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We consider random hyperbolic graphs in hyperbolic spaces of any dimension d + 1 � 2. We present a
rescaling of model parameters that casts the random hyperbolic graph model of any dimension to a unified
mathematical framework, leaving the degree distribution invariant with respect to the dimension. Unlike the
degree distribution, clustering does depend on the dimension, decreasing to 0 at d → ∞. We analyze all of the
other limiting regimes of the model, and we release a software package that generates random hyperbolic graphs
and their limits in hyperbolic spaces of any dimension.
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I. INTRODUCTION

Random hyperbolic graphs (RHGs) [1,2] are a latent space
network model [3,4], in which the latent space is the hyper-
bolic plane H2: nodes are random points on the plane, while
connections between nodes are established with distance-
dependent probabilities. RHGs reproduce many structural
properties of real networks, including sparsity, self-similarity,
power-law degree distribution, strong clustering, small world-
ness, and community structure [2,5–8]. They are also expo-
nential random graphs with just two sufficient statistics—the
number of links and the sum of their hyperbolic lengths [9].
Using the RHG as a null model, one can map real networks to
hyperbolic spaces [10–12], the applications of which include
routing and navigation [10,13–18], link prediction [11,19–
25], network scaling [5,8,17], semantic analysis [26–29], in-
ference of shortest paths [30], and many others [31].

While two-dimensional RHGs have been studied exten-
sively in the literature, their higher-dimensional generaliza-
tions have not received a lot of attention. Here, we aim to fill
this gap by offering a systematic analysis of the RHG model in
a hyperbolic space Hd+1 of arbitrary dimensionality d+1�2.
Apart from purely academic interest, our work is inspired
by several practical questions. Hyperbolic spaces expand ex-
ponentially for any dimension d + 1 � 2. Thus, intuitively,
RHGs should have similar topological properties regardless
of the dimensionality of their latent hyperbolic spaces. We aim
to verify this intuition here. Second, the dimensionality of the
latent space has been shown to affect the accuracy of graph
embedding tasks [32]. Finally, a recent study suggests that the
dimensionality of the hyperbolic space allows one to generate
more realistic and diverse community structures [33].

*Corresponding author: gabybudel@gmail.com

Spatial graphs in hyperbolic spaces comprise an area of
active research, and many results were obtained recently.
RHGs are equivalent to geometric inhomogeneous random
graphs (GIRGs), as mentioned in [2] and formalized in [34].
This GIRG formulation is followed in [9,35–37], where the
small-world, clustering, and other properties of GIRGs are
analyzed for any dimension d . The work by Yang and Rideout
[38] contains rigorous mathematical proofs for degree distri-
butions and degree correlations of the high-dimensional RHG
model. The related popularity-similarity optimization (PSO)
model has recently been extended to arbitrary dimensionality
d + 1 � 2 in [39]. Whereas RHGs are a static network model,
the (d + 1)-dimensional PSO model is a growing network
model in hyperbolic space that possesses similar structural
properties.

Here, we conduct a systematic analysis of the structural
properties of RHGs and their limiting regimes. In Sec. II,
we define the RHG model in hyperbolic spaces Hd+1 of any
dimension d + 1 � 2. We present a rescaling of the model
parameters that renders the degree distribution invariant with
respect to d , Sec. III, focusing on the three connectivity
regimes—cold, critical, and hot—in the model, Sec. IV.
In Sec. V, we analyze the limiting regimes of the model when
its parameters tend to their extreme values. These regimes
are Erdős-Rényi random graphs, the configuration model, and
(soft) random geometric graphs on spheres. Section VI intro-
duces our software package that generates RHGs and their
limits for any d , generalizing the d = 1 generator in [40]. The
concluding remarks are in Sec. VII.

II. RANDOM HYPERBOLIC GRAPH MODEL
IN d + 1 DIMENSIONS

A random hyperbolic graph (RHG) in the (d + 1)-
dimensional hyperbolic space Hd+1 is defined as follows.
Every node i of the RHG corresponds to a point xi in
Hd+1. Points are selected uniformly at random with a pdf
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ρ(x), which is prescribed by the model. Connections be-
tween node pairs in the RHG are established with independent
probabilities p : R+ → [0, 1] that are functions of the dis-
tances in Hd+1. The probability pi j of a link between nodes
i and j is pi j = p(dHd+1 (xi, x j )), where dHd+1 (xi, x j ) is the
distance between points xi and x j in Hd+1.

The RHG model, as a result, is fully defined by its latent
space Hd+1, node pdf ρ(x), and the connection probability
function p(d ).

To justify our choices for ρ(x) and p(d ), we first recall
the definition of the d-dimensional hyperbolic space and its
basic geometric properties. To this end, we consider the upper
sheet of the (d + 1)-dimensional hyperboloid of curvature
K = −ζ 2,

x2
0 − x2

1 − · · · − x2
d+1 = 1

ζ 2
, x0 > 0, (1)

in the (d + 2)-dimensional Minkowski space with metric

ds2 = −dx2
0 + dx2

1 + · · · + dx2
d+1. (2)

The spherical coordinate system on the hyperboloid
(r, θ1, . . . , θd ) is defined by

x0 = 1

ζ
cosh ζ r,

x1 = 1

ζ
sinh ζ r cos θ1,

x2 = 1

ζ
sinh ζ r sin θ1 cos θ2,

...

xd = 1

ζ
sinh ζ r sin θ1 · · · sin θd−1 cos θd ,

xd+1 = 1

ζ
sinh ζ r sin θ1 · · · sin θd−1 sin θd , (3)

where r > 0 is the radial coordinate, and (θ1, . . . , θd ) are
the standard angular coordinates on the unit d-dimensional
sphere Sd .

The coordinate transformation in (3) yields the spheri-
cal coordinate metric in the (d + 1)-dimensional hyperbolic
space Hd+1,

ds2 = dr2 + 1

ζ 2
sinh2 (ζ r)d�2

d , (4)

d�2
d = dθ2

1 + sin2(θ1)dθ2
2 + · · ·

+ sin2(θ1) · · · sin2(θd−1)dθ2
d , (5)

resulting in the volume element in Hd+1:

dV =
(

1

ζ
sinh ζ r

)d

dr
d∏

k = 1

sind−k (θk )dθk . (6)

The distance between two points i and j in Hd+1 is given
by the hyperbolic law of cosines:

cosh ζdi j = cosh ζ ri cosh ζ r j − sinh ζ ri sinh ζ r j cos �θi j,

(7)

where �θi j is the angle between i and j:

cos(�θi j ) = cos θi,1 cos θ j,1 + sin θi,1 sin θ j,1 cos θi,2 cos θ j,2 + · · ·
+ sin θi,1 sin θ j,1 · · · sin θi,d−1 sin θ j,d−1 cos θi,d cos θ j,d

+ sin θi,1 sin θ j,1 · · · sin θi,d−1 sin θ j,d−1 sin θi,d sin θ j,d , (8)

where (θi,1, . . . , θi,d ) and (θ j,1, . . . , θ j,d ) are the coordinates
of the points i and j on Sd .

For sufficiently large ζ ri and ζ r j values, the hyperbolic law
of cosines in Eq. (7) is closely approximated by

di j ≈ ri + r j + 2

ζ
ln[sin(�θi j/2)]. (9)

The hyperbolic ball Bd+1 of radius R > 0 is defined as the
set of points with

r ∈ [0, R]. (10)

Nodes of the RHG are points in Bd+1 selected at random
with density ρx(x) ≡ ρr (r)ρθ1 (θ1) · · · ρθd (θd ), where

ρr (r) = [sinh(αr)]d/Cd , α � ζ/2, (11a)

Cd ≡
∫ R

0
[sinh(αr)]ddr, (11b)

ρθk (θk ) = [sin(θk )]d−k/Id,k, k = 1, . . . , d, (11c)

Id,k ≡
∫ π

0
[sin(θk )]d−kdθk

= √
π

	
[

d−k+1
2

]
	

[
1 + d−k

2

] , k < d, (11d)

Id,d ≡ 2π. (11e)

In other words, nodes are uniformly distributed on unit sphere
Sd with respect to their angular coordinates. In the special
case of α = ζ , nodes are also uniformly distributed in Bd+1.

