
PHYSICAL REVIEW E 109, 054133 (2024)

Nonequilibrium generation of charge defects in kagome spin ice under slow cooling
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Kagome spin ice is one of the canonical examples of highly frustrated magnets. The effective magnetic
degrees of freedom in kagome spin ice are Ising spins residing on a two-dimensional network of corner-sharing
triangles. Due to strong geometrical frustration, nearest-neighbor antiferromagnetic interactions on the kagome
lattice give rise to a macroscopic number of degenerate classical ground states characterized by ice rules.
Elementary excitations at low temperatures are defect-triangles that violate the ice rules and carry an additional
net magnetic charge relative to the background. We perform large-scale Glauber dynamics simulations to study
the nonequilibrium dynamics of kagome ice under slow cooling. We show that the density of residual charge
defects exhibits a power-law dependence on the quench rate for the class of algebraic cooling protocols. The
numerical results are well captured by the rate equation for the charge defects based on the reaction kinetics
theory. As the relaxation time of the kagome ice phase remains finite, there is no dynamical freezing as in the
Kibble-Zurek scenario. Instead, we show that the power-law behavior originates from a thermal excitation that
decays algebraically with time at the late stage of the cooling schedule. Similarities and differences in quench
dynamics of other spin ice systems are also discussed.
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I. INTRODUCTION

The nonequilibrium dynamics of many-body systems fol-
lowing a quench have been extensively studied over the years.
Several universal behaviors after a fast quench have been
established, which depend on the symmetry and conservation
law of the order parameter field [1–3]. The kinetics of phase
ordering following a fast quench is often governed by annihi-
lation dynamics of topological defects in symmetry-breaking
phases. On the other hand, for systems that are slowly
quenched across a critical point, the Kibble-Zurek (KZ)
mechanism offers a general framework for nonequilibrium
dynamics and the formation of topological defects [4–7]. In
particular, it shows that the excess defects left at the end of the
cooling falls off with the annealing rate according to a power
law whose exponent is determined by the equilibrium critical
properties [8]. Originally developed to understand the density
of relic topological defects in the early universe, the Kibble–
Zurek mechanism has since been confirmed in phase transi-
tion dynamics of various condensed-matter systems [7,8].

The defect formation in the KZ scenario is intimately re-
lated to broken symmetries. As the order parameter in the
ordered phase can take on multiple values due to the global
symmetry of the system, the order parameter in general cannot
be the same in regions which are beyond the equilibrium
correlation length. The incompatibility of different ordered
domains gives rise to topological defects, such as kinks or
vortices, which are localized regions that connect two or more
adjoining domains of different order parameters. A different
kind of localized defects occurs in spin ices [9–12] and similar

highly constrained systems [13,14]. Due to strong geometrical
frustration, spin ice remains in a disordered state at temper-
atures well below the dominant exchange energy scale. Yet,
contrary to the uncorrelated paramagnets at high tempera-
tures, spins in the low-T ice phase are strongly correlated.
The short-range correlation is dictated by local constraints,
known as the ice rules, defined on local simplex such as
triangle in kagome ice and tetrahedron in pyrochlore spin
ice. Importantly, violation of the ice rules gives rise to defect
simplexes, which are particle-like elementary excitations of
the ice phase.

Moreover, the ice rules can be formulated as the condi-
tion of minimum magnetic charges. Elementary excitations
in spin ices, which are defect simplexes that violate ice
rules, effectively carry an excess magnetic charge relative
to the background. As these quasiparticles with a net mag-
netic charge are fractionalized from the fundamental dipole
moments, spin ices can be viewed as a different kind of
high-dimensional generalization of the one-dimensional (1D)
ferromagnetic Ising model, which exhibits kink-antikink ex-
citations fractionalized from a single-spin flip. It is worth
noting that, although the 1D Ising model remains disordered
at any finite temperatures, the KZ mechanism has been gen-
eralized to describe the annealing dynamics of the Ising chain
when approaching its unconventional critical point at Tc = 0
[15–19]. The density of residual kinks after the quench is
found to also exhibit a power-law dependence on annealing
rates, yet with an exponent dependent on the cooling schedule.
Similar studies for high-dimensional spin ice systems have yet
to be carried out.
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FIG. 1. Schematic of the kagome spin ice. The unit vectors ê1,
ê2, and ê3 denote the easy-axis directions of the three sublattices. The
small red (light) and blue (dark) circles, indicating a magnetic charge
Q = +1 and −1, respectively, are triangles that satisfy ice rule con-
straints. The bigger red (light) and blue (dark) circles represent defect
triangles with a net magnetic charge of +3 and −3, respectively.

