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Breathing and switching cyclops states in Kuramoto networks with higher-mode coupling
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Cyclops states are intriguing cluster patterns observed in oscillator networks, including neuronal ensembles.
The concept of cyclops states formed by two distinct, coherent clusters and a solitary oscillator was introduced by
Munyaev et al. [Phys. Rev. Lett. 130, 107201 (2023)], where we explored the surprising prevalence of such states
in repulsive Kuramoto networks of rotators with higher-mode harmonics in the coupling. This paper extends our
analysis to understand the mechanisms responsible for destroying the cyclops’ states and inducing dynamical
patterns called breathing and switching cyclops states. We first analytically study the existence and stability of
cyclops states in the Kuramoto-Sakaguchi networks of two-dimensional oscillators with inertia as a function
of the second coupling harmonic. We then describe two bifurcation scenarios that give birth to breathing and
switching cyclops states. We demonstrate that these states and their hybrids are prevalent across a wide coupling
range and are robust against a relatively large intrinsic frequency detuning. Beyond the Kuramoto networks,
breathing and switching cyclops states promise to strongly manifest in other physical and biological networks,
including coupled theta neurons.
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I. INTRODUCTION

Phase oscillator networks have emerged as a paradigmatic
reduced model for describing emergent cooperative properties
of diverse real-world systems, including neuronal networks
[1–3], laser arrays [4–6], and power grids [7–9]. The cele-
brated Kuramoto model of one-dimensional (1D) oscillators
[10,11] and its extension to two-dimensional (2D) oscil-
lators with inertia [12] captures the essence of the phase
networks and provides a concise framework to explore the
richness of their cooperative dynamics [13–19]. These dy-
namics include full [20–24], partial [25,26], explosive [27–29]
and asymmetry-induced synchronization [30,31], chimeras
[32–39], solitary states [40–44], clusters [45–48], generalized
splay [49], and cyclops states [50]. The cooperative dynamics
of Kuramoto networks with attractive coupling have been
studied more extensively than their counterparts in repulsive
networks. While full synchronization is the simplest and most
dominant rhythm in attractive networks, splay [51,52] and
generalized and cluster splay states [48,49] are expected to
be the most probable patterns in repulsive networks. Yet a
complete understanding of rhythmogenesis in repulsive net-
works is still lacking. Two repulsively coupled oscillators tend
to achieve antiphase synchronization; however, predicting an
outcome of such interactions in large repulsive networks is
often elusive. Notably, the role of repulsive connections can be
counterintuitive, especially in networks with mixed attractive
and repulsive coupling [53–56]. For example, adding pairwise
repulsive inhibition to excitatory networks of bursting neurons
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can synergistically promote synchronization by facilitating
transitions between different types of bursting [55].

In the context of Kuramoto-type networks, the prevail-
ing approach is to model interactions by the first sinusoidal
harmonic from a Fourier decomposition of a 2π -periodic
coupling function. This simplest choice of the coupling form
adequately describes many dynamical features of real-world
networks and is analytically tractable. However, higher-order
coupling harmonics have been observed to play a significant
role in rhythmogenesis in various scenarios. These encompass
Kuramoto-type models of neuronal plasticity [57,58], cou-
pled electrochemical oscillators [59], and Josephson junctions
[60]. In particular, previous research has demonstrated that
augmenting the classical Kuramoto model with higher-mode
coupling can result in the emergence of multiple phase-locked
states [61,62] and facilitate switching between synchrony
clusters [63].

In a recent work [50], we studied rhythmogenesis in re-
pulsive Kuramoto networks of identical 2D phase oscillators
with phase-lagged first-mode and higher-mode coupling. We
introduced the concept of cyclops states formed by two dis-
tinct, coherent clusters and a solitary oscillator reminiscent
of the Cyclops’s eye. These cyclops states represent a partic-
ular class of three-cluster generalized splay states [49] with
the solitary oscillator maintaining constant phase differences
with the coherent clusters. We reported a surprising finding
that adding the second or third harmonic to the Kuramoto
coupling makes the cyclops state global attractors in a wide
range of couplings’ repulsion. Beyond Kuramoto networks,
we showed that the stabilization of cyclops states by the higher
coupling harmonics is also robustly present in theta neurons
with adaptive coupling.
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This paper extends our previous analysis to reveal higher-
mode coupling-induced mechanisms for emerging dynamical
patterns termed breathing and switching cyclops states.
Toward this goal, we derive analytical conditions on the exis-
tence and stability of cyclops states with constant intercluster
phases in the presence of the second coupling harmonic.
These conditions reveal two bifurcation scenarios for desta-
bilizing the cyclops states. In the first scenario, the cyclops
states with constant intercluster phases between its three clus-
ters undergo an Andronov-Hopf bifurcation, preserving their
intracluster formations but making the intercluster relative
phase differences oscillate periodically. Similarly to breathing
three-cluster patterns introduced in [47], we call these breath-
ing cyclops states. These states can evolve into rotobreathers
with intercluster phase differences governed by mixed-mode,
oscillatory-rotatory phase difference dynamics. In the second
bifurcation scenario, the cyclops state with constant interclus-
ter phases loses its structural stability but quickly reforms into
a new cyclops state with a reshuffled configuration. This repet-
itive switching process yields switching cyclops states. These
states are similar to blinking chimeras, also characterized by
a death-birth process in which the coherent cluster dissolves
and is quickly reborn in a new configuration [64].

We show that breathing, rotobreathing, and switching
cyclops states are stable in a wide range of the second
harmonic coupling strength and phase lag parameter. Remark-
ably, breathing and rotobreathing cyclops states are dominant
states, acting as the system’s global attractors in a large
interval of the second harmonic’s phase lag parameter, cor-
responding to the overall repulsiveness of the combined first-
and second-harmonic coupling. We also demonstrate that the
cyclops states can robustly emerge in Kuramoto networks
of nonidentical oscillators. In [50], we proved that the 2D
Kuramoto model with the first and second-harmonic coupling
is dynamically equivalent to a network of canonical theta neu-
rons with adaptive coupling. Therefore, we expect breathing
and switching cyclops states to manifest strongly in theta-
neuron networks, pointing to the broader applicability of our
results.