Pairs of nodes i and j are connected independently with
connection probability

pi j = p(di j ) = 1

1 + exp[ζ (di j − μ)/2T ]
, (12)

where μ > 0 and T > 0 are model parameters, and di j is the
distance between points i and j in Bd+1, given by Eq. (7).
We refer to parameters T and μ as the temperature and the
chemical potential, respectively, using the analogy with the
Fermi-Dirac statistics. We note that the factors of 2 and ζ in
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FIG. 1. A visualization of an RHG for d = 2 in B3. The spherical
coordinates (r, θ1, θ2) of a point in B3 are shown. A subgraph of
three nodes is shown with geodesics between the nodes. Node pairs
(1,2) and (2,3) are connected with high probability because d12 < R
and d23 < R (green), while node pair (1,3) is disconnected with high
probability because d23 > R (red).

Eq. (12) are to agree with the two-dimensional RHG [2] that
corresponds to d = 1.

Thus, the RHG is formed in a three-step network
generation process:

(i) Randomly select n points in Bd+1 with pdf ρx(x)
in Eq. (11).

(ii) Calculate distances in Bd+1 between all node pairs i- j
using Eq. (7).

(iii) Connect node pairs i- j independently at random with
distance-dependent connection probabilities pi j = p(di j ),
prescribed by Eq. (12).

Taken together, RHGs in Bd+1 are fully defined by six
parameters: properties of the hyperbolic ball, R and ζ ; num-
ber of nodes n; radial component α of the node distribution;
chemical potential μ, and temperature T . Figure 1 visualizes
an RHG for d = 2.

Only the four parameters (n, α, T, R) are independent,
however. It follows from (7) that ζ is merely a rescaling
parameter for the distances {di j} and can be absorbed into the
radial coordinates r by the appropriate rescaling. Chemical
potential μ controls the expected number of links and the
sparsity of the resulting networks. We demonstrate below
that the sparsity requirement uniquely determines R and μ as
functions of the network size n, R = R(n) and μ = μ(n).

III. DEGREE DISTRIBUTION AND CLUSTERING
COEFFICIENT IN THE RHG

The structural properties of the RHG can be computed with
the hidden variable formalism, Ref. [41], by treating node
coordinates as hidden variables.

We begin by calculating the expected degree of node l
located at point xl = {rl , θ

l
1, . . . , θ

l
d}:

〈k(xl )〉 = (n − 1)
∫

dxkρxk (xk )

1 + e
ζ (dlk −μ)

2T

. (13)

The symmetry in the angular distribution of points ensures
that the expected degree of the node depends only on its radial
coordinate rl and not on its angular coordinates, 〈k(xl )〉 =
〈k(rl , 0, . . . , 0)〉 ≡ 〈k(rl )〉. This allows us to integrate out the
d angular coordinates in Eq. (13).

We also note that the choice for the radial coordinate dis-
tribution given by Eq. (11a) with α � ζ/2 results in most of
the nodes having large radial coordinates, ri ≈ R 
 1. This
fact allows us to approximate the distances using Eq. (9):

〈k(rl )〉 ≈
∫ R

0

∫ π

0

(n − 1)ρr (r)drρθ1 (θ1)dθ1

1 +
[
eζ (r+rl −μ)

[
sin

(
θ1
2

)]2
] 1

2T

. (14)

To further simplify the calculations, we perform the fol-
lowing change of variables and parameters:

{r, rl ,R,m} = dζ

2
{r, rl , R, μ}, (15a)

τ = dT, (15b)

a = 2α/ζ , (15c)

where Eq. (15a) corresponds to four equations, each corre-
sponding to one variable or parameter in the brackets.

In terms of the rescaled variables, the connection
probability is

pi j ≈ 1

1 + e
ri+r j −m

τ

[
sin

(�θi j

2

)] d
τ

, (16)

while Eq. (14) now reads

〈k(rl )〉 ≈
∫ R

0

∫ π

0

(n − 1)ρr(r)drρθ1 (θ1)dθ1

1 + e
r+rl −m

τ

[
sin

(
θ1
2

)] d
τ

, (17)

where the rescaled density

ρr(r) = a

Cd

[
sinh

(ar

d

)]d
, 0 � r � R, (18)

with Cd as defined in Eq. (11b). In our analysis below, we
operate with R 
 1 and a > 1. In this case, most nodes are
characterized by large r values, and the density ρr(r) is ap-
proximated as

ρr(r) ≈ aea(r−R). (19)

The density ρr(r) in Eq. (19) is normalized only approxi-
mately under the assumptions of R 
 1 and a > 1:∫ R

0
ρr(r)dr ≈ 1 − e−aR. (20)

The expected degree of the graph is given by

〈k〉 =
∫ R

0
drρr(r)〈k(r)〉, (21)

and the degree distribution of the RHG can be expressed as

P(k) =
∫ R

0
drρr(r)P(k|r), (22)
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where P(k|r) is a conditional probability that a node with
radial coordinate r has exactly k connections.

In the case of sparse graphs, P(k|r) is closely approximated
by the Poisson distribution:

P(k|r) ≈ 1

k!
e−〈k(r)〉[〈k(r)〉]k, (23)

see Ref. [41], and the resulting degree distribution P(k) is a
mixed Poisson distribution:

P(k) ≈ 1

k!

∫ R

0
e−〈k(r)〉[〈k(r)〉]kρr(r)dr (24)

with mixing parameter 〈k(r)〉.
The clustering coefficient of a node i with degree ki > 1 is

defined as the ratio

ci = ti(ki

2

) (25)

of the number of triangles ti adjacent to i, to the maximum
such number

(ki

2

)
. Since nodes with degrees k = 0 and k = 1

do not form triangles, their clustering coefficients are unde-
fined. Therefore, the average clustering coefficient is defined
over nodes with k > 1.

The hidden variable formalism [41] allows for expressing
the average clustering coefficient of an RHG as a multiple
integral over triples of hidden variables. Apart from a few
special cases of the RHG, however, these integrals do not
have simple closed-form solutions [42]. Therefore, we restrict
ourselves to studying the clustering coefficient of RHGs nu-
merically in this work.

IV. CONNECTIVITY REGIMES OF THE RHG

Depending on the value of the rescaled temperature
τ = dT , there exist three distinct regimes of the RHG: (i) cold
(τ < 1), (ii) critical (τ = 1), and (iii) hot (τ > 1). We provide
detailed analyses of the properties of RHGs in these regimes
below, and we summarize our findings in Fig. 15.