In this paper, we study the nonequilibrium dynamics of
excess charge defects in short-range kagome spin ice un-
der slow quenches. Kagome spin ice [20] is effectively an
antiferromagnetic Ising model defined on the kagome lat-
tice, a two-dimensional network of corner-sharing triangles
as shown in Fig. 1. Kagome spin ices can be realized in
artificial nanomagnetic systems, also known as the artificial
spin ices, where elongated single domain nanomagnets, act-
ing effectively as mesoscopic Ising spins, are arranged in a
two-dimensional array and coupled via their dipolar mag-
netic fields [21–24]. In the case of artificial kagome spin
ices, the ferromagnetic nanowires are placed at the edges
of a honeycomb lattice, which is dual to the kagome lattice
[25–34]. A restricted version of the kagome ice, the so-called
ice-II phase, can be induced by applying a [111] magnetic
field to the canonical pyrochlore spin ices such as Dy2Ti2O7

and Ho2Ti2O7 [35–37]. More recently, kagome ice behav-
iors have been observed in the tripod kagome compound
Dy3Mg2Sb3O14 [38–40] and quasi-two-dimensional (quasi-
2D) intermetallic compound HoAgGe [40].

As a first step toward understanding the nonequilibrium
dynamics of kagome ice systems under slow quench, we
focus on the antiferromagnetic kagome Ising model with in-
teractions restricted to nearest neighbors [20]. This model
by itself is an important many-body system in statistical
physics. Due to the strong geometrical frustration, the spins
of this model remain disordered down to zero temperature.
However, at temperatures below the energy scale of the
nearest-neighbor interaction, the system enters a disordered
yet highly correlated liquid-like state. We perform extensive
Glauber-dynamics Monte Carlo simulations of the annealing
process of kagome ice. In particular, for a class of algebraic
cooling schedules, the residual defects are shown to exhibit
a power-law scaling with respect to the cooling rate, with an
exponent dependent on the exponent of the algebraic cooling.
We further adopt the reaction kinetics theory to describe the
transition kinetics of triangle-simplexes in kagome ice. The
results from the integration of the rate equations agree excel-
lently with the Glauber dynamics simulations.

Contrary to standard KZ scenarios, the nearest-neighbor
kagome spin ice does not exhibit a critical state at any finite
or zero temperature. In fact, the relaxation time is found to
be nearly temperature-independent in the ice phase. Excess
defects originate from the time-varying thermal generation
against a constant decay. As a result, there is no significant
freezing in the annealing process. Instead, the defect density
at the end of cooling results from the accumulation of ex-
cess defects within the relaxation time. This process is well
captured by an analytical formula obtained from the rate equa-
tion, which gives rise to power-law scaling of residual defect
density in the case of algebraic cooling protocols. Annealing
dynamics in the presence of further-neighbor or long-range
dipolar interactions is briefly discussed; a detailed study will
be left for future studies.

The rest of the paper is organized as follows: In Sec. II, we
present details of the Glauber dynamics Monte Carlo (MC)
simulations for kagome spin ice and introduce parameters for
algebraic cooling schedules. In Sec. III, we adapt the chemical
reaction theory to describe the transition kinetics of triangle-
simplexes in kagome ice and derive a rate equation for the
dynamical evolution of the defect triangles. An asymptotic
analytical solution for the scaling behavior in the slow cooling
limit is presented in Sec. IV. Finally, a summary and outlook
is presented in Sec. V.

II. GLAUBER DYNAMICS SIMULATIONS
OF KAGOME SPIN ICE

Spin ices are an unusual class of frustrated ferromag-
nets where strong easy-axis anisotropy results in an effective
antiferromagnetic Ising model defined on a lattice with
corner-sharing simplexes. For kagome spin ice, the building
block simplex is triangle, and the local easy-axis is along
the line that connects two adjacent triangles. We introduce
unit vectors êi to specify the easy-axis direction, which points
from the center of the up-triangle to the corners. The magnetic
moments are then expressed as Si = σiμ0êi, where μ0 is the
magnitude of the magnetic moment, êi is the local crystal-field
axis, and the Ising variable σi = ±1 indicates the direction of
the magnetic moment.

In this work, we consider a kagome spin ice model with
interactions restricted to the nearest neighbors, originally
studied by Wills et al. [20]. Effects due to long-range dipolar
interactions will be discussed in Sec. V. The geometry of the
lattice is such that êi · ê j = −1/2 for any nearest-neighbor
pair 〈i j〉. As a result, a ferromagnetic exchange interaction
between nearest-neighbor pairs JF Si · S j , with JF < 0, gives
rise to an antiferromagnetic Ising model on the kagome lattice,

H = J
∑
〈i j〉

σiσ j = v

2

∑
α

Q2
α + E0, (1)

where J = |JF |/2 is the effective interaction strength. In the
second equality above, the Hamiltonian is expressed in terms
of magnetic charges Qα associated with triangles, v ∝ J is
an effective self-energy of charges to be determined in the
following and E0 = NJ is the ground-state energy with N
being the number of spins in the system. It is convenient to in-
troduce the dumbbell representation of spin ice [41], in which
magnetic dipoles are stretched into bar magnets of length �

