model with double feedback loops has been
examined in Ref. [26]. In that study, it was found that
incorporating double feedback loops significantly increases
the complexity of system dynamics, a change primarily
attributed to the introduction of an additional delay. However,
it is essential to note that the nonlinear feedback function used
in this referenced study is different from the one we employ
in our research. Moreover, our model, in contrast to the one in
Ref. [26], includes a filter in its equations. While we acknowl-
edge the unique challenges and limitations associated with the
physical realization of multidelay architectures, our research
is mainly focused on a numerical analysis. The primary aim
of our paper is to elucidate the impact of multiple delays on
the performance of RC systems, thereby laying a foundation
for future practical applications and advancements in this
field.

While time delay RCs have demonstrated success in
predicting chaotic time series through numerical and exper-
imental approaches, identifying optimal time delays is critical
for tackling more complex objectives, such as multistep
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FIG. 13. The NarmalO prediction error of a RC system for different reservoir configurations. (a) Prediction error for a single delay case
(M = 1) and T = 1, = 68.4. (b) Prediction error for a five delay case (M = 5) with At = 1.6, and 1, = 68.4. (c) Prediction error for five
delays (M = 5), At = 79.8, and t,;, = 40. In each panel, the performance is shown for different input scaling and feedback strength values.

ahead prediction or prediction of individual signals within a
mixed input signal. Further research is needed to explore ways
of improving the performance of RC for more complicated
prediction challenges. In particular, our results show that a
thorough understanding of the input data properties is essen-
tial to successfully implement a multidelay RC for time series
prediction.

Predicting multiple steps ahead for high-order complex
signals like the Lorenz signal can be challenging. When pre-
dicting one step ahead, selecting a time delay equal to the
clock cycle of the RC often leads to poor outcomes. However,
the optimal time delay may vary depending on the correlation
between the input and output. For example, in the case of
cross prediction where the input is Lorenz x and the target
is Lorenz z, we found that the resonance shifts to a smaller
time delay value, and significant improvement is observed at
T =T, as shown in Fig. 7. Previous studies have shown that
using a delayed input method can improve RC performance
for cross-prediction, and the lowest error can be achieved by
delaying the input by multiple steps due to the correlation
between the x component and the z component [24].

In the context of the MDRC analyzed in our paper, it is
more crucial to choose delays with spacing unequal to the
clock cycle (see Fig. 11). For the NarmalO task, we observed
that the error decreased significantly around the resonance
case. However, we should note that this might not be true for
multiple step-ahead prediction.

In general, our results reveal that the RC prediction per-
formance is expected to improve as the number of delays
increases. This is often true, especially when the minimum
time delay approaches the resonance condition, which, in
the single delay case, occurs when the time delay equals
the clock cycle. However, there may be values of the sin-
gle time delay for which the RC exhibits performance
comparable to multidelay systems. In the context of multi-
delay cases, the resonance condition is most likely observed
when the spacing between delays is equal to the clock cy-
cle. Overall, it is likely that a delay configuration can be
found for enhanced MDRC performance which presents a
broader parameter space compared to the single delay case.

We should note that the relationship between parameters
and time delays does not always adhere to a straightfor-
ward, logical pattern and can be challenging to pinpoint
precisely. This complexity might explain why the observed
phenomenon is absent in some cases. This increased parame-
ter space enhances the chances of achieving optimal reservoir
performance, depending on the specific properties of the
task.

While choosing the proper time delay is important, it is
not the only factor that can enhance system performance.
One potential approach to enhancing MC involves adding
layers to the RC architecture. By considering the same number
of virtual nodes for each layer, the total number of nodes
increases, which in turn results in a reduction in prediction
error [15]. Furthermore, it has been shown that feeding the
input into multiple parallel lasers and then collecting the
states of the virtual nodes from all lasers can further en-
hance the RC’s performance [9]. Initial investigations along
these lines reveals that the same benefits of these archi-
tecture changes can occur in the context of the MDRCs
investigated here, a direction to be further explored in the
future.

Finally, our results only apply to the case where delays are
picked with a uniform spacing from one another. Small devia-
tions from this scheme lead to similar results (not shown), but
it is clear that it would be of interest to investigate whether
a MDRC with random delays leads to better results. There
are many parameters underlying the operation of these RCs.
While we have presented dominant features of their perfor-
mance, a full description of the dependence of the error on the
type and parameters of the node dynamics as well as the type
and parameters of the external input is beyond the scope of the
present paper, and may itself benefit from machine learning
techniques for parameter tuning.
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