A. Cold regime, τ < 1

Since the inner integral in Eq. (17) does not have a closed-
form solution, we need to employ several approximations to
derive 〈k(rl )〉. We note that most nodes have large radial co-
ordinates, er+rl −m 
 1, and the dominant contribution to the
inner integral in (17) comes from small θ1 values. This allows
us to estimate the integral by replacing sin(θ1) and sin(θ1/2)
with the leading Taylor series terms, as sin(x) = x + O(x3),
resulting in

〈k(rl )〉 ≈ (n − 1)πd

dId,1

×
∫ R

0
drρr(r) 2F1(1, τ, 1 + τ,−[umax(rl , r,m)]

1
τ ),

(26)

with

umax(rl , r,m) ≡
(π

2

)d
erl +r−m, (27)

and where 2F1 is Gauss’ hypergeometric function, and

Id,1 ≡
∫ π

0
sind−1(θ1)dθ1 = √

π	

[
d

2

]
/	

[
d + 1

2

]
(28)

for d > 1, and I1,1 = 2π .
In the τ < 1 regime, the hypergeometric function in (26)

can be approximated as

2F1(1, τ, 1 + τ,−[umax(rl , r,m)]
1
τ )

≈ [umax(rl , r,m)]−1 πτ

sin (πτ )
, (29)

and 〈k(rl )〉 and 〈k〉 are then approximately given by

〈k〉 ≈ (n − 1)
2d

dId,1

πτ

sin (πτ )
〈e−r〉2em, (30)

〈k(r)〉 ≈ 〈k〉
〈e−r〉e−r, (31)

where 〈e−r〉 ≡ ∫ R
0 drρr(r)e−r, and the explicit approximation

for 〈e−r〉 follows from (18):

〈e−r〉 ≈ a

a − 1
(e−R − e−aR). (32)

We next discuss the choice of the rescaled chemical po-
tential m. To do so, we discuss the leading-order behavior of
〈k〉n in the thermodynamic limit. Since a > 1, we neglect the
second term in (32) to obtain

〈k(r)〉n ∼ nem−r−R, (33a)

〈k〉n ∼ nem−2R. (33b)

Henceforth, we write f (x) ∼ g(x) when limx→∞ f (x)
g(x) = K ,

where K > 0 is a constant.
We note that 〈k(r)〉 decreases exponentially as a function

of r with the largest (smallest) expected degree corresponding
to r = 0 (r = R). By demanding that the largest and smallest
expected degrees scale as

〈kmax〉n = 〈k(0)〉n ∼ n, (34a)

〈kmin〉n = 〈k(R)〉n ∼ 1, (34b)

we obtain R ∼ ln n and m = R + λ, where λ is an arbitrary
constant.

First, we note that the scaling for R is consistent with our
initial assumption of R 
 1 for large graphs. We also note
that the exact value of the parameter λ is not important as long
as it is independent of n. To be consistent with the original H2

formulation, we set λ = 0, obtaining

m = R = ln (n/ν), (35)

where ν is a parameter controlling the expected degree of
the RHG.

Applying the scaling relationships (35) to (30) and (31), we
obtain

〈k〉n ≈ ν
2d

dId,1

(
a

a − 1

)2
πτ

sin(πτ )

×
[

1 − 2
(n

ν

)1−a
+

(n

ν

)2(1−a)
]

(36)

and

〈k(r)〉n ≈ n

ν

a − 1

a
〈k〉 e−r

∞∑
 = 0

(ν

n

)(a−1)
, (37)

see Figs. 16(a)–16(c).
As seen from Eq. (36) and Fig. 2, RHGs are sparse in

the cold (τ < 1) regime. Henceforth, we call graphs sparse
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FIG. 2. Expected degree 〈k〉 as a function of network size n for
RHGs in the cold (τ = 0.5) regime with (a) d = 1 and (b) d = 3.
Each panel includes the results for (red) a = 1.1 (γ = 2.1), (green)
a = 1.5 (γ = 2.5), and (blue) a = 2.5 (γ = 3.5). Each point is the
average of 100 simulations, and the error bars display standard devia-
tions. Solid lines are theoretical values for 〈k〉 prescribed by Eqs. (17)
and (21), and the dashed line is the thermodynamic limit of Eq. (36).
The insets in (a) and (b) correspond to extended domains of n values
for the cases a = 1.1 and 1.5. Note that the a = 1.1 case converges to
the asymptotic value at a much slower rate compared to the a = 1.5
and 2.5 cases.

if their expected degree converges to a finite constant in the
thermodynamic limit. The slow convergence to the asymptotic
value of 〈k〉 = 10 in the a = 1.1 case is due to the breakdown
of the sin(x) ≈ x approximation in Eq. (26) for small a val-
ues. Indeed, at small a values a larger fraction of nodes is
characterized by small r values, for which the e(r+rl −m) 
 1
assumption fails.

Finally, using Eqs. (23) and (24) we obtain the Pareto-
mixed Poisson distribution, which is a power law,

P(k) ≈ aκa
0

	[k − a, κ0]

	[k + 1]
∼ k−(a+1), (38)

where 	[s, x] is the upper incomplete gamma function, and
κ0 ≡ ( a−1

a )〈k〉, as confirmed by simulations in Fig. 3.
Hence, the cold regime corresponds to sparse power-law

graphs, P(k) ∼ k−γ , with γ = a + 1 ∈ (2,∞). We note that
the degree distribution is a power law if it takes the form
of P(k) = (k)k−γ , where (k) is a slowly varying function,
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FIG. 3. Degree distribution P(k) for RHGs with (a) d = 1 and
(b) d = 3 at τ = 0.5 and n = 1000 × 27. Each panel includes the
degree distributions for (red) a = 1.1 (γ = 2.1), (green) a = 1.5
(γ = 2.5), and (blue) a = 2.5 (γ = 3.5). Probabilities P(k) are ob-
tained from a single network realization. Degree distributions are
binned logarithmically to suppress noise at large k values. Solid
lines are theoretical values for P(k) prescribed by Eq. (38). For
visibility, the probabilities corresponding to γ = 2.5 and 2.1 are
multiplied by 102 and 104, respectively. The scaling constant ν =
10 × dId,1

2d ( a−1
a )2 sin(πτ )

πτ
, corresponding to 〈k〉 = 10 in the thermody-

namic limit.

i.e., a function that varies slowly at infinity, see Ref. [43].
Any function converging to a constant is slowly varying, and,
in the case of Eq. (38), (k) → aκa

0 as k → ∞. The degree
distribution is called scale-free if γ ∈ (2, 3).

The special case of a = 1 (γ = 2) is also well defined. In
this case the expressions for 〈k〉 and 〈k(r)〉 given by Eqs. (30)
and (31) remain valid, but 〈e−r〉 is now given by

〈e−r〉 ≈ Re−R. (39)

It is straightforward to verify that the scaling of R = m =
ln(n/ν) in the a = 1 case does not lead to the desired calibra-
tion of node degrees, 〈kmax〉 ∼ n and 〈kmin〉 ∼ 1. Instead, the
proper scaling is

R = ln (n/ν), (40a)

m = R − lnR, (40b)

resulting in

〈k〉n ≈ ν
2d

dId,1

πτ

sin(πτ )
ln (n/ν), (41)

〈k(r)〉n ≈ n

ν

〈k〉
ln (n/ν)

e−r. (42)
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100 simulations, and the error bars display standard deviations (not
visible for most points here). To avoid fluctuations associated with
large degree nodes, we have imposed a cutoff in the radial coordi-
nate distribution, removing nodes with r � rcut, where rcut is defined
such that 〈k(rcut )〉 = n1/2. Solid lines are theoretical values for 〈k〉
prescribed by Eq. (41), corrected for the radial coordinate cutoff. The
scaling constant is set to ν = 10 × dId,1

2d
sin(πτ )

πτ
.

In other words, the a = 1 (γ = 2) case corresponds to graphs
with 〈k〉n ∼ ln(n/ν), as confirmed by Fig. 4. Degree distri-
bution P(k) matches a power law with γ = 2, as shown in
Fig. 5. The phenomenon that RHGs are no longer sparse in the
a = 1 (γ = 2) case is not specific to the model but is a general
property of all scale-free network models with P(k) ∼ k−2.