054133-2



NONEQUILIBRIUM GENERATION OF CHARGE DEFECTS … PHYSICAL REVIEW E 109, 054133 (2024)

such that their poles meet at the centers of triangles. The
magnetic charge associated with each pole is then qm = μ0/�.
One can then define a total magnetic charge for each triangle:

Qα = ±qm

∑
i∈α

σi, (2)

where + and − signs are used for up- and down-triangles,
respectively. The self-energy coefficient in Eq. (1) is given
by v = J�2/μ2

0. In the following, the magnetic charges of
triangles are expressed using qm as the unit.

The ground states of the spin ice Hamiltonian Eq. (1)
are then given by states with minimum magnetic charges
on every triangle. As there are three Ising spins in a tri-
angle, the minimum charge condition is thus Qα = +1 or
−1, which correspond to 2-in-1-out or 1-in-2-out, respec-
tively, spin configurations. These local constraints for the
ground states are known as ice rules based on the analogy
with the Bernal-Fowler rules for water ice [42]. The number
of ground states satisfying these local constraints increases
exponentially with the number of spins, giving rise to a fi-
nite residual entropy even at T = 0. The residual entropy
S0/N = 1

3 ln 9
2 = 0.501 estimated by Pauling’s method agrees

very well with Monte Carlo simulations [20]. Importantly, the
magnetic charge expression for the Hamiltonian in Eq. (1) also
shows that elementary excitations in the degenerate ground-
state manifold are defect triangles with a net charge Q = +3
or −3, corresponding to 3-in or 3-out spin configurations,
respectively.

It is worth contrasting the degenerate ice manifold of
kagome with that of the pyrochlore (or its 2D checkerboard
analog) spin ice. The basic simplex unit in pyrochlore is a
tetrahedron with four spins. As a result, a similar minimum
charge Q = 0 leads to the well-known 2-in-2-out ice rules.
Elementary excitations of the low temperature ice phase are
tetrahedra with Q = ±2, which behave as emergent magnetic
monopoles in a charge-free vacuum [43]. This difference
in ice rules and elementary excitations also leads to funda-
mentally different quench-induced nonequilibrium dynamics,
which will be briefly discussed in Sec. V.

Monte Carlo method with Glauber dynamics for Ising
spins [44–46] is employed to study the quench dynamics of
kagome spin ice. At every time step, one random spin, say at
site-i, is updated according to the transition probability

w(σi → −σi; t ) = 1

2

(
1 − tanh

β(t )�Ei

2

)
, (3)

where β(t ) = 1/T (t ) is the time-dependent inverse tempera-
ture, and �Ei is the energy change due to a flipped σi. After
each attempt of single-spin update, the simulation time t is
increased by δt = τ0/Ns; here Ns = 3L2 is the total number
of spins and τ0 is a timescale depending on the microscopic
physics of the transition process.

The size-dependent time-step δt is crucial for a proper
conversion from the MC simulation time to the physical time
and the correct extrapolation to the thermodynamic limit [46].
As only one spin is randomly selected for update within the δt
time step, the Glauber method discussed above seems to rule
out the possibility of simultaneous flips of two distant spins.
Physically, however, one can interpret the finite δt as a min-
imum timing resolution associated with finite system sizes,

which means that the interval between two consecutive spin
flips is a random variable uniformly distributed between zero
and δt . And as δt → 0 in the thermodynamic limit, the above
procedure properly recovers the continuous time limit. This
definition of δt is also important for a proper interpretation
of time-dependent quantities, as discussed in previous works
[46–48].

The fundamental timescale τ0 = Nsδt , corresponding to
the duration of Ns single-spin updates, is independent of the
system size and serves as the time unit for MC simulations
(which means we set τ0 = 1 in the simulations). Physically,
the timescale τ0 is given by the inverse of the microscopic
transition rate of Ising spins [44]. In real materials with Ising-
like spins, this fundamental transition rate τ−1

0 depends on the
quantum tunneling mechanisms between the two microscopic
states represented by the Ising variable. The physical tran-
sition rate ν for a spin-flip is ν ∝ τ−1

0 w(σi → −σi; T ) [44].
The temperature dependence of spin flips is controlled by the
Glauber transition probability in Eq. (3).

There are three types of single-spin update which is de-
pendent on the energy change in the transition probability: (i)
�Ei = 0 corresponding to an exchange of magnetic changes
on the two triangles sharing σi. (ii) �Ei = ±4J due to the
creation or annihilation of a single Q = ±3 defect, and (iii)
�Ei = ±8J caused by the creation or annihilation of a pair
of adjacent defect-triangles of opposite charges. The reaction
dynamics corresponding to these spin updates are discussed
in Sec. III below. At low temperatures, transitions that cost
energy are dominated by the creation of single defect-triangle
with �E = 4J . For Glauber dynamics Eq. (3), this suggests a
dimensionless parameter