The layout of this paper is as follows. In Sec. II we in-
troduce the oscillator network model and state the problem
under consideration, and give formal definitions. In Sec. III
we study the existence of cyclops states with constant inter-
cluster phase differences, called stationary cyclops states. We
derive an upper bound for the maximum number of station-
ary cyclops states with distinct intercluster phase differences.
In Sec. IV we derive a four-dimensional (4D) system that
governs the dynamics of the intercluster phase differences.
We study the stability of the fixed point of the 4D system,
which corresponds to constant intercluster phase differences.
We derive the conditions under which the fixed point under-
goes an Andronov-Hopf bifurcation, giving rise to a breathing
cyclops state. In Sec. V we analyze the variational equa-
tions for the transversal stability of stationary cyclops states
that determines the stability of their coherent clusters. In
Sec. VI we numerically study breathing and switching cyclops
states emerging from stationary cyclops states via two distinct
bifurcation routes. We demonstrate the emergence of more
complex, hybrid dynamical patterns that combine the prop-
erties of both breathing and switching cyclops states. We also

study the prevalence of different cyclops states and show that
they robustly appear from large sets of randomly chosen initial
conditions. In Sec. VII we show the persistence of cyclops
states against relatively large intrinsic frequency detuning.
Section VIII contains concluding remarks and discussions.
The Appendix contains the derivation of the upper bound for
the maximum number of stationary cyclops states.

II. THE MODEL AND PROBLEM STATEMENT

We consider the Kuramoto-Sakaguchi network of 2D phase
oscillators

μ�̈k + �̇k = ω +
N∑

n=1

2∑
q=1

εq

N
sin[q(�n − �k ) − αq], (1)

where the kth oscillator’s phase �k ranges from −π to
π, and the second-order Kuramoto-Sakaguchi coupling [65]
represents a pairwise interaction function H (�n − �k ) =∑2

q=1 εqsin[q(�n − �k ) − αq]. The oscillators are assumed
to be identical with frequency ω, inertia μ, and phase lag
parameters α1 and α2. We consider the phase lag α1 ∈
(π/2, π ), that makes the first-harmonic coupling repulsive
and fix ε1 = 1 that corresponds to a strong first-harmonic
coupling. Throughout the paper, we also choose and fix a
relatively strong inertia μ = 1 that is sufficient to make the
dynamics of the 2D system qualitatively distinct from the 1D
classical model and enable the emergence of breathing cluster
dynamics [46]. We will consider a broader range of α2 ∈
(−π, π ), so that the second harmonic may be pairwise attrac-
tive or repulsive. As a result, the overall combined coupling
may be repulsive with H ′(0) < 0 or attractive with H ′(0) > 0.

The latter is possible when the second-harmonic coupling ε2

is sufficiently strong to overcome the first-harmonic coupling
contribution.

Phase coherence and cluster synchrony in the system (1)
can be characterized via the lth-order complex Kuramoto
parameters [63,66]:

Rl(t ) = 1

N

N∑
k=1

eil�k = rle
iψl ,

where rl and ψl define the magnitude and the phase of the lth
moment Kuramoto order parameter Rl (t ), respectively. The
first-order scalar parameter r1 = |R1| characterizes the degree
of phase synchrony with r1 = 1 corresponding to full phase
synchrony. Splay states or generalized splay states �k = ωt +
ϕk, k = 1, . . . , N with constant nonuniform relative phases
ϕk ∈ [−π, π ] satisfy the condition r1 = 0 in the 2D Kuramoto
model with the first-harmonic coupling (ε2 = 0). The second-
order scalar parameter r2 = |R2| determines the degree of
cluster synchrony. In the case of the first-harmonic coupling
(ε2 = 0), r2 controls the stability of generalized splay states
so that increasing r2 enlarges their stability parameter regions
[49,50]. It was shown in [50] that generalized splay states with
a maximum r2 are (i) two-cluster symmetric splay states (for
even N) and (ii) three-cluster splay states with the relative
phases (for odd N):

ϕ1 = ϕ2 = · · · = ϕM−1 = γ , ϕM = 0,

ϕM+1 = · · · = ϕN = −γ , (2)
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FIG. 1. Snapshot of a breathing cyclops state in network (1) of
11 oscillators. Periodically oscillating x(t ) and y(t ) govern the phase
difference between the synchronous clusters (blue and pink circles)
and the solitary oscillator (gray circle). The solitary oscillator’s phase
is chosen at θM = 0 as a reference. Parameters are α1 = 1.7, ε2 =
0.08, α2 = −0.3.

where γ = arccos[1/(1 − N )], M = (N + 1)/2, and the
choice of the reference zero phase for ϕM is arbitrary. We
termed three-cluster splay states (2) cyclops states. Adding the
second-harmonic coupling with ε2 �= 0 breaks their symmetry
in γ and makes r1 nonzero, albeit small. We demonstrated in
[50] that the second- or higher-harmonic coupling can make
these asymmetric patterns dominant states. In this paper, we
generalize the definition of cyclops states (2) for the system
(1) with second-harmonic coupling and odd N by relaxing
the condition r1 = 0. As a result, we refer to the following
three-cluster state determined by the three-dimensional cluster
manifold:

D(3) =
⎧⎨
⎩

�1(t ) = · · · = �M−1(t ) = x + �t,
�M (t ) = �t,
�M+1(t ) = · · · = �N (t ) = y + �t

(3)

as to a stationary cyclops state in which two equal clusters
of M − 1 oscillators rotate with the common frequency �,

preserving the stationary phase differences x = γ1, and y = γ2

with the Mth solitary oscillator. Note that due to the asym-
metry of the relative phases x �= y, the common rotational
frequency � differs from the oscillators’ intrinsic frequency
ω and can be derived explicitly from (1) as shown in the next
section.

Similarly to (2), the stationary cyclops state defined by
(3) can be conveniently represented within the reference
frame θk = �k − �t, k = 1, . . . , N where the relative con-
stant phase of the Mth oscillator, θM, is chosen at zero so that

θ1 = · · · = θM−1 = x, θM = 0,

θM+1 = · · · = θN = y. (4)

Due to the system’s global coupling symmetry and equal clus-
ter sizes M − 1, the existence of the stationary cyclops state
with intercluster phase differences x = γ1 and y = γ2 implies
the existence of its counterpart with x = γ2 and y = γ1. Thus,
cyclops states exist in symmetrical pairs. In the following, we
will analyze the existence and stability of stationary cyclops
states in the system (1) with odd N. We will describe two
main scenarios for destabilizing a stationary cyclops state that
yield (i) a breathing cyclops state with periodically oscillating
x(t ), y(t ) so that the intercluster phase differences are bounded
as |x(t )| < π , |y(t )| < π to produce no phase slips (Fig. 1)

and (ii) a switching cyclops state, representing a repetitive
death-birth process in which the clusters disintegrate to form a
new cyclops state with a new reshuffled cluster configuration
and a new solitary node.

We will also study how the breathing and switching
cyclops states can (i) further evolve into more complex dy-
namical patterns, including hybrid switching-breathing states,
(ii) become globally stable, and (iii) persist against intrinsic
frequency detuning.

