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Two-dimensional hydrodynamic simulation for synchronized oscillatory flows
in two collapsible channels connected in parallel
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We investigated self-sustained oscillation in a collapsible channel, in which a part of one rigid wall is replaced
by a thin elastic wall, and synchronization phenomena in the two channels connected in parallel. We performed a
two-dimensional hydrodynamic simulation in a pair of collapsible channels which merged into a single channel
downstream. The stable synchronization modes depended on the distance between the deformable region and
the merging point; only an in-phase mode was stable for the large distance, in-phase and antiphase modes were
bistable for the middle distance, and again only an in-phase mode was stable for the small distance. An antiphase
mode became stable through the subcritical pitchfork bifurcation by decreasing the distance. Further decreasing
the distance, the antiphase mode became unstable through the subcritical Neimark-Sacker bifurcation. We also
clarified the distance dependences of the amplitude and frequency for each stable synchronization mode.
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I. INTRODUCTION

Synchronization is observed in various chemical, biologi-
cal, and hydrodynamic systems such as chemical oscillation in
Belousov-Zhabotinsky reactions [1], heartbeat as a collective
contraction of cardiomyocytes [2], and cooperatively beating
flagellae [3,4]. Synchronization with hydrodynamic interac-
tion has been studied to understand oscillation suppression in
the vortex streets [5], efficient swimming and flying in the
collective motion of animals [6–8], etc. It was reported that
the beating of flagellae synchronizes in an in-phase mode in
the collective motion of sperms through the hydrodynamic in-
teraction described by Stokes flow [3,4]. Two Kármán vortex
streets appearing behind two circular cylinders synchronize in
an antiphase mode with interaction through the vortex [9,10].
In flame oscillators, which induce oscillatory flows of gases
driven by buoyancy due to the combustion heat and exhibit
synchronization through vortex interaction, an in-phase mode
is stable for a small distance between the two flame oscillators,
and an antiphase mode is stable for a large distance [11,12].
The hydrodynamic interaction usually cannot be described in
a simple form due to the nonlinearity of the Navier-Stokes
equation, and it leads to complex synchronization phenomena.
There have been some reports that explain these synchroniza-
tion phenomena with low-dimensional models composed of
a set of ordinary differential equations, such as phase equa-
tions and complex amplitude equations [13,14].

One of the hydrodynamic systems that exhibit nonlinear
oscillation is the oscillatory flow in a collapsible tube. It
occurs through the interaction between flow and the defor-
mation of an elastic tube that receives external pressure, and
thus is of interest, particularly in engineering, as a fluid-
structure interaction problem [15,16]. This oscillatory flow in
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a collapsible tube also attracts interest in physiology, since
it relates to wheezing during forced expiration [17,18] and
Korotkoff sounds during sphygmomanometry [19,20]. As an
ideal model system for the collapsible tube, a Starling resistor
has been investigated in the context of fundamental studies
for these phenomena [21]. The Starling resistor is composed
of an elastic tube sandwiched by two rigid tubes, as shown
in Fig. 1. By introducing a steady flow at the inlet and an
external pressure around the elastic tube, the oscillatory flow
with the periodic deformation of the elastic tube and the pe-
riodic vortex shedding downstream of the deformable region
is observed. An axisymmetric steady flow in an elastic tube
bifurcates into a nonaxisymmetric steady flow in a buckled
tube with an increase in the external pressure, and with further
increasing the external pressure, the steady flow in the buckled
tube bifurcates into an oscillatory flow. Previous studies from
the viewpoint of the dynamical systems investigated whether
the system has hysteresis near the bifurcation point from an
axisymmetric state to a buckled state when the system param-
eters are changed [22–30]. The bifurcation phenomena from
the stationary state to the oscillatory state were theoretically
studied using the collapsible channel [31], which is the two-
dimensional hydrodynamic model shown in Fig. 2(a). The
bifurcation points where supercritical Hopf bifurcation occurs
were identified for various parameters such as a Reynolds
number, stretching stiffness, and external pressure [32–36].
The entrainment phenomena, i.e., the frequency locking at
an integer ratio between external forcing and oscillation fre-
quencies, were observed in the self-sustained oscillatory flow
with periodic pressure modulation in the upstream [37–40] or
pressure chamber [41].

Since the entrainment phenomena were observed in the
single collapsible tube with external forcing, the connected
collapsible tubes are expected to exhibit synchronization phe-
nomena. Oscillatory flow in a collapsible tube or channel
shows large pressure changes due to not only vortex shedding
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FIG. 1. Schematic illustration of a Starling resistor. The elastic
tube receives external pressure in a pressure chamber.

but also the moving boundary. Thus, the coupled system is
expected to exhibit novel synchronization phenomena that
may not be described by the phase reduction method. To
investigate the synchronization phenomena of the oscillatory
flows in two coupled systems, we consider two collapsible
channels connected in parallel in which two channels merged
into a single channel, as shown in Fig. 2(b).

In this paper we investigate the oscillatory flow in two col-
lapsible channels connected in parallel from the viewpoint of
synchronization phenomena and clarify the nonlinear dynam-
ics of this system. We perform a two-dimensional numerical
simulation varying the distance between the deformable
region and the merging point and identify the distance de-
pendences of the stable synchronization mode, amplitude, and
frequency. We solve the governing equation of incompressible
viscous fluid with the lattice Boltzmann method [42–44]. We
employ a modified model from the one proposed by Wang
et al. [35] as the governing equation of the elastic wall. For
fluid-structure interaction, we adopt the immersed boundary
method based on the one used by Huang et al. [45]. We
describe the hydrodynamic model for the collapsible channel
in Sec. II and the numerical method to solve the govern-
ing equations in Sec. III. Section IV shows the results of a
single collapsible channel to validate our simulation model
and calculation method. Then, Sec. V shows the results of
the synchronization in the two collapsible channels connected
in parallel. Section VI mainly discusses the stability of the
synchronization mode from the viewpoint of phase dynam-
ics. Finally, Sec. VII concludes the obtained results on the
synchronization of the two collapsible channels connected in
parallel.