Here, we do not attempt to obtain analytical expressions
of clustering for d � 1, as its computation is quite involved
already in the d = 1 case [42,44], but we inspect average
clustering numerically as a function of dimension and as a
function of network size in Fig. 6. In the cold regime τ < 1,
we observe that clustering is nonvanishing in the thermody-
namic limit, similar to the d = 1 case. The average clustering
decreases as a function of dimension d . This property of the
clustering coefficient has been observed in other spatial graph
models as well, particularly GIRGS [36]. This is because at
d → ∞, the angular distance distribution between two ran-
dom points on the unit d-sphere [45] approaches the Dirac
δ function centered at π/2. As a result, the role of a node’s
angular coordinates in the hyperbolic distances diminishes,
and the network becomes “less geometric” and more similar
to the hypersoft configurational model (HSCM), Sec. V F.

Graph property perspective, τ < 1

From a graph property viewpoint, the RHG is instrumen-
tal in generating synthetic networks with desired properties.
It follows from our analysis that RHGs in the cold regime
τ < 1 are characterized by power-law degree distributions,
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FIG. 5. Degree distribution P(k) for RHGs with (a) d = 1 and
(b) d = 3 in the case of a = 1 at τ = 0.5 and n = 1000 × 27. Prob-
abilities P(k) are obtained from a single network realization. Degree
distributions are binned logarithmically to suppress noise at large k
values. To avoid fluctuations associated with large degree nodes, we
have imposed a cutoff in the radial coordinate distribution, removing
nodes with r � rcut, where rcut is defined such that 〈k(rcut )〉 = n1/2.
Solid lines are theoretical values for P(k) based on a slope of γ = 2.
The scaling constant is set to ν = 10 × dId,1

2d
sin(πτ )

πτ
.

FIG. 6. Average clustering coefficient c̄ of nodes with degree
k > 1 as a function of network size (a) and as a function of di-
mension d (b) at τ = 0.5. Panel (a) includes results for (red) d =
1, (green) d = 5, (blue) d = 9, and (purple) d = 13, for a = 1.5
(γ = 2.5), while panel (b) includes results for (red) a = 1.1 (γ =
2.1), (green) a = 1.5 (γ = 2.5), and (blue) a = 2.5 (γ = 3.5), for
n = 104. Each point is the average of 100 simulations, and the error
bars display standard deviations. The scaling constant ν = 10 ×
dId,1

2d ( a−1
a )2 sin(πτ )

πτ
, corresponding to 〈k〉 = 10 in the thermodynamic

limit.
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P(k) ∼ k−γ , where the exponent γ ∈ [2,∞) is a function of
RHG temperature τ and node density parameter a. The radius
R of the hyperbolic ball Bd+1, on the other hand, controls the
expected degree 〈k〉 and the sparsity of the resulting graphs.
Relying on these results, we can redefine the RHG model in
terms of the parameters (n, γ , τ, 〈k〉).

To generate an RHG in the cold regime with desired graph
properties for γ > 2, one sets the node density parameter a,
the chemical potential m and radius R of Bd+1 to

a = γ − 1, (43a)

m = R = ln (n/ν), (43b)

where ν is the solution of Eq. (36), now taking the form of

〈k〉 ≈ ν
2d

dId,1

(
γ − 1

γ − 2

)2
πτ

sin(πτ )

×
[

1 − 2
(n

ν

)2−γ

+
(n

ν

)2(2−γ )
]
. (44)

When γ = 2 in the cold regime, one must set

a = γ − 1 = 1, (45a)

R = ln (n/ν), (45b)

m = R − lnR, (45c)

and ν is obtained as the solution of Eq. (41), which now takes
the form of

〈k〉 ≈ ν
2d

dId,1

πτ

sin(πτ )
ln (n/ν). (46)

B. Critical regime, τ = 1

In the τ = 1 regime, Eqs. (26) and (21) can be approxi-
mated as

〈k〉n ≈ (n − 1)2d

dId,1
em

×
[
d ln

(π

2

)
〈e−r〉2 + 2〈e−r〉〈re−r〉 − m〈e−r〉2

]
,

(47)

〈k(r)〉n ≈ (n − 1)2d

dId,1
em−r

×
[
d ln

(π

2

)
〈e−r〉 + (r − m)〈e−r〉 + 〈re−r〉

]
,

(48)

where 〈re−r〉 ≡ ∫
drρr(r)re−r is given by

〈re−r〉 ≈
(

a

a − 1

)[(
R − 1

a − 1

)
e−R + 1

a − 1
e−aR

]
.

(49)

Given that a > 1, we drop the second terms in (32) and (49)
to obtain

〈k(r)〉n ≈ (n − 1)2d

dId,1

(
a

a − 1

)

×
(

d log
(π

2

)
− 1

a − 1
+ R − m + r

)
em−R−r.

(50)

Similar to the τ < 1 regime, we require 〈kmax〉n ∼ n and
〈kmin〉n ∼ 1 to obtain the scaling relationships for m and R.
For 〈kmax〉n = 〈k(0)〉n and 〈kmin〉n = 〈k(R)〉n, we have

〈k(0)〉n ∼ n

(
d log

(π

2

)
− 1

a − 1
+ R − m

)
em−R,

(51a)

〈k(R)〉n ∼ n

(
d log

(π

2

)
− 1

a − 1
+ 2R − m

)
em−2R.

(51b)

Scaling 〈k(0)〉n ∼ n and 〈k(R)〉n ∼ 1 is achieved when m =
R and Re−R ∼ 1

n . Analogous to the cold regime, we set
R−1eR = n

ν
, obtaining

m = R = −W−1

(
−ν

n

)
, (52)

where W−1(·) is the W−1 branch of the Lambert W function.
Using the scaling in (52), we obtain

〈k〉n ≈ 2d

dId,1

(
a

a − 1

)2

×
[

1 −
(

d log
(π

2

)
− 2

a − 1

)[
W−1

(
−ν

n

)]−1
]
,

(53)

〈k(r)〉n ≈ n
2d

dId,1

(
a

a − 1

)(
d log

(π

2

)
− 1

a − 1
+ r

)
e−r,

(54)

see Figs. 16(d)–16(f). Hence, the critical regime corre-
sponds to sparse graphs in the thermodynamic limit, as
confirmed by simulations in Fig. 7. Note that the conver-
gence to the asymptote of 〈k〉 = 10 is slower than in the
cold regime, likely due to relatively large subleading terms
in Eq. (53).

We observe that the degree distributions of RHGs in the
critical regime seem to follow a power law with the same
exponent as in the cold regime:

P(k) ∼ k−γ ,

γ = a + 1,
(55)

as observed from Fig. 8. This is the case since the tail of
P(k) is dominated by nodes with small r values. In the crit-
ical regime, 〈k(r)〉n ∼ e−r for r values close to 0, similar
to the cold regime, resulting in the same degree distribution
exponent γ .

To investigate the a = 1 (γ = 2) case of the critical regime,
we need to reexamine the scaling of 〈k(r = 0)〉n and 〈k(r =
R)〉n. To do so, we use Eq. (17) with τ = 1 and a = 1, arriv-
ing, to the leading order, at

〈k(r = R)〉 ≈ 2d
(

π
2

)d

Id,1
n, (56a)

〈k(r = 0)〉 ≈ 3 × 2d−1
(

π
2

)d

Id,1
nR2em−2R. (56b)
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FIG. 7. Expected degree 〈k〉 as a function of network size n for
RHGs in the critical (τ = 1) regime with (a) d = 1 and (b) d = 3.
Each panel includes the results for (red) a = 1.1 (γ = 2.1), (green)
a = 1.5 (γ = 2.5), and (blue) a = 2.5 (γ = 3.5). Each point is the
average of 100 simulations, and the error bars display standard
deviations. Solid lines are theoretical values for 〈k〉 prescribed by
Eqs. (17) and (21), and the dashed line is the thermodynamic limit of
Eq. (53). The insets in (a) and (b) correspond to extended domains of
n values. Note that in the critical regime, all three cases converge
to the asymptotic value at a much slower rate than in the cold
regime, while the a = 1.1 case has not yet converged even within
the extended domain of n values.