III. POSSIBLE CONSTANT INTERCLUSTER
PHASE DIFFERENCES

We seek to find permissible stationary cyclops states as a
function of the system’s parameters. To determine the constant
phase differences x, y, and the rotational frequency �, we
substitute the stationary cyclops state solution (3) into (1) and
obtain the system of nonlinear transcendental equations:

ω − � −
2∑

q=1

εq

N

(
sin(qx + αq) + N−1

2
{sin αq

+ sin[q(x − y)+αq]}
)

= 0,

ω − � −
2∑

q=1

εq

N

(
sin αq − N−1

2
[sin(qx−αq )

+ sin(qy−αq )]

)
= 0,

ω − � −
2∑

q=1

εq

N

(
sin(qy + αq) + N−1

2
{sin αq

+ sin[q(y − x)+αq]}
)

= 0. (5)

We subtract the second equation from the first and third equa-
tions of (5) to eliminate � and obtain the system of two
equations for finding the unknown constants x and y:

N − 3

2

2∑
q=1

εqsin αq +
2∑

q=1

εqsin(qx + αq)

+ N − 1

2

(
2∑

q=1

εqsin(qx − αq) +
2∑

q=1

εqsin(qy − αq)

−
2∑

q=1

εqsin[q(y − x) − αq]

)
= 0,

N − 3

2

2∑
q=1

εqsin αq +
2∑

q=1

εqsin(qy + αq)

+ N − 1

2

(
2∑

q=1

εqsin(qx − αq) +
2∑

q=1

εqsin(qy − αq)

−
2∑

q=1

εqsin[q(x − y) − αq]

)
= 0. (6)
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In turn, we find the rotational frequency � from the second
equation of (5):

� = ω − 1

N

2∑
q=1

εq sin αq

+ N−1

2N

⎡
⎣ 2∑

q=1

εq sin(qx−αq )+
2∑

q=1

εq sin(qy−αq )

⎤
⎦

(7)

with x and y calculated from (6).
Due to the complexity of system (6), its solution for x and

y cannot be found in closed form. Yet we derive an upper
bound for the maximum number of stationary cyclops states
with distinct x and y. To do so, we transform the real-valued
system (6) into a system of complex polynomial equations and
apply the Bernshtein theorem [67], a practical tool in algebra
that bounds the number of nonzero complex solutions by the
mixed volume of their Newton polytopes. The details of this
analysis are quite technical and are delegated to the Appendix.
This analysis shows that the complex form of system (6) may
have up to 17 possible solutions (including some nonphysical)
corresponding up to 16 stationary cyclops states with distinct
ordered pairs of constant phase differences x, y. As stationary
cyclops states exist in pairs, there may be at most eight com-
binations of x, y (up to the cluster permutation x ←→ y). It is
worth noticing that there is a continuum of stationary cyclops
states with a given pair (x, y) due to an arbitrary choice of the
reference solitary state’s phase θM .

Figure 2 displays the number of different stationary cy-
clops states calculated by solving the complex polynomial
equation (A1) using the NSolve function of Wolfram Math-
ematica. Note that this number equals two for small values
of the second-harmonic amplitude ε2. This pair of stationary
cyclops states with x = γ1 and y = γ2 (x = γ2 and y = γ1)
emerges continuously from the symmetrical cyclops state (2)
that exists in the system (1) in the absence of the second-
harmonic coupling (ε2 = 0). As Figs. 2(a) and 2(b) indicate,
increasing ε2 increases the number of coexisting stationary
cyclops states and induces richer dynamics. In the following,
we will derive general stability conditions for a permissible
stationary cyclops state and specify these conditions to the
cyclops state (4) with x = γ1 and y = γ2 from the dashed
parameter region in Fig. 2 where no other cyclops states with
distinct x and y (up to permutation of clusters x ←→ y) exist.

IV. STABILITY OF THE INTERCLUSTER
PHASE DIFFERENCES

We seek to obtain the conditions for the stability of the
constant intercluster phase differences to small perturbations
of x and y. The dynamics of the intercluster phase differences
are governed by the system

μẍ + ẋ =
2∑

q=1

εq

N
(sin αq − sin(qx + αq)

− N−1

2
[sin(qx−αq ) + sin(qy−αq )

+ sin αq + sin[q(x − y)+αq]}),

FIG. 2. (a, b) The color shows the number of distinct sta-
tionary cyclops states in the network (1) as a function of the
second-harmonic coupling and phase lag parameters (α2, ε2). Other
parameters are (a) N = 5, α1 = 2.0 and (b) N = 11, α1 = 1.7. The
number of cyclops is calculated by numerically finding solutions of
system (6). The arrow points to the dashed area corresponding to the
stability diagram of Fig. 3. (c) Snapshots of three distinct station-
ary cyclops states (up to permutation of clusters x ←→ y) for the
parameter set N = 11, α1 = 1.7, α2 = 0.0, ε2 = 6.0 corresponding
to the open diamond in the green area in panel (b). The oscillator
coloring corresponds to the intercluster differences x and y according
to positive and negative values depicted from the horizontal color bar.

μÿ + ẏ =
2∑

q=1

εq

N
(sin αq − sin(qy + αq)

− N −1

2
{sin(qx−αq ) + sin(qy−αq )

+ sin αq + sin[q(y − x)+αq]}). (8)

The 4D dynamical system (8) may be viewed loosely as
a system of two nonlinearly coupled driven pendulum-
like equations with the terms sin αq representing constant
torques and the sine terms with x and y corresponding to
pendulum-like nonlinearities and coupling. The presence of
the second-harmonic coupling prevents transforming the sys-
tem (8) into a more explicit system of two coupled pendula as
was achieved for a three-cluster state in [47]. However, the
pendulum-like structure of the 4D system (8) points to the
possible existence of nontrivial dynamics related to oscillating
and even chaotically evolving intercluster phase differences
x(t ) and y(t ).

Fixed points of system (8) correspond to constant interclus-
ter phase differences x, y calculated from (6). We aim to study
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the local stability of the fixed points and derive bifurcation
conditions that induce oscillating phase differences x(t ), y(t ).
Toward this goal, we consider small deviations δx(t ) and
δy(t ) from a fixed point x = γ1, y = γ2 corresponding to a

stationary cyclops state. So x(t ) = γ1 + δx(t ), y(t ) = γ2 +
δy(t ). We linearize the system (8) in the vicinity of the fixed
point state and obtain the following equations that govern the
evolution of small deviations δx(t ) and δy(t ):

μδẍ + δẋ = −
2∑

q=1

εqq

N

[
cos(qγ1 + αq)δx + N −1

2
[cos(qγ1−αq)δx + cos(qγ2−αq)δy + cos(qσ +αq )(δx − δy)]

]
,

μδÿ + δẏ = −
2∑

q=1

εqq

N

[
cos(qγ2 + αq)δy + N −1

2
[cos(qγ1−αq)δx + cos(qγ2−αq)δy + cos(qσ −αq )(δy − δx)]

]
,

(9)

where σ = γ1 − γ2.