γ (t ) = tanh [2β(t )J], (4)

which is similar to the one introduced for quench dynamics
of 1D Ising chain [16]. The resultant transition rate for such
energy-costly process is w(t ) = 1

2 [1 − γ (t )].
The Glauber dynamics MC method is employed to investi-

gate the temperature dependence of relaxation time τ (T ) for
kagome spin ice. To this end, we perform thermal quench
simulations where the system is suddenly quenched from a
random state to a constant low temperature at t = 0. All MC
simulations presented in the following were performed with
a linear size L = 100, corresponding to Ns = 30 000 spins.
We use nQ to denote the density of triangles with charge
Q. The defect density is given by n3 = (n+3 + n−3). The
charge neutrality n+3 = n−3 is preserved during the relaxation
process. Figure 2 shows the decay of the density of excess
defects, δn3(t ) = n3(t ) − neq

3 (T ), after the quench. The resul-
tant curves of different temperatures, after normalization by
the initial value, fall nearly on the same straight line in the
semilog plot, indicating an exponential decay

δn3(t ) = δn3(0) e−t/τ (T ). (5)

The estimated relaxation time is τ ≈ 0.75, which represents
an estimate of the decay constant averaged over all tempera-
tures. As shown by the spreading of data points at large time
(e.g., t = 8), the relaxation time is weakly temperature depen-
dent, with a slightly smaller value at higher temperatures.

The fact that the relaxation of charge defects is well
described by an exponential decay also indicates their
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FIG. 2. Semilog plot of the normalized density of excess charge
defect δn3 versus time for kagome ice under instant quench to var-
ious temperatures. The density is normalized by the initial value of
random spin configuration where the fraction of 3-in–3-out triangles
is n3(0) = 1/4. The dashed line shows an exponential decay e−t/τ

with τ ≈ 0.75.

nontopological nature. The dominant process of the relaxation
is through the decay of, e.g., a Q = +3 defect into a +1 tri-
angle, while converting a neighboring Q = −1 triangle to +1.
Pair annihilations of ±3 defects are negligible in the equilibra-
tion. This is in stark contrast with the case of pyrochlore spin
ice where pair annihilations of Q = ±2 magnetic monopoles
are the driving process of relaxation after quench, giving rise
to a 1/t decay of excess monopole density when quenched to
zero temperature [49].

The nearly temperature-independent τ of defect triangles
n3 can also be attributed to the above fact that the relaxation
after a sudden quench is dominated by the spontaneous de-
cay of defect triangles. As the energy change due to such a
decay is �E = −4J , the corresponding transition probability
from Eq. (3) is w = 1

2 [1 − tanh(2J/T )] ≈ 1, for temperature
T � 0.5J . As a result, the relaxation time τ shows a very weak
dependence on T for low-temperature quenches, consistent
with results in Fig. 2. In this limit, the physical relaxation time
is essentially given by the microscopic relaxation τ0 discussed
above.

Next we apply the Glauber dynamics simulations to study
the relaxation of charge defects under slow cooling. To this
end, the system is prepared in an infinite-T equilibrium state
at time t = 0. The temperature is then decreased to T = 0 at a
time t = τQ according to a prescribed schedule. The inverse
of the cooling time, τ−1

Q , thus serves as a measure of the
annealing rate. We consider a class of algebraic cooling sched-
ules, similar to those introduced in Ref. [16] for the quench
dynamics of the Ising chain. In terms of the dimensionless
parameter γ (t ), the thermal-bath temperature varies with time
according to

1 − γ (t ) =
(

1 − t

τQ

)α

. (6)

In particular, the case of α = 1 corresponds to a linear in-
crease of γ from zero at t = 0 to γ = 1 at the end of cooling.
Regardless of the exponent α, the physical temperature goes
from T (t = 0) = ∞ to zero at t = τQ. In all cases, since
the temperature drops quickly in the initial stage when t �
0.1τQ, the system is significantly out of equilibrium in this
initial period. The late-stage nonequilibrium dynamics of de-
fects is likely not affected much by this initial rapid cooling
period.

For a given exponent α of the algebraic cooling schedule,
Glauber dynamics simulations were performed with the cool-
ing time τQ = 10 × 2m, where m = 0, 1, 2, . . . , 10. Figure 3
shows the defect density n3(t ) versus time for three different
exponents α = 1, 2, and 3 and varying cooling time τQ in both
log-log and semilog plots. For m � 7, each data point was ob-
tained by averaging results from more than 10 000 randomly
generated initial states, while for m > 7, more than 1500
randomly generated initial states are averaged. The overall be-
havior is that of a slow decrease of charge defects for most of
relaxation process, followed by a rather rapid drop at the end
of cooling. From the semilog plots shown in Figs. 3(d)–3(f),
the rapid decline of the defect density at the late stage can be
approximated by an exponential decay. However, for algebraic
cooling with α = 2 and 3, the decay of the defects slows down
significantly near the end of the annealing. Importantly, the
residual defect density left at t = τQ exhibits a power-law
dependence on the cooling time

n3(τQ) ∼ τ
−μ
Q , (7)

where the exponent μ seems to be given by the exponent α

of the algebraic cooling. These results are rather intriguing
since, as demonstrated above, the relaxation time τ (T ) re-
mains rather short. Unlike 1D Ising chain or pyrochlore spin
ice, the nearest-neighbor kagome spin ice does not exhibit a
critical point at T = 0. As a result, the system does not suffer
from KZ-type freezing due to critical slowing down and finite
cooling rate.