It is seen from Eq. (56) that the desired scalings of 〈kmax〉n =
〈k(r = 0)〉n ∼ n and 〈kmin〉n = 〈k(r = R)〉n ∼ 1 are obtained
if we set R = ln(n/ν) and m = R − 2 lnR. Then,

〈k(r)〉n ≈ 2d

dId,1

n

[ln (n/ν)]2 e−r

×
{

Li2

[
−

[
ln

(n

ν

)]2(π

2

)d
er−R

]

− Li2

[
−

[
ln

(n

ν

)]2(π

2

)d
er

]}
, (57)

〈k〉n ≈ ν
2d

dId,1

1

[ln (n/ν)]2

×
{

2Li3

[
−

[
ln

(n

ν

)]2(π

2

)d
]

10-6

10-4

10-2

100

102

104

100 101 102 103

Degree 

Pr
ob

ab
ilit

y 
(
)

10-6

10-4

10-2

100

102

104

100 101 102 103

Degree 

Pr
ob

ab
ilit

y 
(
)

(a)

(b)

= 2.1

= 3.5

= 2.5

= 2.1

= 3.5

= 2.5

= 1, = 1

= 3, = 1

a = 1.1 ( = 2.1)

Theory

a = 1.5 ( = 2.5)

a = 2.5 ( = 3.5)

FIG. 8. Degree distribution P(k) for RHGs with (a) d = 1 and
(b) d = 3 at τ = 1 and n = 1000 × 27. Each panel includes the de-
gree distributions for (red) a = 1.1 (γ = 2.1), (green) a = 1.5 (γ =
2.5), and (blue) a = 2.5 (γ = 3.5). Probabilities P(k) are obtained
from a single network realization. Degree distributions are binned
logarithmically to suppress noise at large k values. For visibility,
the probabilities corresponding to γ = 2.5 and 2.1 are multiplied
by 102 and 104, respectively. Solid lines are theoretical values for
P(k) prescribed by Eq. (38). The scaling constant ν is chosen such
that ν = 10 × dId,1

2d ( a−1
a )2, corresponding to 〈k〉 = 10 in the thermo-

dynamic limit.

− Li3

[
−

[
ln

(n

ν

)]2(π

2

)d
e−R

]

− Li3

[
−

[
ln

(n

ν

)]2(π

2

)d
eR

]}
, (58)

and

〈k〉n ∼ ν
2d

dId,1
ln

(n

ν

)
, (59)

where Lis(x) is the sth-order polylogarithm function. Like
in the cold regime, the a = 1 case in the critical regime
corresponds to graphs with 〈k〉n ∼ ln(n/ν), as confirmed by
Fig. 9. We note that there is a disagreement of theoretical and
simulated values for d > 1 in Fig. 9(b), likely caused by a
breakdown of the approximation of [sin(θ1/2)]d in Eq. (17)
and imperfect control of R and m at τ = 1, a = 1. The degree
distribution for a = 1 in the critical regime is shown in Fig. 10.

Unlike the cold regime, Fig. 11(a) shows that average clus-
tering in the critical regime decreases logarithmically with
n as in the d = 1 case [44]. Similar to the cold regime, we
observe that the average clustering coefficient decreases as
dimensionality d increases, Fig. 11(b).
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FIG. 9. Expected degree 〈k〉 of RHGs with (a) d = 1 and
(b) d = 3 in the case of a = 1 at τ = 1. Each point is the average
of 100 simulations, and the error bars display standard deviations
(not visible for most points here). To avoid fluctuations associated
with large degree nodes, we have imposed a cutoff in the radial
coordinate distribution, removing nodes with r � rcut, where rcut is
defined like in the cold regime at τ = 0.5, as Eq. (57) cannot be
solved exactly. Solid lines are theoretical values for 〈k〉 prescribed
by Eq. (58), corrected for the radial coordinate cutoff. The scaling
constant is set to ν = 10 × dId,1

2d .

Graph property perspective, τ = 1

To generate an RHG in the critical regime with desired
graph properties for γ > 2, one must set

a = γ − 1, (60a)

m = R = −W−1

(
−ν

n

)
, (60b)

where ν is determined by Eq. (53), which now takes the form
of

〈k〉 ≈ 2d

dId,1

(
γ − 1

γ − 2

)2

×
[

1 −
(

d log
(π

2

)
− 2

γ − 2

)[
W−1

(
−ν

n

)]−1
]
.

(61)

When γ = 2 in the critical regime, one sets

R = ln (n/ν), (62a)

m = R − 2 lnR, (62b)

while ν is obtained by solving Eq. (58), now taking the form
of

〈k〉 ≈ ν
2d

dId,1

1

[ln (n/ν)]2

×
{

2Li3

[
−

[
ln

(n

ν

)]2(π

2

)d
]
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FIG. 10. Degree distribution P(k) for RHGs with (a) d = 1 and
(b) d = 3 in the case of a = 1 at τ = 1 and n = 1000 × 27. Proba-
bilities P(k) are obtained from a single network realization. Degree
distributions are binned logarithmically to suppress noise at large k
values. To avoid fluctuations associated with large degree nodes, we
have imposed a cutoff in the radial coordinate distribution, removing
nodes with r � rcut, where rcut is defined like in the cold regime
at τ = 0.5, as Eq. (57) cannot be solved exactly. Solid lines are
theoretical values for P(k) based on a slope of γ = 2. The scaling
constant is set to ν = 10 × dId,1

2d .

− Li3

[
−

[
ln

(n

ν

)]2(π

2

)d(ν

n

)]

− Li3

[
−

[
ln

(n

ν

)]2(π

2

)d(n

ν

)]}
. (63)

C. Hot regime, τ > 1

In the τ > 1 case, Eqs. (17) and (21) can be approximated
as

〈k〉n ≈ (n − 1) I (d, τ ) em/τ 〈e−r/τ 〉2, (64)

〈k(r)〉n ≈ 〈k〉
〈e−r/τ 〉e−r/τ , (65)

where

I (d, τ ) ≡ 1

Id,1

∫ π

0

sind−1θ1dθ1

sin
(

θ
2

)d/τ
, (66)

and

〈e−r/τ 〉 ≡
∫ R

0
ρr(r)e−r/τ dr ≈ aτ

aτ − 1
(e−R/τ − e−a/R).

(67)

Note that the expression for 〈e−r/τ 〉 given by Eq. (67) is valid
for all values of a � 1 and τ > 1 since aτ > 1.
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FIG. 11. Average clustering coefficient c̄ (a) of nodes with de-
gree k > 1 as a function of network size n and (b) as a function
of dimension d at τ = 1. Panel (a) includes results for (red) d =
1, (green) d = 5, (blue) d = 9, and (purple) d = 13, for a = 1.5
(γ = 2.5), while panel (b) includes results for (red) a = 1.1 (γ =
2.1), (green) a = 1.5 (γ = 2.5), and (blue) a = 2.5 (γ = 3.5), for
n = 104. Each point is the average of 100 simulations, and the error
bars display standard deviations. The scaling constant ν is chosen
such that ν = 10 × dId,1

2d ( a−1
a )2, corresponding to 〈k〉 = 10 in the

thermodynamic limit.