II. MODEL

We consider a two-dimensional incompressible viscous
flow in a channel where a part of one rigid wall is replaced by
an elastic wall, as shown in Fig. 2. The nondimensionalized
governing equations for the velocity field are the equation of
continuity and the Navier-Stokes equation, given as

∂uα

∂xα

= 0, (1)

∂uα

∂t
+ uβ

∂uα

∂xβ

= ∂σαβ

∂xβ

, (2)

σαβ = −Pδαβ + 1

Re

(
∂uα

∂xβ

+ ∂uβ

∂xα

)
, (3)

where t is the time, xα (α = 1, 2) is the spatial coordinate, uα

is the velocity field, P is the pressure field, and σαβ is the
hydrodynamic stress. We use the subscripts α and β to denote
the spatial coordinates and adopt the summation convention.

(a) Single system

(b) Coupled system
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FIG. 2. Schematic illustrations of the two-dimensional model of
(a) a single collapsible channel and (b) two coupled collapsible
channels. The red and green lines indicate the immersed boundary
of the elastic and rigid walls, respectively. The gray regions indicate
the virtual fluid. The Poiseuille flow at the inlet (left side) is indicated
by the blue lines and arrows.

δαβ is the Kronecker delta. Re is the Reynolds number, which
is the ratio of the inertial force to the viscous one. We em-
ploy the average velocity at the inlet, the channel width, and
fluid density to the characteristic velocity, length, and den-
sity scales, respectively. All the variables and parameters are
nondimensionalized by them.

We consider the deformable wall, whose thickness is in-
finitesimally small. We introduce not only the elasticity but
also the small viscosity into the deformable wall to stabilize
the numerical simulation. We set the viscosity small enough
to approximate the wall as an elastic wall and hereafter call
it an elastic wall. We set the initial position of the elastic wall
such that the wall is parallel to the x1 axis and exerts no elastic
force. We denote the position vector of the deformed elastic
wall as Xα (l ) and the derivative with respect to l as ′, where l is
the initial x1 coordinate of the elastic wall. The elastic energy
per unit length is composed of the stretching energy Ks(s −
1)2/2 and bending energy Kbκ

2/2, where s(l ) =
√

X ′2
1 + X ′2

2

is the stretching deformation, κ (l ) = (X ′′
2 X ′

1 − X ′
2X ′′

1 )/s2 is the
curvature of the wall, Ks is the stretching stiffness, and Kb is
the bending stiffness [35]. Note that the elastic energy is zero
in the initial position. The viscous energy dissipation per unit
length is induced by the stretching deformation velocity as
ν(v′

ατα )2, where vα (l ) = ∂Xα/∂t is the velocity, τα (l ) is the
unit tangential vector of the elastic wall, and ν is the viscosity
of the elastic wall. The conservation law of energy per unit
length is expressed as

∂

∂t

(
M

2
v2

α + Ks

2
(s − 1)2 + Kb

2
κ2

)
= −ν(v′

ατα )2, (4)

where M is the mass density ratio of the elastic wall to the
fluid. We add external force terms considering the existence
of fluids on both sides of the elastic wall, and we obtain
the equation of motion for the elastic wall by performing the
time derivative and integration by parts with respect to l as

M
∂vα

∂t
=

(
Ks(s − 1)τα − Kb

κ ′

s
nα + νv′

βτβτα

)′

+ s(σ+
αβ − σ−

αβ )nβ, (5)
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where nα is the unit normal vector to the elastic wall, and σ+
αβ

and σ−
αβ are the hydrodynamic stresses exerted on the wall

from the up-side and down-side fluids, respectively.
For a single collapsible channel, the channel width is

1 and the length is L. A part of the upper wall is re-
placed by an elastic wall whose length is Lela, as shown in
Fig. 2(a). In this situation the elastic wall receives the hy-
drodynamic stress σ−

αβ obtained by Eq. (3) from the lower
surface and the external stress σ+

αβ = −Pextδαβ from the up-
per surface, where Pext is the constant pressure. We set
the inlet at x1 = 0 and the outlet at x1 = L. Three rigid
walls are set at {(x1, x2)| 0 � x1 � L, x2 = 0}, {(x1, x2)| 0 �
x1 � Lin, x2 = 1}, and {(x1, x2)| Lin + Lela � x1 � L, x2 = 1}.
We insert an elastic wall at {(x1, x2)| Lin < x1 < Lin + Lela,

x2 = 1} initially. We set L = 40 and Lin = Lela = 5, following
the previous study [35]. At the inlet (x1 = 0), we apply the
Poiseuille flow, where the direction is along the x1 axis and the
mean speed is equal to 1, expressed as u1 = 6x2(1 − x2), u2 =
0. At the outlet (x1 = L), fluid can flow out under a constant
pressure, P = 0. We set the boundary condition for the elastic
wall Xα = const. and X ′′

α = 0 at l = Lin and l = Lin + Lela.
We vary Ks and Pext in the range of 500 � Ks � 3000 and
1.6 � Pext � 3.0. We set Re = 300, Kb = 10−5Ks, and ν =
0.25. In the initial condition at t = 0, the elastic wall is flat,
and the flow profile at every x1 is the same as that at the inlet
x1 = 0. The pressure distribution has a linear gradient along
the x1 axis and is constant along the x2 axis to be consistent
with the profile of the Poiseuille flow. We perform numerical
simulation within the time range of 0 � t � 250.