Following the standard stability approach, we seek solu-
tions δx(t ) = A1eλt , δy(t ) = A2eλt and derive a system of two
characteristic equations for finding constants λ, A1, and A2:

(μλ2 + λ)A1 = −(p11A1 + p12A2),

(μλ2 + λ)A2 = −(p21A1 + p22A2), (10)

where

p11 =
2∑

q=1

εqq

N

{
N − 1

2
[cos(qγ1 − αq) + cos(qσ + αq)]

+ cos(qγ1 + αq)

}
,

p12 =
2∑

q=1

εqq

N

{
N − 1

2
[cos(qγ2 − αq) − cos(qσ + αq)]

}
,

p21 =
2∑

q=1

εqq

N

{
N − 1

2
[cos(qγ1 − αq) − cos(qσ − αq)]

}
,

p22 =
2∑

q=1

εqq

N

{
N − 1

2
[cos(qγ2 − αq) + cos(qσ − αq)]

+ cos(qγ2 + αq)

}
.

(11)

Solving the characteristic system (10) of two coupled
quadratic equations to explicitly find λ is out of reach. Instead,
we introduce the variable � = μλ2 + λ and turn the system
(10) into the system of linear equations

P(A1, A2)T = �(A1, A2)T , (12)

where

P =
(−p11 −p12

−p21 −p22

)
. (13)

Therefore, the stability of (9) can be assessed from (13) in
terms of its eigenvalues �. To do so, we aim to determine
the boundary of the stability region that is determined by λ =
i Imλ and corresponds to an Andronov-Hopf bifurcation of

the fixed point that induces oscillating phase differences x(t )
and y(t ). Therefore, we can set Re� + i Im� = −μ(Imλ)2 +
i Imλ so that the real part equality Re� + μ(Im�)2 = 0 de-
fines the stability boundary λ = iImλ. To ascertain what side
of the stability boundary corresponds to stability, we select the
test value μ = 0. With this choice, we have � = λ, and the
inequality Re� < 0 ensures the stability of the fixed point.
Extending this argument to nonzero μ, we can conclude
that the inequality Re� + μ(Im�)2 < 0 makes Reλ < 0 and
determines the fixed point stability. Thus, we arrive at the
following assertion.

Statement 1. [Internal stability of stationary cyclops states].
1. Constant intercluster phase differences x = γ1 and y =

γ2 of the stationary cyclops state (3) are locally stable iff

Re�1,2 + μ(Im�1,2)2 < 0,

�1,2 = TrP
2

±
√

(TrP)2 − 4detP
2

, (14)

where TrP and detP are, respectively, the trace and determi-
nant of matrix P (13) whose coefficients are defined in (11).

2. The stability boundary

Re�1,2 + μ(Im�1,2)2 = 0 (15)

corresponds to an Andronov-Hopf bifurcation that destabi-
lizes the stationary cyclops state, turning it into a breathing
cyclops state with oscillating intercluster phase differences
x(t ) and y(t ).

The stability of constant phase differences x and y de-
fined via (14) can be interpreted as the internal (longitudinal)
stability of the stationary cyclops state within the invariant
three-cluster manifold D determined by (3) with arbitrary,
possibly time-varying x(t ) and y(t ). The stability boundary
(15) depicted by the blue solid curve in Fig. 3(a) corresponds
to emerging instability of constant phase differences x and
y that preserves the three-cluster cyclops formation on the
invariant three-cluster manifold D.

Having studied the stability of the constant intercluster
phase differences, we proceed with the stability analysis of
the synchronous clusters, each composed of M − 1 oscilla-
tors. These conditions, paired with the condition (14), shall
indicate what stationary cyclops states can stably emerge in
the network.
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FIG. 3. (a) The stability diagram for cyclops states. Regions of
stable stationary cyclops states (CS) are shown in blue, switching
cyclops states (SCS) in yellow, breathing cyclops states (BCS) in
green, and two-cluster regimes (5:6) in white. Analytical boundaries:
the blue solid line corresponds to the stability boundary (15), the
red dashed line to Reλtran

1 = 0, and the green dash-dotted curve to
Reλtran

2 = 0. Two numerical curves marked by the solid circles sep-
arate the stability regions of the switching and breathing stationary
cyclops states. The black dotted line � corresponds to H ′(0) = 0.

Values above the curve make the coupling attractive and full syn-
chronization locally stable. Stationary cyclops states are found as
a solution of system (6) and used as initial conditions. The round,
diamond, and circled times correspond to the parameters used in
Figs. 4–6. (b) The real part of the eigenvalues, associated with the
stationary cyclops state, that determine the (internal) stability of the
intercluster phase differences (blue solid line) and transversal (exter-
nal) stability of the first (red dashed line) and second cluster (green
dash-dotted line) for fixed ε2 = ε∗

2 and varying α2 [along the white
dashed horizontal line in panel (a)]. The background color indicates
the type of the emerged cyclops states as in panel (a). (c) The diagram
is similar to panel (b), but for fixed α2 = α∗

2 and varying ε2 [along the
black-white dashed vertical line panel (a)]. The shaded area indicates
the bistability of switching and breathing cyclops states. Parameters:
N = 11, ε1 = 1.0, α1 = 1.7, ε∗

2 = 0.08, α∗
2 = 0.78.

V. STABILITY OF SYNCHRONOUS CLUSTERS

We aim to derive the conditions for transversal stability of
the stationary cyclops state (3) that amounts to the stability
of the two synchronous clusters composing the stationary
cyclops state. We introduce small deviations from the oscilla-
tors’ phases θn −→ θn + δθn, composing the first cluster for
n = 1, . . . , M − 1 and the second cluster for n = M +

1, . . . , N. To study the local stability of each synchronous
cluster, we consider the difference variables

ξn = δθn+1 − δθn, n = 1, . . . , M − 2, (16)

ζn = δθn+1 − δθn, n = M + 1, . . . , N − 1 (17)

that describe the phase difference dynamics within the first
and second clusters, respectively. Therefore, from (1), (3), and
(16), (17), we obtain two uncoupled variational equations with
time-invariant coefficients. Each of the equations determines
the local stability of the corresponding cluster within the cy-
clops state (3):

μξ̈n + ξ̇n + 1

N

2∑
q=1

εqq

{
cos(qγ1 + αq)

+ N − 1

2
[cos αq + cos(qσ + αq)]

}
ξn = 0, (18)

where n = 1, 2, . . . , M − 2, and

μζ̈n + ζ̇n + 1

N

2∑
q=1

εqq

{
cos(qγ2 + αq)

+ N − 1

2
[cos αq + cos(qσ − αq)]

}
ζn = 0, (19)

where n = M + 1, . . . , N − 1. The variational equations (18)
and (19) are stable iff the time-invariant coefficients of the
terms ξn and ζn are positive. Therefore, we can formulate the
stability conditions in the following assertion.