III. REACTION KINETICS OF CHARGE DEFECTS

To understand the scaling behaviors of the charge defects
in kagome spin ice, we adopt the reaction kinetics theory to
describe the dynamical evolution of the defect triangles. The
basic idea is to describe the time evolution in terms of the
number densities of triangle-simplexes of different charges in
a mean-field sense. For convenience, we also borrow terms
from chemical reaction theory and use species to refer to tri-
angles of different charges. Assuming that the magnet remains
spatially homogeneous during relaxation, rate equations are
employed to describe the “chemical reactions” of different
triangle species. In kagome spin ice, there are four differ-
ent species, corresponding to triangles with magnetic charge
Q = ±1, and ±3. In terms of magnetic charges, Fig. 4 sum-
marizes the four distinct types of processes due to a single
spin-flip. The first one in Fig. 4(a) shows the exchange of +1
and −1 charges between two adjacent triangles. The process
shown in Fig. 4(b) describes the exchange of +3 and +1
changes between nearest-neighbor triangles, which can be
thought of as the diffusion of the +3 defect. In both cases, the
energy is conserved, �E = 0, and there is no net change in
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FIG. 3. Relaxation of charge defect density n3(t ) as a function of time t in log-log plots for the kagome spin ice undergoing algebraic
cooling schedules with (a) α = 1 (“linear” cooling), (b) α = 2, and (c) α = 3 with different values of the quench time τQ. Panels (d)–(f)
show the corresponding results in the semilog plots. The solid black curves are fitted with mean-field results with parameters A1 = 1.566 and
A2 = 0.600. The dashed lines correspond to the analytical formula Eq. (22) obtained from the asymptotic solution of the rate equation. The
final defect density n3(t = τQ ) (empty black circles) exhibits power-law relaxation with cooling time τQ.

simplex species. As a result, these two processes are similar
to “physical process,” as opposed to the chemical processes to
be discussed below.

(+3) + (−1) (+1) + (+1) (+3) + (−3) (+1) + (−1)

(+1) + (−1) (−1) + (+1)

(a) (b)

(c) (d)

(+3) + (+1) (+1) + (+3)

FIG. 4. Summary of simplex reactions due to a single spin-flip
in kagome spin ice. The blue (dark) and red (light) circles denote
positive and negative charges, respectively. (a) Exchange of +1 and
−1 charges. (b) Exchange of +3 and +1 charges (and a similar one
for −3 and −1). (c) Reaction of +3 and −1 into two +1 triangles
(and the time-reversal counterpart). (d) Pair-annihilation of Q = ±3
charges.

The process depicted in Fig. 4(c) corresponds to the decay
of a +3 defect into a +1 triangle, while shedding the extra
charge to convert a neighboring −1 triangle into +1. The re-
sultant “chemical” reaction and its reverse can be summarized
as

(+3) + (−1) � (+1) + (+1). (8)

And, finally, Fig. 4(d) describes the pair-annihilation of ±3
charge defects into ±1 ice-rules obeying triangles, with the
chemical reactions:

(+3) + (−3) � (+1) + (−1). (9)

It is worth noting that since these reactions are induced by
the flipping of a magnetic dipole, the total magnetic charge is
always conserved.

Next we use chemical reaction theory to derive constraints
on the reaction rates, which are required for obtaining the
rate equations. To this end, we consider a general chemical
reaction

QA + QB � QC + QD, (10)

where QA, QB are the initial reactants, and QC , QD are the final
products. Charge conservation requires QA + QB = QC + QD.
The two-way harpoon indicates that the reaction can occur
in both forward and reversed directions. It is convenient to
choose the forward direction as the one that lowers the total
energy, i.e., �E < 0. These are consistent with both reactions
in Eqs. (8) and (9). In other words, the forward reaction is
the decay or the annihilation of magnetic charges, while the
reversed reaction is the excitation of magnetic charges.
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For a given reaction, its rate is proportional to densities
of the reactants. For example, the transition rate of forward
reaction for Eq. (10) is v+ ∝ nQA nQB . The net rate of reaction
in the forward direction is then

v = v+ − v− = k+nQA nQB − k−nQC nQD , (11)

where nQ is the density of triangles with charge Q, and
k± denote the reaction coefficients of forward or reversed
reactions, respectively. These reaction coefficients, however,
are not independent. When the system reaches equilib-
rium, the net change is zero v = 0, which in turn means
k+/k− = neq