For two coupled collapsible channels, we employ the same
geometry as the single collapsible channel for x2 � 0 and the
mirror inversion of it with respect to x2 = 0 for x2 � 0, and
remove the wall at {(x1, x2)| Lin + Lela + d � x1 � L, x2 = 0}
to couple them, as shown in Fig. 2(b). d is the distance be-
tween the right end of the deformable region and the merging
point and is varied in the range of 20 � d � 30. Note that
there is no interaction at d = 30. We fix Ks = 1000 and Pext =
3.0, and set the other parameters to be the same as those in the
case with the single collapsible channel. The initial conditions
at t = −250 for the coupled system are also the same as those
for the single collapsible channel. First, we calculate without
the interaction, i.e., without removing the wall at x2 = 0, and
without the deformation of both elastic walls (vα = 0) in the
time range of −250 � t < −200. Then we allow the upper
elastic wall (x2 > 0) to move after t = −200 and proceed with
numerical simulation without the interaction until t = 0. To
introduce the delay in phase, we make the lower elastic wall
(x2 < 0) start to move after t = −200 + T , where T is the
time delay, without the interaction until t = 0. We remove
the wall at x2 = 0 for Lin + Lela + d � x1 � L at t = 0 and
calculate with the interaction until t = 250. T is varied from 0
to 2.975 (period of a single oscillator) in increments of 0.0875,
which corresponds to varying the initial phase difference be-
tween the two oscillators.

III. NUMERICAL METHOD

We adopt the D2Q9 lattice Boltzmann method with
a multi-relaxation-time model for the two-dimensional

hydrodynamics [46,47]. In this method we consider the nine
discrete velocities ckα (k = 0, 1, . . . , 8) and the nine cor-
responding particle distribution functions fk (x1, x2, t ). We
denote the set of nine distribution functions as a vec-
tor f . We can obtain the hydrodynamic velocity as uα =
(
∑

k fkckα )/(
∑

k fk ) when f follows the discrete Boltzmann
equation,

fk (x1 + ck1
x, x2 + ck2
x, t + 
t ) − fk (x1, x2, t )

= �k[ f (x1, x2, t )], (6)

where 
t is the time step, 
x is the spatial mesh, and �k is the
collision term for each fk . In the multi-relaxation-time model,
the collision term is expressed as

� = M−1N−1SNM [ f (x1, x2, t ) − f eq(x1, x2, t )], (7)

where � is the vector composed of the nine collision terms,
M is the “transformation matrix,” N is the “shift matrix,”
and S is the “diagonal relaxation matrix.” M−1 and N−1 are
the inverse matrices of M and N, respectively, and f eq is
the equilibrium distribution function [46,47]. The equilibrium
distribution function is given as

f eq
k = ρωk

(
1 + 3ckαuα − 3

2
uαuα + 9

2
(ckαuα )2

)
, (8)

where the weight ωk is set to be

ωk =
⎧⎨
⎩

4/9 (k = 0)
1/9 (k = 1, 2, 3, 4)
1/36 (k = 5, 6, 7, 8)

(9)

and the nine discrete velocities are set to

c0α = (0, 0), (10)

c1α = (1, 0), (11)

c2α = (0, 1), (12)

c3α = (−1, 0), (13)

c4α = (0,−1), (14)

c5α = (1, 1), (15)

c6α = (−1, 1), (16)

c7α = (−1,−1), (17)

c8α = (1,−1), (18)
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and ρ = ∑
k fk is the pseudo density. M transforms f to the

“raw moment” as

M f =
∑

k

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

fk

fkck1

fkck2

fk
(
ck1

2 + ck2
2
)

fk
(
ck1

2 − ck2
2
)

fkck1ck2

fkck1
2ck2

fkck1ck2
2

fkck1
2ck2

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (19)

and N transforms M f to the “central moment” as

NM f =
∑

k

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

fk

fk (ck1 − u1)

fk (ck2 − u2)

fk ((ck1 − u1)2 + (ck2 − u2)2)

fk ((ck1 − u1)2 − (ck2 − u2)2)

fk (ck1 − u1)(ck2 − u2)

fk (ck1 − u1)2(ck2 − u2)

fk (ck1 − u1)(ck2 − u2)2

fk (ck1 − u1)2(ck2 − u2)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (20)

We use S = diag[0, 0, 0, 0.5, 1/(0.5 + 3/Re), 1/(0.5 +
3/Re), 0.8, 0.8, 0.5] for the numerical stability.

We adopt the finite-difference scheme to solve Eq. (5) for
the elastic wall. We handle the spatial and time derivative
terms with the central difference scheme. We employ the same
spatial mesh, 
x, as used in the lattice Boltzmann method.

For the coupling between fluid and structure dynamics, we
adopt the immersed boundary method [48] for thin elastic and
rigid walls. Hereafter, we denote the initial position, deformed
position, and the velocity not only for the elastic wall but
also for the rigid wall as l , Xα , and vα , respectively. Note that
they follow X1 = l , X2 = const., and vα = 0 for the rigid wall.
According to the law of action and reaction, the fluid on both
sides of a thin wall follows

∂uα

∂t
+ uβ

∂uα

∂xβ

=∂σαβ

∂xβ

+ (σ−
αβ − σ+

αβ )nβ�, (21)

where �(·) represents the Dirac delta function. Hereafter, the
argument of � is

√
(xγ − Xγ )(xγ − Xγ ) in the case it is omit-

ted. Note that the no-slip boundary condition at the thin wall
is expressed by the stress from the thin wall in this equation.
Using the fractional step method, the fluid follows

u∗(0)
α = uα (t ) +

(
−uβ

∂uα

∂xβ

+ ∂σαβ

∂xβ

)

t, (22)

uα (t + 
t ) = u∗(0)
α + (σ−

αβ − σ+
αβ )nβ�
t . (23)