Statement 2. [Transversal stability of stationary cyclops
states]. Clusters of oscillators composing the stationary cy-
clops state (3) are locally stable iff:

2∑
q=1

εqq cos(qγ1 + αq) + N − 1

2

(
2∑

q=1

εqq cos αq

+
2∑

q=1

εqq cos(qσ + αq)

)
> 0,

2∑
q=1

εqq cos(qγ2 + αq) + N − 1

2

(
2∑

q=1

εqq cos αq

+
2∑

q=1

εqq cos(qσ − αq)

)
> 0, (20)

where the left-hand sides of the inequalities (20) are the coef-
ficients of the variational equations (18) and (19).

It is also straightforward to show that the stationary cyclops
state is always stable to the shift of all phases by a constant
value δθk = δθ (k = 1, . . . , N).

It is worth noticing that the eigenvalues λtran
1,2 associated

with the variational equations (18) and (19) have multi-
plicity M − 2. Thus, the eigenvalues λtran

1 and λtran
2 define

the transversal stability of the first (n = 1, 2, . . . , M − 2)
and second (n = M + 1, . . . , N) clusters, respectively. Fig-
ure 3(a) displays their stability boundaries defined by the

054202-6



BREATHING AND SWITCHING CYCLOPS STATES IN … PHYSICAL REVIEW E 109, 054202 (2024)

conditions (20) with the left-hand sides set to 0 to corre-
spond to Reλtran

1 = 0 (the red dashed line) and Reλtran
2 = 0

(the green dash-dotted line). To highlight the constructive
role of the second-harmonic coupling with ε2 �= 0, we chose
the parameter values that yield unstable stationary cyclops in
the network with only first-harmonic coupling with ε2 = 0
(see Fig. 3).

As Fig. 3(a) indicates, crossing the stability boundary (15)
(the lower border of the region CS) induces breathing cyclops
states in the region BCS (green) in accordance with State-
ment 1. In turn, crossing the upper border of the region CS,
composed of the transveral stability boundaries Reλtran

1 = 0
(the red dashed line) and Reλtran

2 = 0 (the green dash-dotted
line) can yield either switching cyclops states in the region
SCS (yellow) or asymmetrical, two-cluster states with five-
and six-oscillator synchronous clusters (white region 5:6). In
the following, we will primarily focus on the properties of
emerging breathing and switching cyclops states.

VI. EMERGING BREATHING AND SWITCHING
CYCLOPS STATES

We performed numerical calculations using a widely
adopted fifth-order Runge-Kutta scheme with a fixed time step
0.01 to further validate our analytical results and predictions.
Figure 3 confirmed the two main bifurcation scenarios for
destroying the stationary cyclops states and generating breath-
ing and switching cyclops states described by Statements 1
and 2. In the first scenario, complex conjugate eigenvalues
λ1,2, that determine the stability of constant intercluster phase
differences x and y via (10), become purely imaginary and
induce oscillating x(t ) and y(t ) [Fig. 4(c)]. As a result, the
stationary cyclops state becomes internally unstable; however,
the stability of the clusters preserves and guarantees the emer-
gence of a breathing cyclops state [see Figs. 4(a) and 4(d) and
Supplemental Movie 1 [68] for the animation of the breathing
cyclops state dynamics]. Periodic oscillations of the first two
order parameters r1 and r2 depicted in Fig. 4(b) are a signature
of such a breathing cyclops state. As the distance from the
stability boundary of the CS region [solid blue line in Fig. 3
a(a)] increases when changing the second-harmonic coupling
strength ε2 and phase lag α2, the amplitudes of intercluster
difference oscillations x(t ), y(t ), and order parameters r1(t ),
r2(t ) increase. It is worth noticing that for the parameters
α1 and ε1 used in Fig. 3(a), the breathing cyclops state is
also stable in the absence of the second-harmonic coupling
(ε2 = 0).

In the second bifurcation scenario determined via State-
ment 2, the stationary cyclops state loses its transversal
stability when one of the eigenvalues λtran

1,2 becomes positive
[Fig. 5(c)]. Note that the real parts of the other eigenvalues
controlling the internal stability of the intercluster differences
remain negative, thereby preserving the stable component
of the saddle dynamics. While the transversal instability
of the cyclops state may lead to its complete destruction,
it induces a switching cyclops state [Figs. 5(a) and 5(d)]
when the transversal instability is weak [note the slightly
positive eigenvalue, depicted by the red nabla in Fig. 5(c)].
This nonstationary cyclops state represents a two-stage repet-
itive process. During the first relatively long stage, the

FIG. 4. Breathing cyclops state. (a) The colors depict the phase
differences θk (t ) − θ6(t ). The gray strip indicates the reference soli-
tary oscillator. (b) The corresponding values of r1 and r2. (c) The
eigenvalues associated with the destabilized stationary cyclops state.
Some eigenvalues are repeated. The round (triangular) labels corre-
spond to the internal (transversal) stability. Note a pair of complex
eigenvalues with a positive real part (red) that emerged due to
an Andronov-Hopf bifurcation and yielded periodic oscillations of
intercluster differences. (d) Phase distributions θk at several time
instants. The arrows indicate the direction of periodic phase clus-
ters’ oscillations (see Supplemental Movie 1 [68] demonstrating this
breathing cyclops state). The oscillators’ coloring represents their
relative phase difference with the solitary oscillator as in Fig. 2(c).
Parameters N = 11, μ = 1.0, ε1 = 1.0, α1 = 1.7, ε2 = 0.08, α2 =
−0.1 correspond to the open circle label in Fig. 3(a).

intercluster differences x and y practically do not change,
and the synchronous clusters preserve their formation, i.e.,
the dynamical pattern is similar to a stationary cyclops state
(Fig. 5). During the second short stage, one cluster reshuffles
so that one node leaves the unstable cluster to become a new
solitary oscillator, whereas the remaining oscillators from the
cluster merge with the old solitary node. Figure 5(d) and Sup-
plemental Movie 2 [68] illustrate this process. Accordingly,
during the first stage, the magnitudes of the order parameters
r1 and r2 are practically constant. They undergo an abrupt
change during the second stage to return to a constant value
[Fig. 5(b)]. As the parameter α2 increases, the duration of the
first stage decreases, and, hence, the period of oscillations in
r1 and r2 gradually decreases, causing the switching cyclops
state to eventually turn into a chaotically switching dynamical
pattern (not shown in Fig. 5).