QC
neq

QD
/neq

QA
neq

QB
. The equilibrium densities of the

various species are given by the Boltzmann distribution, neq
Q =

gQ e−βEQ/Z , where Z is the partition function, EQ is the energy
of charge species Q, and gQ is its degeneracy. We thus have

k+
k−

= gQC gQD

gQA gQB

e−β�E , (12)

where �E is the energy difference between products and reac-
tants. In general, the reaction coefficients k± can be expressed
as

k± = A±e−βε± , (13)

where ε± are the activation energies for the forward or back-
ward reactions, respectively. In chemical reactions which
often involve an intermediate state, these energy barriers are
the energy differences between the intermediate state and
the initial or final state, respectively. The coefficients A± are
now nearly temperature independent. Let E∗ be the energy of
the intermediate state, we have ε+ = E∗ − (EQA + EQB ) and
ε− = E∗ − (EQC + EQD ). Substitute Eq. (13) into the ratio in
Eq. (12), and using the fact that ε+ − ε− = �E , we obtain the
ratio between the two prefactors

A+
A−

= gQC gQD

gQA gQB

. (14)

The overall reaction rate, and in particular its temperature
dependence, naturally also depends on the energy level E∗ of
the intermediate state. However, for Ising spins with Glauber
dynamics, the transition rate Eq. (3) only depends on the en-
ergy difference �E , which does not involve any intermediate
state. Or equivalently, the initial state with a higher energy
serves as such intermediate, hence ε+ = 0 and ε− = |�E |.

With these simplifications, there is only one independent
parameter, e.g., A−, for the determination of the net reaction
rate

v = A−

[
gQC gQD

gQA gQB

nQA nQB − e−β|�E |nQC nQD

]
. (15)

When a charge species is involved in multiple reactions, the
rate equation of its density should include contributions from
all possible reactions. For the case of defect triangles with
Q = ±3, one needs to consider both the decay and the pair-
annihilation. As a result, we have dn+3/dt = −vdecay − vpair,
where vdecay and vpair are the reaction rates of Eqs. (8) and
(9), respectively. The rate equations can be further simplified
by taking into account the charge neutrality conditions, n+3 =
n−3 and n+1 = n−1, which are verified to high precision in
our Glauber dynamics. We define the total density of charge

defects as n3 = (n+3 + n−3), and the density of the ground-
state triangles as n1 = (n+1 + n−1). As the total number of
triangles in a kagome lattice is fixed, we have n1 = 1 − n3

and only need to consider the rate equation for the density of
charge defect, which is given by

dn3

dt
= A1

(
e−8βJn2

1 − 9n2
3

) + A2
(
e−4βJn2

1 − 3n1n3
)
. (16)

The two coefficients A1, A2 are temperature-independent pa-
rameters to be determined by fitting with the MC simulation
results. Starting from an initially random configuration where
n3(0) = 1/4, the above rate equation is numerically integrated
using a variable step and variable order ordinary differential
equation solver. By fitting the integration results with data
points from one particular cooling time τQ = 160 of the linear
schedule, we obtained A1 = 1.566 and A2 = 0.600. Remark-
ably, as shown in Fig. 3, the rate equation description based
on these two fitted parameters gives consistent results with the
Glauber dynamics simulations for all three algebraic cooling
schedules and a wide range of cooling time τQ. Moreover,
excellent agreements were obtained not only for the residual
defect density at the end of cooling, but also for the entire
relaxation process.

IV. ASYMPTOTIC SOLUTION OF THE RATE EQUATION

In this section, we solve the rate equation (16) in the slow
cooling limit τQ � τ , where τ is the nearly constant relax-
ation time in Eq. (5). At low temperatures, the defect density
is small n3 � 1, and we can approximate n1 = 1 − n3 ≈ 1.
This also means that the pair annihilation term in the rate
equation can be neglected. Moreover, spontaneous pair cre-
ation of charge defects with an exponential factor e−8β is also
negligible compared with the generation of a single defect.
This means that the A1 term, corresponding to pair creation or
annihilation processes shown in Fig. 4(d), can be neglected.
The rate equation then becomes

dn3

dt
= −n3

τ
+ 1

3τ
e−4β(t )J , (17)

where the relaxation time τ = 1/(3A2). Using numerical
value A2 = 0.600 fitted from the cooling simulations, we ob-
tain τ ≈ 0.555, which is consistent with the estimate from
the instant quench simulations shown in Fig. 2. The above
equation can be readily integrated to give

n3(t ) = n3(t0)e−(t−t0 )/τ + 1

3τ

∫ t

t0

e−4β(s)Je−(t−s)/τ ds. (18)

Here t0 is a characteristic instant after which the low-T ap-
proximation Eq. (17) of the rate equation is valid. The residual
charge defect is given by n3(t = τQ). In the slow cooling limit
τQ � τ , the first initial-value term with n3(t0) tends to zero.
We have

n3(τQ) = 1

3τ

∫ τQ

t0

e−4β(s)Je−(τQ−s)/τ ds. (19)