Since the velocity of the fluid at the thin wall should corre-
spond to that of the thin wall in the discrete space, the stress
is expressed as

(σ−
αβ − σ+

αβ )nβ = vα (t + 
t ) − u∗(0)
α


t

x. (24)

With the spatial discretization, we approximate the Dirac delta
function with

�(
√

xαxα ) = 1


x
φ(x1)φ(x2), (25)

φ(x) =
{

(cos [πx/(2
x)] + 1)/4 (|x| < 2
x)

0 (|x| � 2
x)
, (26)

and the complement of the velocity on the thin wall is ex-
pressed as

ũ∗(0)
α (l ) = 1


x

∫
u∗(0)

α (x1, x2)� dx1dx2. (27)

We adopt the simple forcing scheme [49] to calculate Eq. (23)
in the lattice Boltzmann method.

Instead of Eqs. (23) and (27), the iteration in a single time
step,

u∗(m+1)
α (x1, x2) = u∗(m)

α (x1, x2) + (
vα (l ) − ũ∗(m)

α (l )
)
�
x,

(28)

ũ∗(m)
α (l ) = 1


x

∫
u∗(m)

α (x1, x2)� dx1dx2, (29)

where m is a non-negative integer and u∗(m)
α is the fluid veloc-

ity obtained after m times iteration, can improve the numerical
accuracy [50,51]. We perform the iteration five times in each
time step and employ u∗(5)

α as uα (t + 
t ) instead of the right-
hand side of Eq. (23).

In a collapsible channel, the elastic wall receives the hy-
drodynamic stress written in Eq. (3) only on one side and
receives the constant pressure Pext on the other side. To adopt
the immersed boundary method for the collapsible channel,
we assume a virtual fluid, which receives the stress from the
elastic wall and does not apply any stress to the elastic wall,
on the other side of the actual fluid. We need to obtain σ−

αβnβ

in the case that the virtual fluid is on the upside of the elastic
wall. If we know the mean of σ+

αβ and σ−
αβ as σ

avg
αβ , σ−

αβnβ is
obtained as

σ−
αβnβ = σ

avg
αβ nβ + σ−

αβ − σ+
αβ

2
nβ, (30)

where the second term on the right-hand side is derived from
Eq. (24). We assume that σ

avg
αβ is given as

σ
avg
αβ (l ) = 1


x

∫
σαβ (x1, x2)� dx1dx2. (31)

To calculate the integral in Eq. (31), we obtain the hydrody-
namic stress σαβ from the lattice Boltzmann method as

σαβ = − 1

2τ

∑
k

1

3
fkδαβ + 1

3
δαβ

−
(

1 − 1

2τ

)∑
k

fk (ckα − uα )(ckβ − uβ ), (32)

where τ = 0.5 + 3/Re.
For a single collapsible channel, we consider a rectangular

region, 0 � x1 � L, 0 � x2 � 1.5. We adopt the Dirich-
let boundary condition, u1 = 6x2(1 − x2), u2 = 0, for x1 =
0, 0 � x2 � 1, no-slip boundary condition, u1 = u2 = 0, for
x1 = 0, 1 < x2 � 1.5, and the Neumann boundary condition,
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FIG. 3. Sequential snapshots of the vorticity field for (a) Ks = 1000, Pext = 1.6 and (b) Ks = 1000, Pext = 3.0 after a sufficiently long time
225 � t � 228 from the initial state. The corresponding videos named “stationary_vorticity.mp4” for panel (a) and “oscillatory_vorticity.mp4”
for panel (b) are available in the Supplemental Material (SM) [53].

P = 0, u2 = 0, for x1 = L, 1 < x2 � 1.5, using the on-grid
bounce-back scheme [52]. The rigid walls at x2 = 0 and 1.5
are handled with the standard halfway bounce-back scheme.
We impose the immersed boundary at x2 = 1 for the initial
condition. We set 
t = 2.5×10−4 and 
x = 2.5×10−2. For
the two coupled collapsible channels, we set the same condi-
tions as those for the single collapsible channel for x2 � 0 and
the mirror inversion of it with respect to x2 = 0 for x2 � 0.

IV. SINGLE COLLAPSIBLE CHANNEL

The sequential snapshots of the vorticity field ∂u2/∂x1 −
∂u1/∂x2 in a single channel after a sufficiently long time
from the initial state are shown in Fig. 3. Figure 3(a) shows
the stationary state, in which the elastic wall does not move,
obtained for Ks = 1000 and Pext = 1.6. Figure 3(b) shows the
oscillatory state, in which the deformation of the elastic wall
and the vortex shedding downstream of the deformable region
are periodic in time, obtained for Ks = 1000 and Pext = 3.0.

To investigate the time series of the deformation, we define
the spatial minimum value of x2 coordinates of the elastic wall
as X (col)

2 (t ) = min5�l�10|X2(t, l )|. The time series of X (col)
2

corresponding to Figs. 3(a) and 3(b) are shown in Fig. 4.
X (col)

2 converged to a constant value in the stationary state.
The oscillation amplitude, which is defined by the difference
between the local maximum and minimum values of X (col)

2
with respect to time, converged to a finite constant value in
the oscillatory state. Note that the maximum discrepancies
between the result at ν = 0.25 and that at ν = 0.5 or 0.125
were less than 0.2%, and thus the viscosity of the wall is
small enough to approximate that the wall is elastic. From
the viewpoint of continuous dynamical systems, the stationary
and oscillatory states correspond to the stable fixed point
and the stable limit-cycle oscillation, respectively. To investi-
gate the dynamics of the convergence to the limit cycle, we

measured X (min)
2 , the local minimum values of X (col)