We also observe a hybrid of the switching and breathing
cyclops states [Fig. 6(b)]. This hybrid state emerges when,
in addition to the external instability of one cluster, there
is an internal instability of the intercluster phase differences
x and y (Fig. 3). In terms of the eigenvalue spectrum, this
amounts to the presence of a pair of complex conjugate
eigenvalues λ1,2 (corresponding to the internal instability)
and one real eigenvalue λtran

1 lying to the right from the
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FIG. 5. Switching cyclops state. (a) The colors depict the phase differences θk (t ) − θ6(t ). The strips with solid black borders indicate the
reference solitary oscillator during the lifetime of a cyclops state configuration (the first stage). Note that clusters disintegrate to form a new
cyclops state with a different solitary oscillator (the second stage). (b) The corresponding values of r1 and r2. The gray fragments correspond
to the zoomed-in insets (right panels). (c) The eigenvalues associated with the destabilized stationary cyclops state. Some eigenvalues are
repeated. The round (triangular) labels correspond to the internal (transversal) stability. Note a positive real eigenvalue (red) corresponding to
the loss of the transversal stability of the stationary cyclops state due to Statement 2. (d) Phase distributions θk corresponding to a death-birth
process in which a cyclops state existing at t = t1 disintegrates to form a new cyclops state at t = t4 (see Supplemental Movie 2 [68] for the
details of this dynamical evolution). Parameters N = 11, μ = 1.0, ε1 = 1.0, α1 = 1.7, ε2 = 0.08, α2 = 0.78 correspond to the diamond label
in Fig. 3(a).

imaginary axis [Fig. 6(c)]. We term this hybrid a switching-
breathing cyclops state, which is effectively a switching
cyclops state, which, during its first stage, has oscillating inter-
cluster phase differences x(t ) and y(t ). Accordingly, the order
parameter amplitudes r1 and r2 are time-periodic functions
[Fig. 6(b)]. Figure 6(d) and Supplemental Movie 3 [68] detail

the dynamical evolution of the switching-breathing cyclops
state.

Breathing and switching cyclops states can also merge to
form another hybrid cyclops state, termed rotobreathing cy-
clops states (Fig. 7) in the range of the second-harmonic phase
shift with |α2| > π/2 (Fig. 8, the pink regions). Rotobreathing

FIG. 6. Switching-breathing cyclops state. The notations are as in Fig. 5. One cluster of the breathing cyclops state [depicted in orange in
panel (a)] eventually disintegrates, forming a reshuffled synchronous cluster and a new solitary oscillator. Note the weak internal and transversal
instability of the destabilized stationary cyclops state due to the three eigenvalues with small positive real parts [red circles and nabla in panel
(c)]. Supplemental Movie 3 [68] animates the sequence given in panel (d). Parameters N = 11, μ = 1.0, ε1 = 1.0, α1 = 1.7, ε2 = 0.0578,
α2 = 0.78 correspond to the circled times label in Fig. 3(a).
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FIG. 7. Rotobreathing cyclops state. The notations are as in
Fig. 5. From left to right: the relative phase between the first syn-
chronous cluster and the sixth reference oscillator oscillates, whereas
the phase of the second synchronous cluster passes zero and ro-
tates until the clusters exchange their roles. Supplemental Movie 4
[68] details this process. Parameters are N = 11, μ = 1.0, ε1 = 1.0,
α1 = 1.7, ε2 = 0.08, α2 = −2.0.

cyclops states, or simply rotobreathers, are also characterized
by a two-stage repetitive process in which, during the first
stage, an intercluster phase difference between one cluster and
the solitary oscillator oscillates while the relative phase differ-
ence of the other cluster rotates. The clusters exchange their
oscillatory and rotatory phase roles during the second stage.
Figure 7 and Supplemental Movie 4 [68] give the full details
of this two-stage process. Accordingly, the amplitudes of the
order parameters r1 and r2 exhibit large periodic oscillations
[Fig. 7(b)].

Figure 8 demonstrates the prevalence of cyclops states of
various types. Remarkably, rotobreathers and breathing cy-
clops states, induced by nonzero second-harmonic phase lag
α2 in the region where full synchronization is unstable, act
as global attractors and emerge with a probability close to
1 [Figs. 8(b) and 8(c)]. Note that breathing and switching
cyclops states can also emerge with a relatively high proba-
bility even when they coexist with presumably dominant full
synchronization when the overall coupling is attractive with
H ′(0) > 0 [the region bounded by the black dashed vertical
lines in Fig. 8(b); these lines correspond to the solid circles on
the black dashed parabola in Fig. 8(a)].

It is worth noting that the globally coupled network (1)
with the first- and second-harmonic coupling admits any clus-
ter partition. As a result, stationary cyclops states with a
solitary oscillator and nonequally sized coherent clusters exist
for even N. However, our extensive simulations suggest that
such stationary cyclops states are unstable for even N in the
entire parameter range of ε2 and α2 considered in this paper.
Figure 9(a) supports this claim and demonstrates that, in the
attractive coupling case, two-cluster states, coexisting with
complete synchronization, are the only stable cluster patterns
in the network with N = 10. The same claim holds for the
repulsive coupling case, with the exception that complete syn-
chronization is no longer stable so that the two-cluster states

FIG. 8. Stability and prevalence of cyclops states. (a) Stability
diagram extending Fig. 3(a) to the full range of the phase lag pa-
rameter α2. The notations are similar to Fig. 3(a), with the addition
of rotobreathers (pink). The shaded vertical strip corresponds to
the parameter region of Fig. 3(a). Stationary cyclops states in the
region CS are chosen as initial conditions and further continued
by changing the parameter α2 right and left from each point on
the line α2 = 0.0 for each value of ε2. The initial conditions for
the subsequent calculation are carried over from the final state of the
preceding computation. The double-shaded areas (inclined stripes)
indicate overlapping stability regions and correspond to the bistabil-
ity of different cyclops state types. The two dash-dotted horizontal
lines indicate the values of ε2 used in panels (b) and (c). (b, c)
Probability of cyclops states’ emergence (all types). The number
of trials is 1000. The initial phases are uniformly distributed in the
segment [−π, π ], and the initial velocities are uniformly distributed
in the segment [−1.0, 1.0]. The black dashed vertical lines in panel
(b) indicate the stability boundary of full synchronization. In panel
(c) full synchronization is unstable. Parameters are N = 11, μ = 1.0,
ε1 = 1.0, α1 = 1.7. (b) ε2 = 0.08, (c) ε2 = 0.05.

become prevalent and coexist with four-cluster states with
rotating intercluster differences for N = 10 [Fig. 9(c)]. Sim-
ilarly, stationary cyclops states (4) emerge as the only stable
patterns along with complete synchronization for N = 11 in
the attractive coupling case [Fig. 9(b)], and breathing cyclops
states with equally sized coherent clusters appear as global
attractors in the repulsive coupling case [Fig. 9(d)].