Similar to the τ < 1 regime, we demand 〈kmax〉n ∼ n and
〈kmin〉n ∼ 1 to obtain the scaling relationships for m and R:

m = R = τ ln (n/ν). (68)

This scaling in combination with Eq. (64) leads in the
thermodynamic limit to

〈k〉n ≈ ν I (d, τ )

(
aτ

aτ − 1

)2

, (69a)

〈k(r)〉n ≈ n

ν

(
aτ − 1

aτ

)
〈k〉e−r/τ , (69b)

P(k) ≈ aτ [〈k(R)〉]aτ 	[k − aτ ]

	[k + 1]
∼ k−aτ−1, (69c)

confirmed by Fig. 12 and Figs. 16(g) and 16(h).
Similar to the cold and critical regimes, RHGs in the hot

regime are sparse and have power-law degree distributions,
P(k) ∼ k−γ . Different from the cold and critical regimes, the
degree distribution exponent γ = aτ + 1 depends on both a
and τ in the hot regime, as confirmed by Fig. 13.

In the hot regime, we observe that average clustering de-
cays with n as n−σ , where the value of the exponent σ depends
on both d and τ , see Fig. 14. It is already known [44] that
the scaling of average clustering with n depends on τ in the
d = 1 case. Here, we observe that it also depends on the
dimension d � 1. As discussed in Sec. IV A, the angular dis-
tance distribution between two random points on a d-sphere at
d → ∞ approaches the Dirac δ function centered at π/2 [45],
causing clustering to vanish in the large-d limit. Figure 14(b)
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FIG. 12. Expected degree 〈k〉 as a function of network size n for
RHGs in the hot (τ = 1.5) regime with (a) d = 1 and (b) d = 3.
Each panel includes the results for (red) a = 1 (γ = 2.5), (green) a =
4
3 (γ = 3.0), and (blue) a = 5

3 (γ = 3.5). Each point is the average
of 100 simulations, and the error bars display standard deviations.
Solid lines are theoretical values for 〈k〉 prescribed by Eqs. (17) and
(21), and the dashed line is the thermodynamic limit for 〈k〉 given by
Eq. (69a). The insets in (a) and (b) correspond to extended domains
of n values.

confirms that clustering in the hot regime decreases slowly
with dimension d .

Graph property perspective, τ > 1

To generate an RHG in the hot regime with given average
degree 〈k〉 and power-law exponent γ > 2, one needs to set

a = γ − 1

τ
, (70a)

m = R = τ ln (n/ν), (70b)

where ν is given by

〈k〉 ≈ ν I (d, τ )

(
γ − 1

γ − 2

)2

, (71)

and I (d, τ ) is given by Eq. (66).
Because we require a > 1, in this regime the power-law

exponent is bounded, γ − 1 > τ . Since τ > 1, a power-law
exponent γ = 2 is not possible in the hot regime.

In summary, we find that under the proper change
of variables prescribed by Eq. (15), RHGs of any
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FIG. 13. Degree distribution P(k) for RHGs with (a) d = 1 and
(b) d = 3 at τ = 1.5 and n = 1000 × 27. Each panel includes the
degree distributions for (red) a = 1 (γ = 2.5), (green) a = 4

3 (γ =
3.0), and (blue) a = 5

3 (γ = 3.5). Degree distributions are binned
logarithmically to suppress noise at large k values. Solid lines are
theoretical values for P(k) prescribed by Eq. (69c). For visibility,
the probabilities corresponding to γ = 3.0 and 2.5 are multiplied by
102 and 104, respectively. The scaling constant ν is chosen such that
ν = 10 × 1

I(d,τ ) ( aτ−1
aτ )2, corresponding to 〈k〉 = 10 in the thermo-

dynamic limit.

dimensionality can be naturally described by three regimes
based on the rescaled temperature τ , cold regime (0 � τ < 1),
critical regime (τ = 1), and hot regime (τ > 1). In each of
these regimes, RHGs of any dimensionality d � 1 exhibit
similar topological properties with respect to node degrees,
Fig. 15. Our approximations of 〈k(r)〉 work well in each of the
three regimes, Fig. 16, but there is a small constant bias in the
hot regime. The approximations break down for nodes close
to the center of Bd+1 (values of r close to 0) across all three
regimes. Consistent with the d = 1 case, Ref. [2], the average
clustering coefficient in RHGs seems to approach a constant in
the thermodynamic limit when τ < 1, decreases polynomially
as the RHG size increases when τ > 1, and decreases loga-
rithmically as a function of network size in the critical regime
when τ = 1. We find that the average clustering coefficient in
the RHG model decreases in the d → ∞ limit in each of the
cold, critical, and hot regimes, consistent with findings for the
GIRG model. Finally, Fig. 17 shows that for any dimension,
clustering is a decreasing function of τ .

V. LIMITING CASES OF THE RHG MODEL

In this section, we analyze several important parameter
limits of the RHG, and we show that they correspond to
well-known graph ensembles.

FIG. 14. Average clustering coefficient c̄ (a) of nodes with de-
gree k > 1 as a function of network size n and (b) as a function
of dimension d at τ = 1.5. Panel (a) includes results for (red)
d = 1, (green) d = 5, (blue) d = 9, and (purple) d = 13, for a = 1
(γ = 2.5), while panel (b) includes results for (red) a = 1 (γ = 2.5),
(green) a = 4

3 (γ = 3.0), and (blue) a = 5
3 (γ = 3.5), for n = 104.

Each point is the average of 100 simulations, and the error bars
display standard deviations. The scaling constant ν is chosen such
that ν = 10 × 1

I(d,τ ) ( aτ−1
aτ )2, corresponding to 〈k〉 = 10 in the ther-

modynamic limit.

A. τ → 0 limit in the cold regime

The case of τ = 0 is well-defined as the τ → 0 limit of the
cold regime. The T → 0 limit of the connection probability
function in Eq. (12) is the step function

pi j = �(μ − di j ), (72)

such that connections are established deterministically be-
tween node pairs separated by distances smaller than μ.

In this case, we have πτ
sin(πτ ) → 1 in (36), leading to

〈k〉n ≈ ν2d

dId,1

(
a

a − 1

)2

×
[

1 − 2
(n

ν

)1−a
+

(n

ν

)2(1−a)
]
, (73)

〈k(r)〉n ≈ n

ν

(
a − 1

a

)
〈k〉e−r

∞∑
 = 0

(ν

n

)(a−1)
. (74)

The resulting graphs are sparse and are characterized by a
power-law degree distribution P(k) ∼ k−γ , γ = a + 1, simi-
lar to the 0 < τ < 1 case.

B. a → ∞ limit: Spherical soft random geometric graphs

In this limit, the radial coordinate distribution (18) degen-
erates to

ρr(r) → δ(r − R). (75)

As a result, all nodes are placed at the boundary of the hy-
perbolic ball Bd+1 with ri = R. Even though the distances
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FIG. 15. RHG regimes in terms of rescaled variables.
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FIG. 16. Average degree 〈k(r)〉 for r ∈ [0,R] and n = 105, d = 3, and 〈k〉 = 10. Panels correspond to (a)–(c) the cold regime at
τ = 0.5, (d)–(f) the critical regime at τ = 1, and (g)–(i) the hot regime at τ = 1.5. (a,d,g) γ = 2.1, (b,e,h) γ = 2.5, and (c,f,i) γ = 3.5.
The combination γ = 2.1, τ = 1.5 in panel (g) implies a < 1, which is not possible in our framework. Each point is the average of 100
simulations. Solid lines are theoretical values for 〈k(r)〉 prescribed by Eq. (17), and dashed lines are the same values but with approximations
sin x ≈ x.
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FIG. 17. Average clustering coefficient c̄ of nodes with degree
k > 1 as a function of temperature τ for different dimensions d
and n = 104. Each point is the average of 100 simulations, and the
error bars display standard deviations (not visible for most points
here). The scaling constant ν is chosen such that 〈k〉 = 10 in the
thermodynamic limit.

between nodes are still hyperbolic, they are fully determined
by the angles on Sd ,

ζdi j = cosh−1

[
cosh

(
2R
d

)2

− sinh

(
2R
d

)2

sin
(
�θi j

)]
.