2 with
respect to time, and X (dev)

2 , the deviation of X (min)
2 from the

converged value of X (min)
2 , in the oscillatory state. We em-

ployed X (min)
2 around t = 250 as the converged value of X (min)

2 .
X (dev)

2 was exponentially converged after t = 50, as shown in
the inset of Fig. 4. We obtained the linear fitting line, where
the slope was −0.078, in the logarithmic plot using the data
within the time range of 100 � t � 150. Note that this slope

0.4

0.7

1.0

0 50 100 150 200 250
t

X 2
(c

o
l)
, 
X 2

(m
in

) −20

−10

0

0 250t
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(X

2
(d

ev
) )X2

(col)
 (Pext = 1.6)

X2
(col)

 (Pext = 3.0)

X2
(min)

 (Pext = 3.0)

FIG. 4. Time series of X (col)
2 , the spatial minimum value of X2.

The blue and green lines correspond to Figs. 3(a) and 3(b), respec-
tively. The black line indicates the time series of X (min)

2 , which is the
local minimum of X (col)

2 with respect to time. The natural logarithmic
plot of X (dev)

2 , which is the deviation of X (min)
2 (t ) from the converged

value of X (min)
2 , is shown in the inset. The red line shows the result

of linear fitting using the time range of 100 � t � 150, indicated by
the shaded region.
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panels (a) and (b). (c) Phase diagram to distinguish the stationary
and oscillatory states in the Pext-Ks plane.

corresponds to the second maximum Lyapunov exponent and
will be used for the discussion of the interaction strength in
Sec. VI.

In the oscillatory state, we employ the time duration be-
tween the local minima of X (col)

2 with respect to time as the
period. Then, the (angular) frequency is calculated as 2π

divided by the period. Note that the amplitude is zero in the
stationary state. Figures 5(a) and 5(b) show the Pext depen-
dences of the amplitude and frequency. The phase diagram on
the Pext-Ks plane is shown in Fig. 5(c). The stationary state
bifurcated into the oscillatory state with increasing Pext for
Ks � 2800. The system exhibits reentrance to the stationary
state with increasing Pext for 1300 � Ks � 2800. The sta-
tionary state was stable for Ks � 2900. The frequency was
increased as Pext or Ks increased.

V. TWO COLLAPSIBLE CHANNELS
CONNECTED IN PARALLEL

The sequential snapshots of the vorticity field in two col-
lapsible channels connected in parallel after a sufficiently
long time and the time series of |X (col)

2 | are shown in Fig. 6.
The in-phase synchronization mode, in which the elastic
walls deform simultaneously, is shown in Figs. 6(a) and 6(c)
for d = 25, T = 0.525. The antiphase synchronization mode,
in which the elastic walls deform alternately, is shown in
Figs. 6(b) and 6(d) for d = 25, T = 1.75.

We regard each of the oscillatory flows in the upper and
lower collapsible channels as a limit-cycle oscillator and also
regard these oscillatory flows, which interact through the con-
nection, as coupled oscillators. We define a phase ϕ in each
oscillator. We set ϕ = 0 when X (col)

2 has the local minimum
value with respect to time. ϕ increases proportionally to time
in an isolated oscillator and is affected by the interaction in
the two coupled oscillators. The phase difference between the
two oscillators is represented as 
ϕ = ϕU − ϕL, where ϕU

and ϕL are the phases of the oscillatory flow in the upper

and lower collapsible channels, respectively. By varying T
from 0 to 2.975 in increments of 0.0875, the initial phase
difference of the oscillators, 
ϕ(0), was controlled from 0
to 2π in increments of π/17. The time series of 
ϕ for the
parameters in Figs. 6(a) and 6(b) are shown in Figs. 7(a) and
7(b), respectively. The phase difference converged to zero in
the in-phase synchronization mode, as shown in Fig. 7(a),
and converged to π in the antiphase synchronization mode,
as shown in Fig. 7(b). The 
ϕ(0) dependence of 
ϕ after
a sufficiently long time is shown in Fig. 7(c) for d = 25.
Since the final states depended on the initial phase difference,
the in-phase and antiphase modes were bistable. The phase
difference 
ϕ at t = 250 for various 
ϕ(0) and d is sum-
marized in Fig. 7(d). The in-phase and antiphase modes were
clearly bistable for 22.5 � d � 28.5. The in-phase mode was
stable and the antiphase mode was unstable for d � 21.5. The
frequency in each mode is shown in Fig. 7(e). The frequency
in the antiphase mode was greater than the intrinsic frequency,
and the frequency in the in-phase mode was slightly greater
than the intrinsic frequency, which is the one for a single
collapsible channel with the same parameters. The frequency
was decreased with an increase in d in both the in-phase
and antiphase modes. Next, the amplitude in each mode is
shown in Fig. 7(f). The amplitude in the antiphase mode
was increased with an increase in d . The amplitude in the
in-phase mode was greater than the intrinsic amplitude and
was decreased with an increase in d in both the in-phase and
antiphase modes.