This integral in the slow cooling limit is dominated by the time
region s � τQ because of the exponentially decaying memory
function exp[−(τQ − s)/τ ]. For convenience, we introduce a
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change of variable η = (τQ − s)/τ . By expressing the Arrhe-
nius factor e−4βJ in terms of the dimensionless γ , we have

n3(τQ) = 1

3

∫ (τQ−t0 )/τ

0

1 − γ (η)

1 + γ (η)
e−η dη. (20)

The integral is now dominated by η � 0, where γ ≈ 1.
Approximating the denominator 1 + γ ≈ 2, and substituting
Eq. (6) for γ (η) in the numerator, we obtain

n3(τQ) = 1

6

(
τ

τQ

)α ∫ (τQ−t0 )/τ

0
ηαe−η dη. (21)

The upper limit of the integral can be replaced by ∞ in the
τQ � τ limit, the defect density at the end of cooling is then
given by

n3(τQ) = (1 + α)

6

(
τ

τQ

)α

, (22)

where (x) is the Gamma function. Importantly, here we show
that the residual charge defects exhibit a scaling relation with
the cooling rate with an exponent controlled by the exponent
α of the cooling schedule. This result is also completely con-
sistent with the power-law behavior obtained in our Glauber
dynamics simulations, as shown by the dashed lines in Fig. 3.

In fact, the above argument can be applied to cooling
schedules where the exponential factor admits a power-law
expansion: e−4β(t )J = a(τQ − t )α + · · · at t � τQ. It is worth
noting that, since either the Glauber or Metropolis dynamics
for Ising spins is controlled by this Arrhenius factor, it is more
natural to define cooling schedules in terms of this factor or
equivalently the dimensionless parameter Eq. (4). The above
series expansion of e−4βJ corresponds to a physical temper-
ature which vanishes in such a way that its inverse diverges
logarithmically near t = τQ:

T (t ) ≈ 4J

α| ln(τQ − t )| . (23)

Finally, we note that nonuniversal behaviors, in particular
nonpower-law dependencies, are expected for general cool-
ing schedules that do not belong to this class. For example,
for the linear in T cooling schedule: T (t ) ∼ (1 − t/τQ),
which belongs to a special case of the so-called exponential
cooling protocol, our Glauber dynamics simulations find a
residual charge defect density which decays exponentially
with cooling time: n3(τQ) ∼ exp(−const × τQ). This result is
consistent with the non-power-law behavior observed in the
quench simulations of artificial colloidal kagome ice [50].

V. SUMMARY AND OUTLOOK

To summarize, we have presented a comprehensive study
on the quench dynamics of nearest-neighbor kagome spin ice.
This highly frustrated spin system is not only an important
model in statistical physics and a representative system of ge-
ometrical frustration. The kagome spin ice exhibits an unusual
nontopological defects, corresponding to triangle-simplexes
which violate the ice-rule constrants, in the low temperature
ice phase. The relaxation time that results from the decay of
such nontopological solitons remains finite and nearly tem-
perature independent. As a result, the standard KZ mechanism

cannot be applied to describe the quench dynamics of kagome
ice. Yet, our extensive simulations and rate-equation analysis
demonstrate that, for a special case of algebraic cooling pro-
tocols, the residual defect density in kagome spin ice exhibits
a power-law relation with the cooling rate. We further show
that the power-law dependencies result from the accumulation
of excess defects during the nonadiabatic evolution at the
late stage of cooling. Our analysis can also be extended to
the quench dynamics of other systems with nontopological
solitons.

The kagome spin ice considered in this work is an
idealized frustrated Ising system with nearest-neighbor in-
teractions. In realistic versions of kagome spin ice, ei-
ther in magnetic compounds such as HoAgGe [40] and
Dy3Mg2Sb3O14 [38,39] or in artificial nanomagnetic real-
izations [29–34], the magnetic Coulomb interaction between
the background Q = ±1 magnetic charges leads to an in-
triguing intermediate phase where the charge degrees of
freedom develop a long-range order, yet spins remain dis-
ordered [51,52]. The Coulomb interaction is minimized by
a staggered charge distribution with all up-triangles assum-
ing, e.g., Q = +1, while all down-triangles in the Q = −1
state, or vice versa. This charge ordered state can thus
be described by an Ising order parameter m = 〈Q − Q�〉.
Importantly, phase transition into this charge ordered state
thus belongs to the 2D Ising universality class [51,52]. As the
temperature is further lowered, a long-range magnetic order
with a tripled unit cell is eventually induced by the long-range
dipole-dipole interaction. The corresponding magnetic transi-
tion is of the 2D three-state Potts universality class [52,53].
Nonequilibrium critical dynamics due to thermal quenches
across these two phase transitions is expected to be well
described by the KZ mechanism. A detailed investigation of
kagome spin ice with dipolar interactions will be left for future
study.