Remarkably, this distinct behavior in the emergence of
two-cluster and cyclops states in networks of even and odd
sizes carries over to large networks. Figure 10(a) demonstrates
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FIG. 9. The probability of occurrence of two-cluster (N = 10)
and cyclops states (N = 11) under attractive and repulsive in-
teractions. The histograms indicate the percentage occurrence of
dynamical states in 1000 simulations with random initial conditions.
The initial phases �k (0) are uniformly distributed on [−π, π ]; the
initial velocities �̇k (0) are uniformly distributed on [−5.0, 5.0].
The snapshots correspond to the established dynamical states with
the relative phases θk in the rotating frame as in (4). (a, b) Attrac-
tive coupling: complete synchronization is prevalent with a 72 %
(N = 10) and 62 % (N = 11) probability. It coexists for N = 10
with a stationary two-cluster 5:5 state with an even partition of five
oscillators in each cluster and a constant intercluster phase difference
(a) and for N = 11 with a stationary cyclops state 5:1:5 (b). (c, d)
Repulsive coupling. (c) N = 10: stationary two-cluster 5:5 states co-
exist with four-cluster states 4:4:1:1 with nonstationary intercluster
phase differences. (d) N = 11: breathing cyclops states 5:1:5 with os-
cillating intercluster phase differences are global attractors emerging
with a 100% probability. The black arrows indicate the directions of
evolving intercluster differences. Parameters are μ = 1.0, ε1 = 1.0,
α1 = 1.7; (a, b) ε2 = 0.12, α2 = 0.0; (c, d) ε2 = 0.04, α2 = 0.6.

that stationary cyclops states (4) are stable in the odd-sized
network with N = 101. Eliminating one oscillator from the
network turns the cyclops state into a two-cluster state with
equally sized clusters [Fig. 10(b)]. Removing an extra oscil-
lator from this 100-node network transforms the two-cluster
state back to a stationary cyclops state [Fig. 10(c)]. We expect
this effect to persist in the thermodynamic limit of very large
N .

VII. PERSISTENCE OF CYCLOPS STATES

In this section we demonstrate that cyclops states resist
intrinsic frequency detuning. We mismatch the intrinsic fre-
quency ω by choosing the kth oscillator’s frequency ωk, k =
1, . . . N from a uniform random distribution in the interval
[ω − δ, ω + δ], where δ is a frequency detuning. We consider
the parameter region where stationary cyclops states are stable
[region CS in Fig. 3(a)]. Figure 11 demonstrates the persis-
tence of three stationary cyclops states, each induced by a
particular intrinsic frequency distribution. Note that although
the oscillators’ phases within each synchronous cluster may
not perfectly align due to the frequency detuning, they remain
relatively close to each other (see Fig. 11). Additionally, the
established frequencies of all oscillators are the same. The sta-
tionary cyclops state can lose the transversal stability similarly
to their counterparts from the identical oscillator case (note the
stationary cyclops state marked by the red labels in Fig. 11 that

FIG. 10. Odd vs even-sized large networks: the transition be-
tween cyclops and two-cluster states as N changes. The colors depict
the relative phases θk, k = 1, . . . , N. (a) A cyclops state with the
three-cluster partition 50:1:50 in the 101-oscillator network. The cy-
clops state with small phase offsets, randomly chosen from a uniform
distribution [−0.01; 0.01] was selected as the initial condition. The
horizontal black stripe indicates the solitary oscillator with θ51 = 0.

(b) The emergence of a two-cluster state 50:50 in the 100-oscillator
network. The cyclops state from (a) with one oscillator removed from
the second cluster was selected as the initial condition. (c) Removing
one oscillator from the two-cluster state in (b) induces a cyclops
state 49:1:49 in the 99-oscillator network. (d) The corresponding
snapshots of phases θk at several time instants: t1 = 1250, t2 = 3750,
t3 = 5200, t4 = 6250, t5 = 11 250, and t6 = 13 750. The black arrow
indicates the direction of the solitary oscillator’s phase evolution.
Parameters are μ = 1.0, ε1 = 1.0, α1 = 3.1, ε2 = 0.002, α2 = 0.2.

turns into a switching cyclops state at δ = δ1). Remarkably,
the frequency detuning can also induce a bifurcation scenario
for disintegrating stationary cyclops states via a saddle-node
bifurcation at δ = δ2 and δ = δ3. We did not observe such a
bifurcation route in our extensive simulations of system (1)
with identical frequencies reported in Figs. 3–8.

VIII. CONCLUSIONS

Building upon our recent study [50], this work has sig-
nificantly advanced an understanding of rhythmogenesis in
Kuramoto networks of 2D phase oscillators with first-mode
and higher-mode coupling. A key focus of our work has been
on the constructive role of higher coupling modes in inducing
and stabilizing a unique class of dynamical states known as
cyclops states. These states, characterized by two coherent
clusters and a solitary oscillator resembling the Cyclops’s eye,
represent a particular form of three-cluster generalized splay
states [49].

Our initial findings in [50] revealed the unexpected result
that adding the second or third harmonic to the Kuramoto
coupling makes cyclops states global attractors, exhibiting
remarkable stability over a substantial range of coupling’s re-
pulsion. This paper delved deeper into the dynamic repertoire
of cyclops states, introducing and systematically analyzing
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FIG. 11. Persistence of cyclops states in system (1) with mis-
matched frequencies ωk distributed evenly over the interval [ω −
δ, ω + δ], where ω = 1.7 and δ is a frequency detuning. Global
maxima (circles) and minima (crosses) of order parameter r2 for
three cyclops states (red, orange, and cyan). The global maximum
was determined in the time interval 5 × 103 � t � 104 following
the transition process. A stationary cyclops state is indicated by
overlapping circles and crosses of the same color, while separated
circles and crosses denote a switching cyclops state. The first cy-
clops state (red) originates from the original intrinsic frequency
distribution. Subsequently, modifying the distribution by exchanging
the intrinsic frequency of the Mth solitary oscillator, ωM , with ω1

(or ωM+1) induces the emergence of the second (or third) cyclops
state, depicted by orange and cyan, respectively. As the parameter
mismatch δ increases, the distribution of mismatched frequencies
widens. To induce each of the three cyclops states as δ increases,
a stationary cyclops state from the identical frequency case was
used as the initial condition for δ = 0. The final phase distribution
at a given δ is then used as initial conditions for subsequent sim-
ulations at a higher value of δ. The values of δ < δ1 preserve all
three stable stationary cyclops states. Increasing δ > δ1 destabilizes
the first stationary cyclops state (red) and turns it into a switching
cyclops state. Further increasing δ > δ2 leads to disintegrating the
second cyclops state (orange) at δ = δ2. The third stationary cyclops
state (cyan) persists to δ = δ3. The cyclops states are found from
direct numerical simulations of system (1) for three sets of natural
frequency distributions ωk with a continuous increase in δ from zero.
The inset shows instantaneous phase distributions θk for the third
cyclops state with nonidentical frequencies. Parameters are N = 11,
μ = 1.0, ε1 = 1.0, α1 = 1.8, ε2 = 0.12. The bifurcation parameter
values are α2 = 0.2, δ1 = 0.034, δ2 = 0.105, δ3 = 0.183.

breathing and switching cyclops states and their hybrids, in-
cluding switching-breathing cyclops states and rotobreathers.
Through rigorous analytical derivations and numerics, we
have identified conditions for the existence and stability of
stationary cyclops states, elucidating two distinct bifurcation
scenarios. In both scenarios, the second coupling harmonic
acts as a constructive agent, either inducing periodic oscil-
lations in intercluster relative phase differences (breathing
cyclops states) or facilitating swift reconfigurations and tran-
sitions (switching cyclops states). These dynamical patterns
can be viewed as nontrivial hybrids of solitary states [41–44],
generalized splay [49], clusters with breathing and rotatory
intercluster phase shifts [46,47], and intermittent [37] and
switching chimeras [64]. In particular, switching cyclops
states unite the properties of blinking chimeras [64] and three-
cluster states [47].