VI. DISCUSSION

We investigated Pext and Ks dependences of the stable state
in a single collapsible channel as shown in Fig. 5(c). The pre-
vious study by Hao et al. [34] reported the phase diagram of
the stable state on the Re-Ks plane by linear stability analysis
assisted by numerical calculation. In their results for Re =
300 and Pext = 1.95, the stationary state bifurcates into the
oscillatory state with increasing Ks, and the system exhibits
reentrance to the stationary state with further increasing Ks,
where the two bifurcation points are Ks = 447 and Ks = 1937.
In our results there were two bifurcation points, but the values
were slightly different from those in the previous study: one
is in the range between 600 and 700 and the other is in the
range between 2300 and 2400 for Re = 300 and Pext = 1.95.
These discrepancies may be due to the differences in model
settings and/or numerical methods. The magnitude of these
discrepancies is small, and thus, our model, where we applied
the viscosity and mass in the elastic wall for numerical sta-
bility, provides reliable results, such as Pext dependence and
the synchronization modes in the coupled system. The phase
diagram on the Pext-Ks plane was qualitatively consistent with
that on the Re-Ks plane reported by Hao et al. [34]. In our cal-
culation the pressure field has an almost linear gradient along
the x1 axis in the stationary state as shown in Appendix A.
In the Poiseuille flow with a fixed inflow and outlet pressure,
the slope of the linear gradient in the pressure field should
approach zero with an increase in Re by reducing viscosity.
Thus, the effect on the elastic wall by increasing Re may be
similar to that by increasing Pext.
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FIG. 6. Sequential snapshots of the vorticity field for d = 25 in the (a) in-phase and (b) antiphase modes after a sufficiently long time,
225 � t � 228, from the state at t = 0. The corresponding videos named “inphase_vorticity.mp4” for panel (a) and “antiphase_vorticity.mp4”
for panel (b) are available in the SM [53]. (c), (d) Time series of |X (col)

2 | in the (c) in-phase and (d) antiphase modes, which correspond to
panels (a) and (b), respectively.

The pressure fields for the parameters in Figs. 6(a) and 6(b)
are shown in Figs. 8(a) and 8(b), respectively. In both the
in-phase and antiphase synchronization modes, the pressure
fields were almost homogeneous along the x2 axis down-
stream of the merging point. The pressure field in the in-phase
synchronization mode was almost the same as the single
collapsible channel shown in Appendix A, while the pres-
sure field downstream of the merging point in the

antiphase synchronization mode did not change over time.
We also performed the simulation with an additional set-
ting of a wall at x2 = 0 downstream of the merging point,
and the result suggested that the primary interaction was
the pressure field. For details, see Appendix B. Therefore,
the pressure changes in the entire system due to the mov-
ing boundary significantly influenced the coupling between
the oscillators, which might lead to complex synchronization
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phase difference 
ϕ (0) for d = 25. (d) Phase difference at t = 250
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pending on d for the in-phase and antiphase synchronization modes.
The same symbols are used for the legends in panels (e) and (f).
The horizontal lines show the frequency and amplitude with d = 30,
which corresponds to the case without interaction.

phenomena with the change in the stability of the synchro-
nization mode.

We investigated d dependences of the stable synchroniza-
tion modes in two collapsible channels connected in parallel
as shown in Fig. 7(d). At around d = 30, since the interaction
between two collapsible channels was small and it took time
to reach a converged state, we could not clarify the stable
synchronization modes. Thus we tried to clarify the stable
synchronization modes by considering the phase dynamics.
Here we measured 
ϕ(n), which is ϕU − ϕL at ϕL = 0 in the
nth period for t � 0. We show the scatter plot of the time
difference 
ϕ(n+1) − 
ϕ(n) against 
ϕ(n) for d = 29.5, all
n, and all 
ϕ(0) in Fig. 9(a). We also show the same plot
only for n � 30 (t � 90) in Fig. 9(b). We could observe the
convergence to a single curve. This curve should indicate the
stability of the phase difference. 
ϕ(n) = 0 and π are the fixed
points, because the time evolution of the phase difference

ϕ(n+1) − 
ϕ(n) is zero. The phase difference 
ϕ(n) in the
range of 0 < 
ϕ(n) < π should decrease and converge to 0
because the time evolution of the phase difference 
ϕ(n+1) −

ϕ(n) is negative. 
ϕ(n) in the range of π < 
ϕ(n) < 2π

should increase and converge to 2π (equivalent to 0) be-
cause 
ϕ(n+1) − 
ϕ(n) is positive. Therefore, the in-phase
mode (
ϕ(n) = 0) should be stable while the antiphase mode
(
ϕ(n) = π ) should be unstable for d = 29.5.

The convergence to a single curve as shown in Fig. 9(b)
means that the interaction strength is small and the phase
dynamics depend only on the phase. In such a case, the phase
of each oscillator is governed by the phase dynamics,

dϕU

dt
= ω + �(−
ϕ), (33)

dϕL

dt
= ω + �(
ϕ), (34)

where ω is the intrinsic frequency and �(·) is the phase-
coupling function. From these equations, we can obtain the
equation governing the phase difference,

d
ϕ

dt
= �(−
ϕ) − �(
ϕ). (35)

Assuming that max
ϕ |�(
ϕ)| � ω, we approximately ob-
tain the discrete equation governing the phase difference
as


ϕ(n+1) − 
ϕ(n) = 2π

ω
[�(−
ϕ(n) ) − �(
ϕ(n) )]. (36)

The curve for d = 29.5 shown in Fig. 9(b) should correspond
to this discrete equation governing the phase difference. Since
2π/[ω + �(−
ϕ(n) )] is almost equal to the time duration
between ϕU = 0 and ϕU = 2π , we measured the time dura-
tion and obtained the phase-coupled function �(
ϕ(n) ). In
Figs. 9(c) and 9(d) we show the scatter plot of �(
ϕ(n) )
against 
ϕ(n) for the same condition as in Figs. 9(a) and
9(b). We could also observe the convergence to a single
curve, which should correspond to the phase-coupling func-
tion. Figure 9(d) indicates that �(
ϕ(n) ) holds the assumption
max
ϕ |�(−
ϕ)| � ω, where ω ≈ 100. We could ignore the
influence of the amplitude on the stable phase difference and
assume that the interaction strength is small because the mag-
nitude of |(
ϕ(n+1) − 
ϕ(n)/
ϕ(n)| ≈ 10−2 is much smaller
than 2πλ̃/ω = −0.23, where (
ϕ(n+1) − 
ϕ(n) )/
ϕ(n) is the
damping rate per period for the phase difference around

ϕ(n) = 0, 2πλ̃/ω is the damping rate per period for the
amplitude, and λ̃ = −0.078 is the second maximum Lya-
punov exponent obtained from the slope of the fitting line
shown in Fig. 4. Note that the rapid convergence to the
single curve [plots for n < 30 shown in Fig. 9(a)] should
correspond to the amplitude convergence. Therefore, the
interaction strength was small and the phase equation de-
termined the stable phase difference for d = 29.5, i.e., the
in-phase mode was stable whereas the antiphase mode was
unstable.