A rather different scenario occurs in the three-dimensional
(3D) pyrochlore spin ice, and its 2D counterpart, the checker-
board spin ice. In both cases, the lattices are composed of
simplexes (e.g., tetrahedra in the pyrochlore lattice) with four
Ising spins. As a result, the ground-state manifold comprises
2-in-2-out simplexes with zero magnetic charge. Importantly,
elementary excitations of such ice phases, i.e., simplexes
that violate the 2-in-2-out ice rules, are topological in na-
ture and carry a net magnetic charge, effectively behaving
as emergent magnetic monopoles. Also contrary to the ice
phase of kagome, both pyrochlore and checkerboard spin
ices approaches a critical state as T → 0, similar to the 1D
Ising chain (however, unlike a 1D Ising chain, spins remain
disordered at the T = 0 critical state in spin ice). This crit-
ical point in spin ices is unconventional as the correlation
length diverges exponentially, instead of algebraically, when
approaching zero temperature. Nonetheless, the KZ mecha-
nism can be generalized to understand the nonequilibrium
generation of topological defects when such spin ices are
quenched to the critical point. A detailed account of the
quench dynamics of pyrochlore spin ice will be presented
elsewhere [54].

Finally, the presence of long-range dipolar interactions in
the 3D pyrochlore spin ice induces a sharp first-order transi-
tion at very low temperatures [55]. The ground state below

054133-7



ZHIJIE FAN AND GIA-WEI CHERN PHYSICAL REVIEW E 109, 054133 (2024)

the phase transition is a long-range spin ordered state with
zero total magnetization. Since this magnetic transition is
discontinuous, the standard KZ mechanism cannot be applied
to this case. It is worth noting, however, that this ordered state
is obtained by employing the nonlocal loop updates in Monte
Carlo simulations [55]. As this magnetic phase transition oc-
curs at a very low temperature, this magnetic ground state
most likely cannot be reached through local spin dynamics,
especially when the system already enters the nonadiabatic
regime during a slow quench. Because of the ice-rules con-
straint, magnetization dynamics requires enough number of
monopoles to activate the transition to the ordered states. For
slow annealing processes, the system is likely to be frozen
due to the extremely low number of monopoles at low tem-
peratures. On the other hand, an interesting related subject
is the kinetics of the magnetic transition when subjecting the
pyrochlore spin ice to a sudden quench.
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APPENDIX: KIBBLE-ZUREK MECHANISM

The central idea of KZ mechanism is the breaking of
adiabaticity due to critical slowing down when approach-
ing a phase-transition point. Specifically, consider a general
cooling schedule that starts at t = 0 and reaches the critical
point at t = τQ. Note that the same variable τQ is used in
the case of kagome spin ice to denote the total time span
of cooling from infinite temperature to T = 0, although the
short-range kagome ice does not exhibit a critical point at

T = 0. However, for 3D pyrochlore and 2D checkerboard spin
ices, the T = 0 does correspond to an unusual critical state
with power-law spin correlations [54]. For thermal quenches
across a critical point at Tc, the control parameter is given by

ε(t ) = [Tc − T (t )]/Tc. (A1)

The relaxation time τ of the system is now time-dependent
through its dependence on ε(t ). When the relaxation time
τ (t ) is shorter than the timescale ε/ε̇ that characterizes the
change of the control parameter, quasi-equilibrium can be
quickly established and adiabaticity is maintained. The condi-
tion τ (t∗) = ε/ε̇ thus determines a freeze-out time t∗ which
signals the onset of nonadiabaticity. In the limit of slow
cooling, a universal scaling relation for the freeze-out time
t̂ = τQ − t∗ (measured from the critical point) is obtained

t̂ ∼ τ
νz/(1+νz)
Q , (A2)

where ν is the exponent characterizing the power-law diver-
gence of equilibrium correlation length ξ ∼ |T − Tc|−ν , and
z is the dynamical exponent τ ∼ ξ z. Importantly, the residual
density of topological defects can be estimated by the correla-
tion length at the freeze-out time:

nd ∼ ξ̂−D ∼ τ
−Dν/(1+νz)
Q , (A3)

where D is the spatial dimension of the system.
The KZ mechanism can also be generalized to describe

nonequilibrium dynamics of the paradigmatic 1D Ising fer-
romagnet which exhibits an unconventional critical point at
Tc = 0 [15–19]. Topological defects are kinks and antikinks
that connect the doubly degenerate fully polarized ground
states. Contrary to standard continuous phase transitions, both
correlation length and relaxation time of the Ising chain di-
verge exponentially as T → 0. Yet, a dynamical exponent
can still be defined, e.g., z = 2 for Glauber dynamics, and
a freeze-out time t̂ can be determined from the KZ condi-
tion τ (τQ − t̂ ) = t̂ . However, while scaling relation is still
obtained for the residual defect density, the exponent of the
resultant power law depends on the cooling schedule.
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