Hence, the connection probabilities {pi j} are fully determined
by angles �θi j ,

pi j = 1

1 + exp
(

d̃(�θi j )−m

τ

) , (76)

where d̃ (�θi j ) ≡ dζ

2 di j .
In the a → ∞ regime, all nodes are effectively placed at

the surface of the unit sphere Sd , and connections are made
with distance-dependent probabilities on the sphere. Hence,
in the a → ∞ limit, RHGs are soft RGGs on Sd .

C. a → ∞, τ → 0 limit: Spherical random geometric graphs

If a → ∞ and τ → 0, the connection probabilities in
Eq. (16) become

pi j = �(θc − �θi j ), (77)

where θc is the solution to the equation d̃ (θc) = m. Thus, in
this limit the RHG becomes the sharp random geometric graph
on Sd (SpRGG).

The expected degree of the SpRGG equals the expected
number of nodes that fall within an angle θc of the θ1 =
0, . . . , θd = 0 point,

〈k〉 = (n − 1) p̃, (78)

where the volume of the (d − 1)-dimensional sphere of radius
θc in Sd is

p̃ =
∫ θc

0 [sin(θ )]d−1dθ∫ π

0 [sin(θ )]d−1dθ
. (79)

The degree distribution is thus binomial,

P(k) = Bin[n − 1, p̃](k), (80)

converging to the Poisson distribution with mean 〈k〉 if θc

is such that np̃ → 〈k〉. Since the Poisson distribution is the

γ → ∞ limit of the Pareto-mixed Poisson distribution (38),
we refer to this regime as the γ → ∞ case in Fig. 15.

D. ζ → ∞, τ → ∞ limit: Hypersoft configuration model

In the ζ → ∞ limit, the hyperbolic distances in (7) degen-
erate to

di j = ri + r j, (81)

such that the angular coordinates of nodes are ignored in this
limit. Further, if τ also tends to infinity, τ → ∞, but such that
limζ→∞ ζ

τ
= λ > 0, where λ is a constant, then the connection

probability in Eq. (12) simplifies to

pi j = 1

1 + eωi eω j
, (82)

which is the connection probability in the hypersoft con-
figuration model (HSCM) [46]. Here, ωi = dλ

2 (ri − μ

2 ) are
the Lagrange multipliers controlling expected node degrees,
drawn from the effective pdf,

ρω(ω) ≈ 2α

dλ
eα( μ

2 −R)e
2α
dλ

ω, (83)

ω ∈
(

−dλμ

4
,

dλ

2

(
R − μ

2

))
. (84)

The expected degrees in the HSCM are approximated by

〈k(ωi )〉 ≈ (n − 1)〈e−ω〉e−ωi , (85)

〈k〉 ≈ (n − 1)〈e−ω〉2, (86)

where 〈e−ω〉 ≡ ∫
dωρω(ω)e−ω. By demanding that 〈k[ω(r =

0)]〉n ∼ n and 〈k[ω(r = R)]〉n ∼ 1, we obtain R = 2
dλ

ln(n),
while μ = R in the case of 2α

dλ
> 1, and μ = 2α

dλ
R in the case

of 2α
dλ

< 1.
In both cases, 〈k(ω)〉 ∼ e−ω and graphs in the HSCM

are sparse, while the conditional probability P(k|ω) is well-
approximated by the Poisson distribution:

P(k|ω) ≈ 1

k!
e−〈k(ω)〉[〈k(ω)〉]k, (87)

see Ref. [46]. The resulting degree distribution P(k) is a mixed
Poisson distribution:

P(k) ≈ 1

k!

∫ dλ
2 (R− μ

2 )

− dλμ

4

e−〈k(ω)〉[〈k(ω)〉]kρω(ω)dω, (88)

with mixing parameter 〈k(ω)〉. Using (23) and (24), we obtain

P(k) ≈ (γ − 1)κγ−1
0

	[k + 1 − γ , e
dλ
2 (R− μ

2 )κ0]

	[k + 1]
∼ k−γ ,

(89)

where γ = 2α
dλ

+ 1 and κ0 ≡ e
dλ
2 ( μ

2 −R) 〈k〉
〈e−ω〉 .

Thus, the RHG model in the ζ → ∞, τ → ∞, ζ/τ → λ

limit degenerates to the HSCM with a scale-free degree distri-
bution with exponent γ = 2α

dλ
+ 1.

E. τ → ∞ limit: The Erdős-Rényi graph

The limit of τ → ∞ and finite ζ is the most degenerate
case. Indeed, in this regime connection probabilities pi j
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become independent of the hyperbolic distances di j between
the nodes:

pi j = lim
τ→∞

1

1 + e−μ(τ )/τ
. (90)

It is seen from Eq. (90) that the connection probabilities
are nontrivial only in the case μ(τ ) ∼ τ . In this case, the
connection probabilities are constant,

pi j = p = lim
τ→∞

1

1 + e−λ
, (91)

where λ ≡ limτ→∞ μ(τ )
τ

. By varying λ ∈ (−∞,∞) one can
tune the connection probabilities p ∈ (0, 1) of the resulting
Erdős-Rényi (ER) graphs.

One can also check that the ER limit can be obtained either
as the γ → ∞ (α → ∞ or λ → 0) limit of the HSCM, or as
the τ → ∞ limit of SpSoRGGs.

F. d → ∞ limit

As dimension d increases, the angular distance distribution
between two random points on a d-sphere approaches the
Dirac δ function centered at π/2 [45]. As a result, the role
of a node’s angular coordinates in the hyperbolic distances
diminishes, and the network becomes more similar to the
HSCM. The distances between nodes depend only on their
radial coordinates,

di j ≈ ri + r j − 1

ζ
ln 2. (92)

Using this approximation, we estimate the expected degree
of a node at r in the d 
 1 regime as

〈k(r)〉 ≈ (n − 1) e−aR
∫ eaR

1

dξ

1 + (
1
2

) d
2τ e

r−m

τ ξ
1
aτ

. (93)

Since τ → ∞ as d → ∞ for any positive T , we are in the
hot regime, τ > 1. In this regime, we set m = R = τ ln( n

ν
),

resulting in

〈k(r)〉〉n ≈ n 2
d
2τ e− r

τ , (94a)

〈k〉n ≈ ν 2
d
2τ . (94b)

Thus, high-dimensional RHGs are akin to low-dimensional
RHGs in the hot regime. Indeed, as seen from Fig. 18(a),
high-dimensional RHGs are sparse graphs.

High-dimensional RHGs are well-defined in the d → ∞
limit. In this case, RHGs are sparse graphs with 〈k〉n ≈ ν 2

1
2T .

In the d → ∞ limit, γ → ∞ implies that RHGs are no longer
described by a power-law degree distribution. This is indeed
the case, as all nodes are located at the boundary of Bd+1,
r = R, leading to a Poisson degree distribution,

P(k) = P(k|r = R) ≈ 1

k!
e−〈k〉〈k〉k, (95)

where 〈k〉 = 〈k(r = R)〉 ≈ ν 2
1

2T , see Fig. 18(b).
The average clustering coefficient of high-dimensional

RHGs decreases as a function of network size, similar to
RHGs of finite dimensionality in the hot regime, Fig. 18(c).