In Fig. 10 we show the corresponding results to those
shown in Fig. 9 for d = 29. The phase equation determines
the stability of the phase difference for d = 29 in the same
way as in d = 29.5, and both the in-phase and antiphase
modes were stable for d = 29. In terms of discrete dynamical
systems, the antiphase mode for d = 29 corresponds to the
stable fixed point, while that for d = 29.5 corresponds to the
unstable fixed point. In Fig. 10(b) we observed two unstable
fixed points around the stable fixed point corresponding to
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FIG. 8. Sequential snapshots of the pressure field P in two collapsible channels connected in parallel for d = 25 in the (a) in-phase and
(b) antiphase synchronization modes after a sufficiently long time 225 � t � 228 from the state at t = 0, which correspond to Figs. 6(a) and
6(b), respectively. The corresponding videos named “inphase_pressure.mp4” for panel (a) and “antiphase_pressure.mp4” for panel (b) are
available in the SM [53].

the antiphase mode. Therefore, the stability of the antiphase
mode should be changed through the subcritical pitchfork
bifurcation, and there should be a bifurcation point in the
range of 29 < d < 29.5.

To investigate the d dependence of the stability of
the antiphase mode, we considered the Fourier series of
�(
ϕ),

�(
ϕ) = a0 +
∞∑

k=1

[ak cos(k
ϕ) + bk sin(k
ϕ)]. (37)

We obtained the Fourier series of �(
ϕ) using the data for
n � 30. We show the d dependences of the Fourier cosine
and sine series of �(
ϕ) in Fig. 11. For all d , |a0| and |a1|
were significantly greater than |a2| and |a3|, and |b1| and |b2|
were significantly greater than |b3|. Note that we also show the
fitting curves using the Fourier series up to k = 3 for d = 29.5
in Figs. 9(b) and 9(d) and for d = 29 in Figs. 10(b) and 10(d),
which well reproduce the phase-coupling functions.

We substituted the Fourier series of �(
ϕ) to Eq. (35) as

d
ϕ

dt
= −

∑
k

2bk sin(k
ϕ). (38)

In the linear stability analysis, the eigenvalue λ around
the fixed point 
ϕ = 
ϕ∗ for Eq. (38) can be obtained
as

λ = −
∑

k

2kbk cos(k
ϕ∗). (39)

Only using bk with k � 2, we obtain λ = −2b1 − 4b2 for

ϕ∗ = 0 and λ = 2b1 − 4b2 for 
ϕ∗ = π . Because of b1 > 0
and b2 > 0, the in-phase mode was stable for all d as shown in
Fig. 11(b). The antiphase mode is stable when b2/b1 > 1/2.
We show the d dependence of b2/b1 in Fig. 11(c). Note that
we plotted only reliable data of b2/b1 (d � 29.6), because
the small magnitudes of b1 and b2 should cause a large fit-
ting error for d � 29.7. b2/b1 increased as d decreased, and
the antiphase mode was stable for d � 29.3 from the sign
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FIG. 9. (a), (b) Scatter plots of the difference 
ϕ (n+1) − 
ϕ (n)

against 
ϕ (n) for d = 29.5 for the various initial conditions. We plot
the entire time series in panel (a) and only the time series after some
time (n � 30) in panel (b). (c), (d) Scatter plots of the phase-coupling
function �(
ϕ (n) ) against 
ϕ (n) for d = 29.5 for the various initial
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only the time series after some time (n � 30) in panel (d). The red
lines in panels (b) and (d) indicate the fitting curve using the Fourier
series up to the third order.

of b2/b1 − 1/2. Since an unstable fixed point became stable
and two unstable fixed points appeared with decreasing d ,
we can conclude this system exhibited a subcritical pitchfork
bifurcation. As a summary of analyses for the phase dynamics
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around d = 30, only the in-phase mode was stable for large
d , the antiphase mode became stable with a decrease in d , and
the stability of the synchronization mode near the bifurcation
point could be discussed only using the phase difference.

We show the d dependence of the frequency for the stable
synchronization mode at around d = 30 in Fig. 11(d). For all
d , the frequencies both in the in-phase and antiphase modes
were greater than the intrinsic frequency, and the frequency
in the antiphase mode was greater than that in the in-phase
mode. Using ak only for k � 1, the frequency is expressed
as ω + a0 + a1 in the in-phase mode and ω + a0 − a1 in the
antiphase mode. Figure 11(a) indicates that the magnitudes of
|a0| and |a1| were almost the same and the signs of them were
a0 > 0 and a1 < 0 for each d . These are consistent with the
result that the frequency in the antiphase mode was greater
than in the in-phase mode, as shown in Fig. 11(d).