Our extensive stability analysis has underscored the re-
silience and dominance of breathing, rotobreathing, and
switching cyclops states across wide parameter ranges, in-
cluding the case of the overall attractive, two-harmonic

coupling. Importantly, we have showcased that the construc-
tive influence of higher coupling harmonics is not limited
to networks of identical oscillators, as cyclops states persist
robustly in Kuramoto networks of nonidentical oscillators.

Importantly, our prior work [50] demonstrated the dynamic
equivalence of the 2D Kuramoto model with first- and second-
harmonic coupling to a network of canonical theta neurons
with adaptive coupling. This equivalence also suggests the
widespread manifestation of breathing and switching cyclops
states in theta-neuron networks, underscoring our results’
broad applicability and significance in diverse physical and
biological networks.

While it is crucial to differentiate between the higher-order
harmonic coupling studied in this paper and the higher-
order nonpairwise coupling [69–72], it is equally important
to recognize their possible interplay and the richness they
bring to the dynamics of networked systems. These con-
cepts are not mutually exclusive; they can coexist, adding
layers of complexity and fostering a diverse range of emer-
gent behaviors. Recent research [73,74] analyzed the intricate
interplay between pairwise first-order harmonic and nonpair-
wise higher-order coupling in shaping collective dynamics in
Kuramoto networks. The incorporation of both higher-order
harmonics and nonpairwise interactions promises to induce
even richer emerging dynamics, including various forms of
cyclops states, and may pave the way for a more holistic
comprehension of complex networked systems.
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APPENDIX: MAXIMUM NUMBER
OF STATIONARY CYCLOPS STATES

Here, we provide the details for deriving an upper bound
for the maximum number of stationary cyclops states with
distinct x and y, given in Sec. III.

Finding all possible solutions of system (6) that determine
the existence of stationary cyclops states is elusive due to its
complexity, and the number of solutions can vary depending
on the parameters. In particular, it prevents locating all solu-
tions of the system (6) by their continuation with respect to
the parameters. However, this computational problem can be
simplified by the change of variables u = eix, v = eiy (|u| = 1,
|v| = 1) that transforms the real-valued system (6) into the
system of complex polynomial equations:

(1 − u)

{
uv

[
eiα1

(
u + v + 2uv

N − 1

)

+ e−iα1v

(
u + v + 2

N − 1

)]
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+ ε2(u + 1)

[
eiα2

(
u2 + v2 + 2u2v2

N − 1

)

+ e−iα2v2

(
u2 + v2 + 2

N − 1

)]}
= 0,

(1 − v)

{
uv

[
eiα1

(
u + v + 2uv

N − 1

)

+ e−iα1 u

(
u + v + 2

N − 1

)]

+ ε2(v + 1)

[
eiα2

(
u2 + v2 + 2u2v2

N − 1

)

+ e−iα2 u2

(
u2 + v2 + 2

N − 1

)]}
= 0. (A1)

The analysis of system (A1) is more manageable, and the
maximum number of its solutions (the roots of the complex
polynomials) can be estimated by applying the classical Bern-
shtein theorem from algebra. To facilitate the reading, we list
this theorem below.

Theorem [Bernshtein, 1975] [67]. Let a system of n poly-
nomials have a finite number of roots in (C∗)

n
, where C∗ =

C \ 0. Then, the number of roots is bounded from above by
the mixed volume Pk of their Newton polytopes (the convex
hull of polynomial supports Sk).

Before applying the theorem to (A1), we get rid of the
factors (1 − u) and (1 − v) on the right-hand side of (A1)
since we are interested only in solutions u, v �= 1. By do-
ing so, we have excluded the solutions that correspond to
a one-cluster solution and two-cluster solutions of the form
(N − 1)/2:(N + 1)/2. It is worth mentioning that, in contrast
to its real-valued counterpart (6), the complex polynomials
may have either nonphysical solutions with |u| �= 1 or |v| �=
1, or solutions that do not correspond to stationary cyclops
states. The latter solutions with |u| = 1 and |v| = 1, include

(a) (b) (c)

FIG. 12. The supports S1, S2 (black dots) and the corresponding
Newton polytopes P1, P2 (shaded regions) of (a) the first and (b) sec-
ond polynomials of system (A1). (c) The Minkowski sum P1 ⊕ P2.

a two-cluster N − 1 : 1 solitary state, corresponding to u = v,

i.e., x = y.
The support of a polynomial

∑
j

∑
l a jl u jvl is the set

of exponents ( j, l ). Thus, the supports S1 and S2 of the
resulting polynomials (degrees u and v in each of the
first and second equations terms) have the form S1 =
{(0, 2); (0, 4); (1, 2); (1, 3); (1, 4); (2, 0); (2, 1); (2, 2); (3, 0);
(3, 2)}, S2 = {(0, 2); (0, 3); (1, 2); (2, 0); (2, 1); (2, 2); (2, 3);
(3, 1); (4, 0); (4, 1)}.

Consider the mixed volume of Newtonian polytopes P1 and
P2: M(P1, P2) = vol2(P1 ⊕ P2) − vol2(P1) − vol2(P2). As we
need to handle only two equations, determining the mixed
volume of the two Newtonian polytopes is straightforward
and amounts to computing the area of the shaded regions
in Fig. 12. This yields the following values: vol2(P1) = 8,
vol2(P2) = 8, vol2(P1 ⊕ P2) = 33 (see Fig. 12). Therefore,
M(P1, P2) = 17. Excluding the nonphysical solutions and so-
lutions corresponding to noncyclops regimes from the sets
of roots in (A1), we can always find the number of cyclops
modes in the system (1), which is limited to 16 cyclops states.

Our numerical search for the roots of polynomials (A1)
was performed using the NSolve function of Wolfram Math-
ematica. This search found 17 roots almost everywhere in
the considered broad parameter regions, suggesting that our
analysis effectively identified all possible solutions of (A1)
and, therefore, all possible stationary states cyclops, identified
from the 17 solutions by excluding the nonphysical solutions
(|u| �= 1 or |v| �= 1) and noncyclops states (u = 1 or v = 1 or
u = v).
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