FIG. 18. Expected degree 〈k〉 (a) as a function of network size
n, degree distribution P(k) (b), and average clustering coefficient c̄
(c) of nodes with degree k > 1 as a function of network size n for
RHGs with d = 100 at τ = 50. Panels (a) and (c) include results
for (red) a = 1 and (green) a = 4/3, panel (b) includes results for
(red) 〈k〉 = 5 and (green) 〈k〉 = 10 at a = 1 and n = 1000 × 27,
while 〈k〉 = 10 in panel (c). Each point in panels (a) and (c) is
the average of 20 simulations, and the error bars display standard
deviations, while probabilities P(k) in panel (b) are obtained from a
single network realization for each different value of 〈k〉. The scaling
constant ν is chosen such that ν = 〈k〉 2− 1

2T .

Graph property perspective, limiting cases

Figure 19 summarizes the properties of the RHG and its
limiting cases in the (τ, γ ) phase space. Within the (τ, γ )
phase space, all the RHG temperature regimes condense into
the heterogeneous (2 � γ < ∞) soft-geometric (0 � τ < ∞)
state.
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FIG. 19. Limiting regimes of the RHG from the graph property
perspective.

The sharp-geometric limit (τ → 0) of this state is well-
defined and is obtained by taking the τ → 0 limit in Eq. (44).
In this case, to generate RHGs with desired expected degree
〈k〉 and power-law distribution exponent γ > 2, one needs to
set m = R = ln(n/ν), where ν is given by

〈k〉 ≈ ν
2d

dId,1

(
γ − 1

γ − 2

)2[
1 − 2

(n

ν

)2−γ

+
(n

ν

)2(2−γ )
]
. (96)

By setting γ → ∞ (a → ∞) in the RHG, one arrives at
the Spherical Soft Random Geometric Graph (SpSoRGG).
Here nodes are placed at the boundary of the Bd+1 ball, and
connections are established with probabilities dependent on
distances between the nodes on its Sd boundary, see Sec. V B.
Since SpSoRGGs are characterized by the Poisson degree
distribution, we refer to them as the homogeneous (γ → ∞)
soft-geometric limit of the RHG. The expected degree of the
SpSoRGG can be obtained by taking the γ → ∞ limit of the
RHG in the cold, critical, or hot regimes, depending of the τ

value. In other words, to generate a SpSoRGG with prescribed
τ and 〈k〉, one needs to set m, R, and ν as follows:

0 < τ < 1 : m = R = ln (n/ν), 〈k〉 ≈ ν2d

dId,1

πτ

sin(πτ )
;

(97a)

τ = 1 : m = R = −W−1(ν/n), 〈k〉 ≈ ν2d

dId,1
; (97b)

τ > 1 : m = R = τ ln (n/ν), 〈k〉 ≈ ν I (d, τ ). (97c)

By taking the τ → 0 limit of the Spherical Soft RGG,
we arrive at the Spherical Sharp RGG, or simply Spheri-
cal Random Geometric Graph (SpRGG). Similar to its soft
counterpart, nodes in the SpRGG are placed at the Bd+1

boundary, but connections are established deterministically
between nodes separated by distances smaller than the thresh-
old, see Sec. V B. Another possibility to arrive at the SpRGG
is by taking the γ → ∞ limit of the Sharp RHG. One can
generate Spherical Sharp RGGs with desired expected degree

〈k〉 by setting m = R = ln(n/ν), and selecting ν from

〈k〉 ≈ ν2d

dId,1
. (98)

While both the hypersoft configurational model (HSCM)
and the Erdős-Rényi (ER) graph are the τ → ∞ limits of the
RHG, they belong to two distinct classes, as seen from the
graph property perspective.

The HSCM belongs to the nongeometric (τ → ∞) hetero-
geneous (2 � γ < ∞) case and is the τ → ∞, ζ → ∞ limit
of the RHG. To build RHGs with desired expected degree 〈k〉
and a power-law degree distribution exponent γ > 2, one sets
μ = R = 2

dλ
ln( n

ν
), where ν is the solution of

〈k〉 ≈ ν

(
γ − 1

γ − 2

)2[
1 −

(ν

n

)γ−2
]2

. (99)

The ER graph, on the other hand, belongs to the nongeo-
metric (τ → ∞) homogeneous (γ → ∞) state and is a γ →
∞ limit of the HSCM. Alternatively, the ER graph can also be
attained as the τ → ∞, ζ → ∞ limit of the SpSoRGG.

In the d → ∞ limit, RHGs have a Poisson degree distri-
bution, and one can generate RHGs with the desired expected
degree by selecting ν from

〈k〉 ≈ ν 2
1

2T . (100)

VI. HYPERBOLIC GRAPH GENERATOR
IN d + 1 DIMENSIONS

We conclude by presenting a software package that gener-
ates RHGs of arbitrary dimensionality, to be specified by the
user. The generator covers the cold (τ < 1), critical (τ = 1),
and hot (τ > 1) regimes. The software package and detailed
instructions on how to compile and use it are available from
the Bitbucket repository [47].

The RHG generator can operate in two different modes:
hybrid and model-based. In hybrid mode, the user provides
expected degree 〈k〉, power-law exponent γ , rescaled tem-
perature τ , and dimension d . Equations (17) and (21) are
solved for the rescaled radius R that yields the desired 〈k〉
using the bisection method. The triple integral that is found by
combining Eqs. (17) and (21) is evaluated numerically using
Monte Carlo integration with importance sampling through
the GNU Scientific Library (GSL) [48]. In model-based mode,
the user directly provides the model parameters a, τ , R (or ν)
and d . We expect the model-based mode to be instrumental
for research purposes.

VII. SUMMARY

In this work, we have generalized random hyperbolic
graphs (RHGs) to arbitrary dimensions. In doing so, we have
found the rescaling of network parameters given by Eq. (15)
that allows for reducing RHGs of arbitrary dimensionality to
a single mathematical framework. Summarized in Fig. 15,
our results indicate that RHGs exhibit similar connectivity
properties, regardless of their dimension d . At the same time,
higher-dimensional realizations of the RHG model differ from
the original d = 1 RHG model with respect to other structural
properties.
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One such property is clustering. We find that the degree-
dependent and average clustering coefficients behave dif-
ferently depending on the temperature regime. In the cold
regime, 0 � τ < 1, RHGs are characterized by nonvanishing
average and degree-dependent clustering. In the hot phase,
τ > 1, clustering becomes size-dependent and vanishes in
the thermodynamic limit. These observations are expected
and have been previously studied in the special d = 1 case
[2,42,49]. The critical temperature of τ = 1 corresponds to a
continuous phase transition, which has been shown in d = 1
to be topological in nature, characterized by diverging entropy
and the atypical finite-size scaling behavior of clustering [44].
RHGs of arbitrary dimensionality allow us to study the behav-
ior of clustering as a function of the dimension. To this end, we
observe that, in general, clustering decreases as a function of
d in all three regimes. This observation is consistent with the
d → ∞ limit, which is akin to the hypersoft configurational
model (HSCM).

In general, we note that the degree-dependent clustering
does depend on both dimensionality and temperature based
on our numerical experiments. This observation is in line
with another work proposing to use the density of cycles
to estimate network dimensionality [36]. Yet, it remains an
open question what exactly is different between two RHGs
of different dimensionalities whose clustering is matched by
selecting appropriate temperatures.

Higher-dimensional RHGs may be instrumental in graph
embedding tasks. Indeed, the dimensionality of the latent
space has been shown to impact the accuracy of many network
inference tasks, including link prediction, clustering, and node
classification [32]. One of the standard mapping approaches is
maximum likelihood estimation (MLE), finding node coordi-
nates of the network of interest by maximizing the likelihood
that the network was generated as an RHG in the latent space.
The likelihood function in the case of H2 has been shown
to be extremely nonconvex with respect to node coordinates
[20], making standard learning tools, like stochastic gradient
descent, inefficient. Raising the dimensionality of the latent
space Hd+1 may lift some of the local maxima of the likeli-
hood function, potentially leading to faster and more accurate
graph embedding algorithms [50].
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