For small d , the antiphase mode became unstable with
decreasing d , as shown in Fig. 7(d). To investigate the bi-
furcation structure, we observed the phase dynamics in the
same way as in the case with around d = 30. We show the
orbit in the 
ϕ(n)-(
ϕ(n+1) − 
ϕ(n) ) plane and the time series
of |
ϕ(n)|, the absolute value of 
ϕ(n) (−π � 
ϕ(n) < π ),
from two slightly different initial conditions for d = 23.5,
23, 22.5, and 22 in Fig. 12. Note that we performed the
numerical simulation for a time range of 0 � t � 500 to ob-
serve the convergence of the system. For d = 23.5 and 23,
the magnitudes of |(
ϕ(n+1) − 
ϕ(n) )/(
ϕ(n) − π )| ≈ 10−1

were almost the same as 2πλ̃/ω = −0.23, where (
ϕ(n+1) −

ϕ(n) )/(
ϕ(n) − π ) is the damping rate per period for
the phase difference at around 
ϕ(n) = π , and 2πλ̃/ω is
the damping rate per period for the amplitude. Therefore, the
interaction strength should be large, and we could not ignore
the influence of the amplitude on the stability of the phase
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difference. Due to the strong interaction, we could not observe
the convergence to a single curve but the rotating orbit in
the 
ϕ(n)-(
ϕ(n+1) − 
ϕ(n) ) plane. For d = 23.5, the green
line (where 
ϕ(0) was closer to π ) converged to π and the
purple line (where 
ϕ(0) was farther from π ) diverged from
π , as shown in Figs. 12(a) and 12(b). Figure 12(a) suggests
the presence of an unstable closed orbit, which was outside of
the green line and inside of the purple line, and a stable fixed
point at 
ϕ(n) = π . For d = 23, the green and purple lines
behaved similarly to those for d = 23.5, and the radius of the
unstable closed orbit was smaller than for d = 23.5, as shown
in Figs. 12(c) and 12(d). For d = 22.5, the green and purple
lines did not converge. This is probably because d = 22.5 is
close to the bifurcation point. For d = 22, the fixed point at

ϕ(n) = π was unstable as shown in Figs. 12(g) and 12(h).
Since a stable fixed point became unstable and an unstable
closed orbit disappeared with decreasing d , we conclude this
system exhibited the subcritical Neimark-Sacker bifurcation
[54]. In contrast to the bifurcation point at around d = 30,

the stability of the synchronization mode near this bifurcation
point could be discussed using both the phase difference and
amplitude.

VII. CONCLUSION

We investigated the synchronization phenomena of oscil-
latory flows in two collapsible channels connected in parallel
in the two-dimensional hydrodynamic simulation. The stable
synchronization modes depended on the distance between
the deformable region and the merging point; only an in-phase
mode is stable for the large distance, in-phase and antiphase
modes are bistable for the middle distance, and again only an
in-phase mode is stable for the small distance. An antiphase
mode becomes stable through the subcritical pitchfork bifur-
cation with decreasing distance, and the stability near this
bifurcation point is discussed using only the phase difference.
Further decreasing the distance, the antiphase mode becomes
unstable through the subcritical Neimark-Sacker bifurcation.
The stability near this bifurcation point is discussed using both
the phase difference and amplitude. For all the distance, the
frequency in the antiphase mode is greater than the intrinsic
frequency, and the frequency in the in-phase mode is greater
than in the antiphase mode. The amplitudes in in-phase and
antiphase modes are greater and smaller than the intrinsic
amplitude, respectively. In this system the primary interaction
may be through the pressure field. The behavior and mag-
nitude of the interaction depend on d , and thus we observe
these complex synchronization phenomena, the two syn-
chronization mode transitions. Since the transitions between
synchronization modes in our results can be described not by
the phase reduction method for weakly coupled oscillators but
by that for strongly coupled oscillators, our results may facili-
tate the development of the phase reduction method and phase
analysis.
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APPENDIX A: PRESSURE DISTRIBUTION
IN A SINGLE COLLAPSIBLE CHANNEL

The pressure fields for the parameters in Figs. 3(a) and
3(b) are shown in Figs. 13(a) and 13(b), respectively. In the
stationary state, the pressure field has an almost linear gradient
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FIG. 13. Sequential snapshots of the pressure field P in a single collapsible channel for (a) Ks = 1000, Pext = 1.6 and (b) Ks = 1000, Pext =
3.0 after a sufficiently long time 225 � t � 228 from the initial state, which correspond to Figs. 3(a) and 3(b), respectively. The cor-
responding videos named “stationary_pressure.mp4” for panel (a) and “oscillatory_pressure.mp4” for panel (b) are available in the SM
[53].

along the x1 axis. In the oscillatory state, the pressure changes
in the entire system are due to the moving boundary.

APPENDIX B: ADDITIONAL SETTING OF A WALL
DOWNSTREAM OF THE MERGING POINT

To check whether the primary interaction was the ve-
locity or pressure field, we performed the simulation with
an additional setting of a wall at {(x1, x2)| 36 � x1 � 40,

x2 = 0} for d = 25. In this system the upper and lower col-

lapsible channels interact in the small region {(x1, x2)| 35 �
x1 � 36, x2 = 0}, and the interaction through the velocity
field should depend on the size of interaction region. The
pressure fields downstream of the deformable region in the
in-phase and antiphase modes are shown in Figs. 14(a) and
14(b), respectively, and the time series of the phase differ-
ence in these modes is shown in Fig. 14(c). The additional
wall hardly changed the results, and thus the primary in-
teraction may be not the velocity field but the pressure
field.
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FIG. 14. Sequential snapshots of the pressure field P for d = 25 in the (a) in-phase and (b) antiphase modes after a sufficiently long time
225 � t � 228 from the state at t = 0 in the simulation with an additional setting of a wall at x2 = 0 downstream of the merging point. Initial
conditions are different between panels (a) and (b), where T = 0.525 and T = 1.75, respectively. (c) Time series of the phase difference in the
in-phase (green) and antiphase (purple) synchronization modes.
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